Have We Solved Access Control Vulnerability
Detection in Smart Contracts? A Benchmark Study

Han Liu*, Daoyuan Wu'8, Yugiang Sun?, Shuai Wang*$#, Yang Liu?
*The Hong Kong University of Science and Technology, Hong Kong SAR, China
TLingnan University, Hong Kong SAR, China
iNanyang Technological University, Singapore
Emails: livhan@ust.hk, daoyuanwu@In.edu.hk, suny0056 @e.ntu.edu.sg, shuaiw @cse.ust.hk, yangliu@ntu.edu.sg

Abstract—Access control (AC) vulnerabilities are among the
most critical security threats to smart contracts. Despite extensive
research, they remain widespread and damaging in the Ethereum
ecosystem. To understand and advance the current state-of-the-art
(SOTA) in AC vulnerability detection, we first curate a diverse
dataset of 180 real-world AC vulnerabilities from CVE entries,
DeFiHackLabs incidents, and Codedrena audit reports.

Using this dataset, we conduct a systematic benchmark study
along three dimensions. First, we develop a cause-based taxonomy
and analyze the prevalence and evolution of AC vulnerabilities.
Second, we evaluate six SOTA tools, including two from industry
and four from academia, revealing low recall (3% to 8%) and
significant blind spots. To understand these failures, we examine
1.2 million deployed contracts and uncover practical gaps in
AC protection mechanisms overlooked by existing tools. Finally,
we assess the potential of large language models (LLMs) for
AC vulnerability detection and show that LLMs detect 53-75%
of vulnerabilities, outperforming traditional tools but facing
challenges such as hallucinations and scalability. Our findings
highlight the need for hybrid approaches that combine static
analysis with LLM-based semantic reasoning to address the
complexity of modern AC vulnerabilities.

Index Terms—Smart Contracts, Access Control, Vulnerability
Detection, Large Language Models.

I. INTRODUCTION

Smart contracts, self-executing programs deployed on
blockchains, underpin a wide range of decentralized appli-
cations (dApps), particularly in decentralized finance (DeFi).
Their transparency and programmability have driven rapid
adoption, with DeFi protocols alone managing over $116 billion
in total value locked (TVL) as of 2025 [1]. However, the
immutability of smart contracts also introduces irreversible
risks: a single vulnerability can result in catastrophic financial
losses [2], [3]. A stark example is the 2025 multisig wallet
phishing attack, which exploited a standard wallet implemen-
tation and caused a $1.4 billion loss [4].

Among these risks, access control (AC) vulnerabilities,
failures in enforcing permissions on critical functions, pose
one of the most severe threats. These vulnerabilities can
allow unauthorized parties to steal funds, seize control of
system components, or manipulate protocol behavior. AC
vulnerabilities are ranked as the top security risk in the
2025 OWASP Top 10 for smart contracts [5], reflecting their
prevalence and devastating impact. In 2024 alone, AC exploits

§Corresponding authors: Daoyuan Wu and Shuai Wang.

TABLE I
RECENT AND SEVERE INCIDENTS OF AC VULNERABILITIES.
Target Loss($) Time Target Loss($) Time
Infini 50M 2025-02-24 | M2 Exchange 13.7M 2024-10-31
Orange Finance 0.83M 2025-01-08 | Radiant Capital ~ 53M 2024-10-16
98Token 0.03M 2025-01-04 | Shezmu 4.9M 2024-09-20
Fegex 0.9M 2024-12-29 | WXETA 0.11M 2024-09-16
BTC24H 0.09M 2024-12-16 | Indodax 25.2M 2024-09-10

caused $953.2 million in losses, accounting for 67.1% of the
total $1.42 billion in damages from smart contract hacks [5].
This alarming trend has continued into 2025, exemplified by
the $50 million exploit of the Infini protocol, in which an
attacker gained unauthorized access to a privileged wallet.

Table I lists several recent and severe AC-related exploits.

These incidents reveal a persistent and systemic problem:
despite continuous advances in smart contract auditing, AC
vulnerabilities remain a dominant class of exploits. Attackers
continue to exploit common design flaws such as missing access
modifiers [6], flawed role assignments [7], and insecure cross-
contract permission schemes [8]. Their increasing frequency
and outsized financial impact underscore the urgency of
developing robust and context-aware security analysis tools.

In response, researchers and practitioners have developed

a range of vulnerability detection tools, including general-
purpose static analyzers from industry, such as Slither [9]
and Mythril [10], which use rule-based pattern matching and
symbolic execution. Alongside these, specialized academic
tools, such as AChecker [11], SPCon [12], PrettySmart [13],
and SoMo [14], aim to detect AC-specific issues, including
missing authorization and privilege escalations. Despite these
efforts, real-world AC vulnerabilities remain prevalent, raising
concerns about the practical effectiveness of existing tools.

Unfortunately, existing benchmark studies [15]-[20] have

largely focused on general static application security test-
ing (SAST) tools or specific vulnerability classes like reen-
trancy [20], leaving key limitations in the AC domain unad-
dressed. Specifically, three major gaps remain:

e Lack of a real-world, diverse AC vulnerability dataset.
Prior studies evaluated tools on narrow or synthetic
datasets, failing to capture the diversity of AC vulner-
abilities observed in practice.

o Absence of a unified, cause-based taxonomy. Existing
classifications (e.g., [19]) focus on rule-based patterns
and do not reflect the broader semantic and contextual

challenges faced by AC-specific tools. For example, tools
like PrettySmart [13] that target privilege escalations are
not adequately represented in static rule taxonomies.

o Limited understanding of tool performance on modern
contracts. Tool evaluations have primarily used small-
scale or CVE-based benchmarks, which poorly reflect
the complexity and modularity of contemporary smart
contracts.

To bridge these gaps, we present the first comprehensive
benchmark study focused specifically on AC vulnerability
detection in smart contracts. We first construct a diverse
dataset comprising 180 real-world AC vulnerabilities from three
complementary sources: standardized CVEs [21], real-world
exploits from DeFiHackLabs [22], and peer-reviewed audit
findings from Code4rena [23]. This dataset significantly exceeds
previous similar efforts (e.g., 34 reentrancy vulnerabilities
in [20]) in both scale and diversity.

Using this dataset, we construct a cause-based taxonomy
of AC vulnerabilities and analyze their characteristics and
evolution over time (Section V-A). We then evaluate the
detection capabilities of four SOTA AC-specific tools (SPCon,
AChecker, PrettySmart, SoMo) and two general-purpose SAST
tools (Slither, Mythril) against our dataset. The results reveal
that all tools exhibit low recall (3%—8%) and fail to detect the
majority of real-world AC vulnerabilities. To further understand
these failures, we analyze 1.2 million verified smart contracts
from Ethereum-compatible blockchains. Our results reveal that
54.68% of AC protections, especially this-based and hybrid
mechanisms, are poorly supported or completely missed by
existing tools (Section V-C).

Finally, we explore the use of large language models (LLMs)
in AC vulnerability detection. We test two general-purpose
models (GPT-40-mini, GPT-40) and two reasoning-enhanced
models (GPT-03-mini, DeepSeek-R1) using our dataset. Our
results show that these LLMs achieve substantially higher
recall (53-75%) than traditional tools, demonstrating strong
semantic reasoning capabilities. However, they also suffer
from hallucinations and scalability limitations. These trade-
offs highlight the need for hybrid detection frameworks that
combine the strengths of both static analysis and LLM-based
reasoning. Our study provides actionable insights into the
limitations of current AC vulnerability detection methods and
highlights promising directions for future research. All datasets
and evaluation code are released on our repository [24].

In summary, this paper makes the following contributions:

e We curate a real-world, diverse dataset of 180 AC
vulnerabilities from CVEs, DeFiHackLabs incidents, and
Codedrena audit reports, and construct a cause-based
taxonomy to analyze their characteristics and evolution.

« We systematically evaluate four SOTA AC-specific tools
and two general-purpose SAST tools, revealing low recall
and identifying critical gaps in AC vulnerability detection.

e We explore the potential of LLMs in detecting AC
vulnerabilities, demonstrating their semantic strengths,
identifying their operational trade-offs, and informing
future hybrid detection strategies.

II. PRELIMINARY
A. Access Control Vulnerabilities

AC vulnerabilities occur when systems fail to enforce
restrictions on who or what can interact with resources, data, or
functionalities [25]. In traditional software, these vulnerabilities
often stem from misconfigured role-based access control
(RBAC), privilege escalation flaws, or insufficient validation of
user permissions [26]. For example, a web application might
expose an administrative API without proper authentication
checks, allowing attackers to manipulate critical settings.
In smart contracts, AC mechanisms are programmatically
enforced, introducing unique challenges [12]. Unlike traditional
systems, due to their immutable nature, flawed AC logic in
smart contracts cannot be patched without upgrades, which
may introduce new risks. For instance, missing modifier checks
(e.g., onlyOwner) or improper role assignments in smart
contracts can grant unauthorized actors control over funds
or governance mechanisms, resulting in significant financial
losses. The urgency of addressing AC vulnerabilities in smart
contracts is underscored by industry reports such as the OWASP
Top 10 for Smart Contracts 2025, which identifies AC failures
as the top one security risk in decentralized applications [5].

B. Definition of AC Vulnerabilities

Based on the concept of AC vulnerabilities [25] in traditional
software, we formally define an AC vulnerability in smart
contracts as follows:

Let a smart contract be modeled as a state transition system
represented by the tuple:

C=(S,F A PJ)

where:

« S is the set of all possible states of the contract.

e F'is the set of functions in the contract

o A is the set of actors (e.g., owned accounts, contracts).
e P:F — 2% maps functions to authorized actor sets.

e 0:F x Ax S — S is the state transition function.

An access control vulnerability exists iff:

a¢ P(f)No(f,a,8) # L

where L represents an invalid or blocked transition.

df e FLac A, se S st

III. OVERVIEW

In this section, we present an overview of our study, which
aims to answer the following research questions (RQs):

RQ1: Taxonomy of AC Vulnerabilities. What are the dom-
inant types of real-world AC vulnerabilities in smart
contracts, and how has their prevalence evolved over time?

RQ2: Effectiveness of SOTA Tools. How effective are
SOTA tools in detecting real-world multi-sourced AC
vulnerabilities, and what are their key limitations?

RQ3: Practical Gaps. How do current AC protection mecha-
nisms in smart contracts function, and why do existing
tools fail to detect the absence of these protections?

RQ1 Taxonomy of AC Vulnerabilities

Vulnerabilit)

DefiHacks Lab

Pt Pl
SPCon 3
(]
0 Code4rena Report . e 0 ° AChecker | T
A g
¥ CVE List PrettySmart 1 <
D -0 >
@
— Datasets Taxonomy '. Somo 173
™OnlyOwner 4 ' S
(%)
& OnlyOwner SUITHER 9
>
(& (g@ OnlyRole LT3

Access Control isAuthorized " -t; " 1 §
Issues ythri @

LLM-Based i Semmmmmmnt

Detection Current Practice SOTA Tools

RQ4 LLM Capabilities ~ RQ3 Practical Gaps

Fig. 1. The framework of our AC vulnerability study.

RQ4: LLM Capabilities. Can LLMs complement traditional
tools to improve AC vulnerability detection?

Fig. 1 illustrates the overall framework of our study,
which systematically addresses the four RQs through four
interconnected phases: data curation, tool evaluation, practical
validation, and LLMs’ integration. First, we establish a multi-
source dataset of real-world AC vulnerabilities to analyze
their cause-based taxonomy and temporal evolution, directly
addressing RQ1. Then, leveraging this dataset, we evaluate the
effectiveness of SOTA detection tools (e.g., Slither, AChecker)
in our dataset, addressing RQ2 by quantifying recall, and blind
spots. Thirdly, we investigate practical gaps by contrasting
the tools’ focus with AC protection mechanisms in deployed
contracts, answering RQ3. Finally, we explore the potential of
LLMs (e.g., GPT-40) to complement traditional tools, testing
their ability to detect semantic vulnerabilities (e.g., lack of AC
protection) under well-designed prompting strategies, thereby
addressing RQ4.

Next, we present the study’s process and methodology in
Section IV, followed by the results in Section V.

IV. STUDY DESIGN

In this section, we introduce the design of our study, which
includes dataset and taxonomy construction (Section IV-A),
evaluation tool selection (Section IV-B), current practice mining
for practice gap analysis (Section IV-C), and an LLM-based
detection method to explores the potential of LLMs in detecting
AC vulnerabilities (Section IV-D).

A. Dataset and Taxonomy Construction

1) Dataset Construction: To systematically investigate AC
vulnerabilities in smart contracts, we construct a multi-source
dataset capturing both formally disclosed and real-world
exploits. It integrates three complementary sources: CVE
entries, DeFiHackLabs incidents, and Code4rena audit reports,
ensuring comprehensive coverage across diverse contexts.

We start with the CVE database, a standardized cybersecurity
repository, extracting all smart contracts entries since 2017 [21].
Two authors independently review these entries to identify
AC vulnerabilities based on the definition in Section II-B.
Disagreements are resolved through discussion with a third
author, resulting in 21 AC vulnerabilities. However, since 2021,
the CVEs have primarily documented limited smart contract

vulnerabilities, mostly within OpenZeppelin codebases, leading
to coverage gaps with modern smart contracts.

To address this limitation, we supplement CVE data with
incidents from DeFiHackLabs [22], a repository of real-world
smart contract attacks. We manually review all entries from
2017 to 2024, retaining cases where the incidents’ root causes
are satisfied with the definition of AC vulnerabilities. For
closed-source contracts, we include only those with available
bytecode to enable bytecode-level analysis. This yields 73 AC
vulnerabilities, including high-impact exploits like unauthorized
burn in the Safemoon contract [27], resulting in a total
economic loss of $367.2 million.

To further enhance coverage, we incorporate Codedrena
audit reports [23], which provide peer-reviewed, collective
analyses of smart contract code. We examine all reports from
January 2021 to December 2024, focusing on findings of
“medium” severity or higher to prioritize actionable risks while
excluding lower-severity issues like gas optimizations. Two
authors independently reviewed each report to identify AC
vulnerabilities based on the definition with disagreements
resolved through discussion. This phase contributes 86 AC
vulnerabilities to the dataset, including complex issues like
insecure cross-contract permissions.

Finally, we harmonize the dataset by removing duplicates,
resulting in 180 unique AC vulnerabilities: 21 from CVE, 73
from DeFiHackLabs’ incident, and 86 from Code4rena reports,
including 18 closed-source cases (bytecode only). In total, the
dataset comprises 165 vulnerable contracts and 180 vulnerable
functions, spanning over 380,095 lines of code. The dataset
captures a diverse range of AC issues, from simple modifier
misconfigurations to complex cross-contract authorization flaws,
reflecting the severity and variety of real-world issues.

2) Taxonomy Development: To systematically analyze the
AC vulnerabilities in our dataset, we need a taxonomy based
on their root causes. This taxonomy serves as a founda-
tion for understanding the nature of AC vulnerabilities and
their evolution over time, directly addressing RQ1. While
foundational works like the Common Weakness Enumeration
(CWE) [28] and Li et al.’s SAST-oriented taxonomy [19]
provide a classification standard, neither suffices for AC-
specific analysis. Li et al..’s taxonomy defines 18 SAST-friendly
subtypes (e.g., UnprotectedEtherWithdrawal), but its
narrow focus on static code patterns excludes most of the AC
vulnerabilities in our dataset. Similarly, CWE’s general-purpose
categories lack the granularity to address blockchain-specific
attack vectors like signature-based AC and focus more on
traditional software instead of smart contracts.

However, CWE’s concept provides a useful starting point for
our taxonomy development. Consequently, drawing on CWE-
284 [29], we analyze the dataset to identify the types of AC
vulnerabilities employing open card sorting [30], a qualitative
research technique used to identify patterns and classify items
based on shared characteristics. Initially, each vulnerability was
written on an individual card. Two authors independently review
the cards and categorize them into different types according
to the root causes. After the initial categorization, the authors

discuss the categorization results and resolve any discrepancies
through consensus. The final taxonomy is reviewed by all
authors to ensure consistency and completeness. Ultimately,
we identify five primary types of AC vulnerabilities in smart
contracts, details are presented in Section V-A.

B. Tool Selection

To obtain the current state of AC vulnerability detection
tools, we conduct a literature review targeting academic publi-
cations from top-tier conferences in software engineering and
cybersecurity, including ICSE, FSE, ASE, ISSTA, OOPSLA,
USENIX Security, IEEE S&P, CCS, and NDSS, between 2020
and 2024. Using search terms of “smart contract”, we identify
146 papers, which are manually reviewed to determine whether
they proposed tools explicitly designed for AC vulnerability
identification. This process reveal three dedicated AC detection
tools: SPCon [12], which analyzes historical transaction data
and leveraging a role mining algorithm to effectively identify
permission bugs; AChecker [11], a static analyzer applies
static data flow analysis to examine the bytecode of smart
contracts for AC vulnerabilities; and PrettySmart [13], which
targets detecting privilege escalation vulnerabilities, by inferring
permission constraints. Additionally, we include SoMo [14], a
tool aimed at detecting modifier bypass vulnerabilities.

To ensure the evaluation’s generalization of modern smart
contract ecosystems, we extend our analysis to general-purpose
SAST tools. Following the criterion outlined in [19], we
exclude tools that were no longer actively maintained or lacked
compatibility with Solidity versions post-0.8.0, as outdated
tools often fail to parse newer language features or optimize
for recent practices. After applying these criteria, two widely
adopted SAST tools remain: Slither, a highly configurable static
analysis tool that supports custom rules for AC-specific checks,
and Mythril, a symbolic execution engine capable of detecting
AC vulnerabilities through path exploration.

C. Current Practice Mining

To explore the gap between theoretical vulnerability detec-
tion and real-world developer practices, we conduct a large-
scale study of AC mechanisms in deployed smart contracts.
Our analysis focuses on 1,286,847 unique verified contracts
across Ethereum-compatible blockchains [31], encompassing
5,148,625 deployments sourced from EtherScan, BscScan,
BaseScan, etc. This dataset represents a comprehensive snap-
shot of AC practices in decentralized applications (dApps),
DeFi protocols, etc., providing insights into how developers
implement and enforce AC in practice.

We systematically extract and analyze three types of vali-
dation constructs: require statements, if-revert blocks,
and assert statements, which are the primary mechanisms
for enforcing AC logic in Solidity. For each contract, we parse
its source code to identify all instances of these constructs,
recording their conditional expressions and error messages. To
ensure consistency, we normalize the logic of if-revert blocks
by logically inverting their conditions (e.g., if (msg.sender !=
owner) revert(); is transformed to require(msg.sender ==

Prompt for LLM-based AC Vulnerabilities Detection

Now you are a smart contracts security audit expert,
you are now doing audit on some smart contracts to
find access control issues in it. You need to find all the
possible access control issues in the given file of the
smart contracts. You first need to analyze the context in
which the contract operates. Understand the variables
and functions that need to be restricted in each specific
context. Then, analyze each state variable and function
in sequence. If you discover that a public function
fails to perform the necessary access control checks
before invoking certain functions or modifying certain
variables, this constitutes a potential access control
issue. Based on this, you need to create a proof of
concept to verify it. Please finally out put the vulnerable
function name, line and the reasons in the response.
For example, the contract is:

<CONTRACT>

1 contract Ownable {
2 address public owner;
3 function Ownable () public {
4 owner = msg.sender;
5
6 modifier onlyOwner () {
7 require (msg.sender == owner);
8 _
9 }
10 function transferOwnership (address
newOwner) onlyOwner public {
11 require (newOwner != address(0));
12 OwnershipTransferred (owner, newOwner
)8
13 owner = newOwner;
14 }
15 function withdraw () onlyOwner public {
16 uint256 etherBalance = address(this)
.balance;
17 owner . transfer (etherBalance);
18
19 }
</CONTRACT>
Output:

1. Function Ownable() (line 4-6) has the access control
issues. Reason: The Ownable() function can change
the owner variable which is significant because with
the role, we can do anything on the contract.

Fig. 2. The prompt for AC vulnerability detection.

owner)). This normalization enables direct comparison with
require and revert patterns. To ensure a focused analysis, we
exclude conditions that occur fewer than 50 times, retaining
only frequently recurring patterns for manual review. In this
phase, we first assess whether the conditions are related to
AC mechanisms. Relevant conditions are then categorized into
different types using open card sorting [30], as shown in Section
IV-A2. We also investigate the gap between tool detection and
real-world AC mechanisms, detailed in Section V-C4.

D. LLM-based Detection Method

In this study, we extend AC vulnerability detection to LLMs,
benchmarking their capabilities against traditional tools and

exploring their potential for enhancing detection. We design a
structured prompting framework that integrates role-based task
specification, chain-of-thought (CoT) reasoning [32], and few-
shot learning. Four models are evaluated: two general-purpose
LLMs (GPT-40-mini, GPT-40) and two reasoning-enhanced
models (GPT-03-mini, DeepSeek-R1).

The LLMs are assigned the role of a smart contract
security audit expert, with explicit instructions to identify AC
vulnerabilities through systematic analysis. The prompt begins
with a task definition: “Now you are a smart contracts security
audit expert, you are now doing audit on some smart contracts
to find AC issues in them.” This role-based framing primes the
models to adopt an expert mindset, emphasizing the background
knowledge and reasoning skills required for effective detection.
To emulate human-like reasoning, we employ the CoT approach,
breaking down the audit into sequential steps. First, the models
are instructed to analyze the contract’s operational context,
identifying variables and functions requiring restrictions. Next,
they are directed to examine each state variable and function,
flagging public functions lacking necessary AC checks as
potential vulnerabilities. Finally, they need to generate a proof
of concept to verify the issue, ensuring practical relevance. We
also employ a simple few-shot learning strategy to enhance
detection accuracy. The prompt includes examples of AC
vulnerabilities with corresponding detection rationales, allowing
the models to learn from explicit instances. The full prompt is
shown in Fig. 2.

V. STUDY RESULTS
A. RQI: Taxonomy of AC Vulnerabilities

In this RQ, we aim to identify the dominant types of
real-world AC vulnerabilities in smart contracts and analyze
their prevalence over time. We first categorize 180 real-
world AC vulnerabilities into five root cause-based subtypes,
including lack of AC protection, privilege escalation, insufficient
validation, incorrect AC validation, and signature-related issues.
The distribution of these subtypes is shown in Fig. 3.

Lack of AC Protection (LAC): This type refers to the
complete absence of access restrictions on sensitive functions
or state variables. These vulnerabilities arise when developers
neglect to implement modifiers (e.g., onlyRole) or encapsulate
critical variables. For instance, a Coded4rena audit of Maia
DAO reveals an unprotected payableCall function, allowing
anyone to steal all non-native assets (ERC20 tokens, NFTs,
etc.) [33]. This subtype dominates the dataset (60%, 108/180),
with 72% of Code4rena findings attributed to such oversights,
a trend linked to rushed development cycles and incomplete
security reviews in fast-moving DeFi ecosystems.

Privilege Escalation (PE): It occurs when a function does have
ACs but contains logic flaws that let unauthorized actors (or
authorized ones) exploit it to gain elevated privileges. A classic
example is CVE-2018-10705 [34], where a IDXM Token
contract’s setOwner function lacks caller validation, enabling
arbitrary role assignments. The main difference between this
category and LAC is that PE leverages flawed or incomplete
ACs to illegally elevate privileges, whereas LAC entirely lacks

6%1%
% 6.91%

15.02% %

39.66% 14.70%

26% Other AC

60% 45.32%
12.61%

Msg.sender-based AC
Time-based AC
Signature-based AC
Address property AC

Fig. 4. The distribution of the AC mechanisms
in 1.2 million smart contracts.

This-based AC
% Msg.value AC

LAC = PE v IV ' IAV =SR Address-based AC

Fig. 3. The distribution of
AC types in our datasets.
access restrictions on sensitive functions or state variables.
While PE accounts for 26% (47/180) of cases overall, it is
historically prevalent in early CVEs (about 80% of pre-2020
entries). Modern PE cases also exist due to the complexity of
DeFi protocols and their interactions across multiple contracts.
Insufficient Validation (IV): This category describes partial
or incomplete AC-related checks that fail to account for all
attack vectors. For example, a LiquidXv2Zap contract’s
deposit function does not check that the account should
be msg.sender, thus account’s approval on the zap can be
spent to buy tokens and add liquidity [35]. Such vulnerabilities
represent 7% of cases, often emerging in systems integrating
multiple protocols.

Incorrect AC Validation (IAV): This category encompasses
logically flawed or misconfigured checks, such as using
incorrect variables or overly permissive conditions. A 2024
Code4rena audit identifies a vulnerability in the function ini-
tializeAlphaIndices () of contract EntropyGener—
ator, where the function is intended to be called by the
TraitForgeNft contract. However, it is currently protected
by the onlyOwner modifier. This means only the owner
of the EntropyGenerator contract can call it, not the
TraitForgeNft contract [36]. This category accounts for
6% of cases, often stemming from complex contract interactions
and logical errors in AC checks or improper use of modifiers.
All these cases are occurred in Codedrena audit reports due to
the complex contract interaction in audited contracts.
Signature-Related Issues (SR): It involves cryptographic
validation flaws in signed message workflows. These include
replay attacks due to missing nonces (e.g., a vesting contract
accepting expired signatures) and weak signature schemes
like using ecrecover without address uniqueness checks. For
instance, a vulnerability in the BGeoToken contract allows
attackers to input empty data into _r, _s and _v to bypass
signature checks to mint tokens [37]. This category accounts
for 1% of cases, often stemming from improper use of
cryptographic or logical errors in signature verification.

Finding 1: Our analysis categorizes 180 real-world AC
vulnerabilities into five root cause-based subtypes: lack of
AC protection, privilege escalation, insufficient validation,
incorrect AC validation, and signature-related issues.

As for the time evolution of AC vulnerabilities, we observe
that, in the early years of smart contract adoption (2017-2019),
PE dominated the vulnerability landscape, accounting for

about 80% of CVE entries during this period. This prevalence
stems from junior developer awareness and the absence of
standardized libraries. For example, both CVE-2018-10666 [38]
and CVE-2018-10705 [34] are PE vulnerabilities caused by
bypassing owner validation through the setOwner function.
In contrast, LAC vulnerabilities have become the most common
issues in recent years (2020-2025), accounting for 72% of
Codedrena findings. This shift reflects the rapid growth of
DeFi ecosystems and the increasing complexity of smart
contract interactions, which have outpaced developers’ ability to
implement robust AC, e.g., Maia DAO contract [33] mentioned
above. Concurrently, SR and IAV vulnerabilities began appear-
ing in audits, reflecting the growing adoption of cryptographic
primitives and novel governance mechanisms. Source-specific
trends further highlight the difference in these vulnerabilities.
CVE:s and the incidents recorded in DeFiHackLabs, which have
more PE vulnerabilities (37% of cases), typically represent
“late-stage” vulnerabilities, flaws discovered after deployment,
such as the incident in contract LinearVesting, where
the init function can set the message sender as the owner
to bypass onlyOwner check [39]. In contrast, Code4rena
audits, which focus on pre-deployment reviews, predominantly
identify LAC vulnerabilities (72% of findings), such as public
lockOnBehalf function in LockManager contracts to
repeatedly extend a user’s unlockTime [40].

Finding 2: As audited contracts mitigate basic AC flaws
(e.g., missing AC), attackers now exploit architectural
complexity, targeting weak cross-contract validation and
cryptographic gaps—areas where traditional methods lag.

B. RQ2: Effectiveness of SOTA Tools

1) Experimental Setup: All the experiments were conducted
on a server with an AMD Ryzen Threadripper 3970X 32-Core
Processor and 252 GB of RAM. For Slither and Mythril, we
follow the settings in the [17]. For other tools, we utilize their
open-source code. We set the time limit to 30 minutes, tripling
the baseline values within their respective publications [11]-
[14].

2) Results and Analysis: We conduct function-level root
cause alignment, comparing the root causes of warnings
reported by tools against the ground-truths in our dataset. All
the results have been manually reviewed by two authors to
ensure correctness. The results are shown in Table II.

Our evaluation of six SOTA tools reveals critical gaps in
AC vulnerability detection. Slither, a static analyzer, reported
8 TPs but suffered severe false positives (389 FPs), primarily
in DeFiHackLabs and Code4rena datasets. Mythril, a symbolic
execution engine, detected only 4 TPs and timed out in 25.9%
of cases (42/162). Specialized tools showed narrow utility:
SPCon identified 9 TPs in CVEs but failed on Code4rena
pre-deployment audits due to its reliance on historical data.
AChecker achieved 12 CVEs TPs but collapsed in real-world
scenarios (0 TPs). PrettySmart detected 13 TPs on CVEs but
missed all cases (74 FNs) in Code4rena, while SoMo focuses
on modifier misuse, yielding 13 TPs but ignoring 64% of
vulnerabilities (104 FNs) involving non-modifier AC checks.

Finding 3: All the tools failed to detect a significant number
of AC vulnerabilities, with the most one only detecting 8%
vulnerabilities. Slither reported the most FPs (389), while
other tools exhibited few or no FPs.

We further analyzed the reasons for the missing detections
and FPs to identify common blind spots. The limited effective-
ness of Slither in detecting AC vulnerabilities arises from rigid
pattern-based rules and a narrow set of AC-specific detection
rules. With only 10 predefined AC rules, the tool struggles to
address the diversity and complexity of vulnerabilities observed
in practice. For example, the arbitrary-send-eth rule [41]
checks for unprotected Ether transfers but misses vulnerabilities
like PE, where attackers bypass modifiers through indirect
paths. This pattern-matching approach also fails to handle
dynamic or context-dependent permissions, e.g., role-based
systems distributed across multiple contracts. Additionally,
the inability of Slither to track cross-contract interactions or
inherited logic results in false negatives. In Code4rena audits,
84 false negatives occurred because Slither could not recognize
AC mechanisms distributed across modular contracts, such as
governance logic delegated to separate modules.

As for FPs, Slither over-relies on keyword matching in these
rules and overlooks contextual protections. For example, its
controlled-delegatecall rule [42] might flag a secure dele—
gatecall to a fixed/immutable address (e.g., an upgradeable
proxy pattern) or one guarded by strict access controls (e.g.,
onlyOwner), simply because the target is technically a user-
provided parameter, ignoring the context of the call.

The limitations of Mythril stem from its design as a symbolic
execution engine and its constrained rule set. With only 8
predefined detection patterns, Mythril also struggles to cover
the diverse range of AC vulnerabilities present in different
contracts. For example, while it includes rules for generic
vulnerabilities like dependence_on_tx_origin [43], it lacks
specialized logic to identify PE or IAV, leading to 116 false
negatives across datasets. The computational demands of
symbolic execution further exacerbate these issues. Mythril
explores all possible execution paths to detect vulnerabilities,
a method that theoretically offers precision but becomes
impractical for some modern, complex contracts. For instance,
analyzing a contract with recursive call logic could trigger path
explosion, exhausting computational resources and resulting in
failed cases (27% of total evaluations) due to timeouts, even
with a 24-hour runtime limit (setting suggested in [17]). While
symbolic execution reduces false positives (0 FPs observed), its
exhaustive approach inadvertently suppresses valid warnings,
as many true vulnerabilities reside in paths that Mythril cannot
feasibly explore within the time constraints. Additionally,
Mythril also struggles to model context-specific permissions,
such as cross-contract interactions or dynamic role assignments.
For example, a governance contract where permissions depend
on voting outcomes would evade detection because Mythril
cannot simulate such states.

As for the specific tools, SPCon, AChecker, PrettySmart,
and SoMo, we found that SPCon is heavily dependent on the
availability of historical transaction data, which restricts its

TABLE II
EFFECTIVENESS OF SOTA TOOLS AND LLMS CAPABILITIES ON DETECTING AC VULNERABILITIES (CVE MEANS COMMON VULNERABILITIES AND
EXPOSURES SOURCE, DF MEANS DEFIHACKLABS SOURCE, C4 MEANS CODE4RENA SOURCE).

True Positive (TP) False Positive (FP) False Negative (FN) Failed
CVE DF (4 Overall CVE DF C4 Overall CVE DF ¢4 Overall CVE DF (4 Overall

Slither 1 6 1 81 10 198 181 389 m 20 49 84 153 0 0 1 1
Mythril 4 0 0 4 0 0 0 0 7 42 67 116 10 13 19 492 m

" SPCon 9 T NAT10r 000 NAT 0O 10 40 NA 50 msm 2 14 NA 16w
AChecker 12 0 0 12 1 0 0 0 0 8 19 38 65 mm 1 54 48 103 mem
PrettySmart 13 0 0 13 1 0 0 1 1 8 61 74 143 oo 0 12 12 24 m
SoMo 10 2 1 13 1 0 0 0 0 11 47 46 104 mm 0 6 39 45 m

" GPT-4o-mini 17~ 39 65 12 mmmm =~ 69 345 537 OS5imm = 4 16 21 41 =m 0 0O 0 0 "~
GPT-40 18 36 49 103 mm 56 189 243 488 m 3 19 37 59 mm 0 0 0 0
GPT-03-mini 19 36 39 94 mmm 1 23 78 1021 2 19 47 68 mm 0 0 0 0
DeepSeek-R1 16 33 37 86 mmm 7 30 25 62 1 5 22 49 76 mm 0 0 0 0

applicability to pre-deployment or newly deployed contracts.
For example, in Code4rena audits, where contracts are analyzed
before deployment and thus have no transaction history, SPCon
produced no results because its role-mining algorithm relies
on analyzing past interactions to infer permissions. Even when
transaction data exists, SPCon fails to detect vulnerabilities in
functions that have never been invoked or cannot be reached
through bypassing existing call paths. For instance, a privileged
burn function in a DxBurnToken contract [44] remains
undetected because no transactions have ever triggered it. This
reliance on historical activity creates blind spots for latent
vulnerabilities that exist in code but have not yet been used,
limiting SPCon’s utility in proactive security audits.

AChecker faces three core limitations in this task. First,
it struggles with cross-contract AC, due to its bytecode-
level intra-contract analysis. The second limitation is its
failure to infer implicit AC requirements tied to critical state
variables. For example, in the cERC20 contract [6], the
mint function (shown in Fig. 5) modifies security-sensitive
variables like _totalSupply and _balances (line 7 and
line 8) but lacks explicit permission checks. AChecker missed
this vulnerability because it focuses on syntactic patterns
(i.e., msg.sender validation) rather than recognizing that state
transitions on _totalSupply inherently require AC. Third,
AChecker’s reliance on symbolic execution results in significant
performance bottlenecks. Its exhaustive path exploration often
leads to timeouts, particularly in large or recursive codebases.

As for PrettySmart, its detection capabilities are constrained
by its reliance on taint analysis and a predefined set of
permission constraints (PCs) tied to msg.sender validation. The
tool infers AC policies by tracking five types of permission
constraints. However, this approach mirrors shortcomings of
AChecker in handling implicit or non-msg.sender-based permis-
sions. Similarly, in the Fig. 5, PrettySmart failed to detect the
unprotected _totalSupply and _balances modifications
because these operations lack direct msg.sender checks or modi-
fiers, leading to false negatives. Additionally, while PrettySmart
avoids the scalability issues of symbolic execution (i.e., no time-
out failures), its taint analysis introduces trade-offs. The tool
cannot reason about complex conditional logic or contextual
permissions. For instance, a function guarded by a hybrid check
like require (block.timestamp > unlockTime | |
msg.sender admin) might be misclassified as secure

function mint(...) public returns (bool) {
_mint(acccount , amount); //public mint
return true;

}

function _mint(...)

1

2

3

4

5 internal {
6 require (account

7

8

9

0

address(0), "...");
_totalSupply = _totalSupply.add(amount);
_balances [...] = _balances[...].add(...);
emit Transfer (address(0), account, amount);

}

=

1

Fig. 5. A vulnerable mint function in a cERC20 contract.

if the taint engine cannot track the relationship between
block.timestamp and administrative privileges, resulting in false
positives or negatives.

SoMo’s narrow focus on modifier bypass issues severely
limits its applicability to broader AC challenges. The tool is
designed to detect scenarios where attackers circumvent modi-
fiers (e.g., calling a function without triggering its onlyOwner
modifier), but it ignores other critical AC flaws, i.e., without
a modifier. In our dataset, some vulnerabilities involved non-
modifier issues, including insecure cross-contract calls and role
misconfigurations. SoMo failed to detect these cases entirely,
as its design does not account for them. This specialization
renders SoMo ineffective in modern ecosystems where AC
logic increasingly relies on hybrid mechanisms.

Finding 4: General-purpose tools struggle to detect AC
vulnerabilities due to rigid rule sets, while specialized tools
exhibit narrower strengths with significant limitations in
cross and complex contracts and implicit permissions.

C. RQ3: Practical Gaps

In RQ2, we analyze the weaknesses of various tools, finding
that both AChecker and PrettySmart primarily detect AC
issues based on conditions related to msg. sender. Building
on this, we now investigate the AC protection mechanisms
implemented in existing smart contracts, assessing whether they
are adequately covered by current analysis tools. Following the
methodology described in Section IV-C, we found that 21.31%
of these conditions pertained to AC mechanisms, which we
categorize into three groups: msg.sender-based AC mechanisms,
this-based AC mechanisms, and other AC mechanisms. The
following subsections provide a detailed taxonomy of these AC
mechanisms, and the distribution of them is shown in Fig. 4.

1) Msg.sender-based AC Mechanisms: AC mechanisms
center on msg.sender validation dominate real-world smart

contracts, reflecting their foundational role in permission
management. The most prevalent approach involves comparing
msg.sender and a predefined address (35.16% of observed
cases), where functions validate msg.sender against hardcoded
administrative roles like owner, admin, or controller. For
example, a DeFi protocol might restrict critical operations such
as adjusting interest rates to a designated admin address using
require (msg.sender admin). Beyond comparing
to a predefined address, data-driven AC (3.07%) tie permissions
to on-chain states or dynamic conditions. A common example
is ERC20 allowance checks, where transferFrom functions
validate require (allowance [owner] [msg.sender]
>= amount) to enforce delegated spending limits. This
approach enables fine-grained control over permissions by
linking access rights to real-time data, such as token balances
or voting outcomes.

Another key pattern is operator-based AC (2.72%). Here,
third-party addresses approved by primary owners gain limited
privileges. For instance, an ERC721 contract might allow
operators to transfer tokens on behalf of owners by re-
quire (isApprovedForAll (owner ,msg.sender)),
enabling delegated management without full ownership rights.
Similarly, role-based AC (2.10%) assigns privileges through
roles rather than predefined addresses, as seen in contracts using
OpenZeppelin’s AccessControl library. A token minting func-
tion might enforce require (hasRole (MINTER_ROLE,
msg.sender)), restricting minting to authorized roles.

Group-based AC (1.36%) enforces permissions through pre-
defined whitelists or other group lists stored in mappings. For
example, a contract might maintain a whitelist mapping and val-
idate callers with require (whitelist [msg.sender]),
restricting functions like token minting or governance par-
ticipation to approved addresses. This mechanism allows
administrators to dynamically update permissions by adding
or removing addresses from the list, offering flexibility for
complex systems like membership-based platforms. Finally,
some contracts implement address validation (0.92%) by
querying external states or contracts. A notable example is NFT-
gated access, where a function verifies if msg.sender owns a
specific NFT, such as require (ownerOf (tokenId) ==
msg.sender) in a private club contract.

Finding 5: The diversity in msg.sender-based protections,
including comparing msg.sender and a predefined address
AC, querying-based AC, operator-based AC, role-based
AC, group-based AC, and data-driven AC, underscores the
importance of context-aware AC in real-world contracts.

2) This-based AC Mechanisms: AC mechanisms leveraging
this (the current contract instance) are less common but vital
for securing internal or contract-initiated actions, accounting
for 15.02% of observed AC conditions. These mechanisms
primarily enforce permissions by validating that interactions
originate from the contract itself or depend on its internal state.

The most common pattern in this category, data-
driven AC (14.24%), ties permissions to the contract’s
runtime state. For example, a liquidity pool might re-

strict withdrawals until its balance meets a threshold
using require (address (this) .balance >= MIN_-
RESERVE). A smaller but critical subset involves compar-
ing this address with a predefined address (0.7%), where
functions restrict execution to the contract itself. For exam-
ple, a contract might manage ownership transitions by re-
quire (owner address (this)), ensuring that only
internal logic (e.g., a governance vote) can update ownership.
This prevents external actors from directly modifying critical
parameters, requiring changes to follow predefined workflows.

Another pattern employs query-based AC (0.01%), where
the contract validates its ownership of external assets
to authorize actions. A licensing system, for instance,

might use require(nft. ownerOf (tokenId) ==
address (this)) to verify that the contract holds
a specific NFT license before enabling privileged

operations. This ensures that only contracts possessing
the required NFT can execute sensitive functions, tying
AC to verifiable on-chain assets. A third mechanism is
operator-based delegation (0.06%). A contract might use
operatorFilterRegistry.isOperatorAllowed (

address (this), operator) to check if the operator is
in the whitelist for specific tasks, such as managing contract
funds or executing administrative functions. This approach
allows contracts to delegate permissions to external entities
while maintaining internal oversight over delegated actions.

Finding 6: This-based AC mechanisms, including data-
driven AC, comparing this address with predefined address
AC, query-based AC, and operator-based AC, secure smart
contracts by enforcing predefined permissions for internal
actions and state transitions.

3) Other AC Mechanisms: Beyond msg.sender and
this-based AC, smart contracts employ other AC strategies
that defy traditional detection methods, accounting for 39.66%
of observed AC conditions. These mechanisms often blend
multiple validation criteria or rely on external data, creating
challenges for existing tools.

The most frequent pattern is address-based AC (14.70%).
It enforces permissions through address checks, similar to
msg.sender-based AC but with other predefined addresses. For
example, a staking contract might enforce a separation of roles
by require (owner != operator), ensuring that the
contract owner and delegated operator cannot be the same entity.
This prevents conflicts of interest, such as an operator abusing
privileges if they also hold ownership rights. Another prevalent
pattern is address property AC (12.61%), which enforces
permissions based on address characteristics. For example,
a contract might block smart contracts from participating
in a token sale via require (isContract (target)) to
prevent bot interference.

Apart from these, time-based AC (6.91%) restricts access
based on temporal conditions. For instance, a vesting contract
might restrict withdrawals until a predefined timestamp us-
ing require (block. timestamp >= unlockTime),
ensuring funds remain locked until maturity. Msg.value AC

(3.70%) regulates access through payment requirements. A
premium feature in a dApp might require users to pay a fee
using require (msg.value >= 0.1 ether), granting
access only to paying addresses. Signature-based AC represents
another critical category (1.74%), where permissions are
granted via cryptographic proofs. For instance, a cross-chain
bridge might require users to submit signed messages from
authorized validators, verified using ecrecover.

Finding 7: Smart contracts also utilize diverse AC mech-
anisms (i.e., address-based, time-based, msg.value, and
signature-based) beyond basic msg.sender and this
checks. These mechanisms create context-dependent permis-
sion rules that challenge automated detection tools.

4) Summary of Findings: Our findings of AC mechanisms
in real-world smart contracts reveal several practical gaps that
hinder existing tools’ ability to detect vulnerabilities. First,
tools primarily focus on msg.sender-based permissions,
overlooking other critical mechanisms like this-based or
other AC. For example, AChecker and PrettySmart, which rely
on msg.sender patterns, would miss vulnerabilities tied to
this or contract state conditions. Second, tools struggle with
complex or hybrid permissions that combine multiple validation
criteria. For instance, Slither and Mythril, which target simple
msg.sender patterns would fail to detect time-based or
signature-based permissions. Third, tools lack semantic context
awareness, leading to false positives or negatives in nuanced
AC scenarios. For example, AChecker might misclassify a data-
driven permission as secure if it cannot infer the relationship
between contract state and access rights.

D. RQ4: LLM Capabilities

Building on findings from RQ2 and RQ3, which revealed
that traditional tools struggle to detect vulnerabilities like LAC
due to their inability to infer semantic context (e.g., critical
state variables), in this RQ, we explore the potential of LLMs
to address these gaps.

1) Experimental Setup: Following the methodology in Sec-
tion IV-D, we evaluate four LLMs: GPT-40-mini-2024-07-18,
GPT-40-2024-08-06, GPT 03-mini-2025-01-31, and DeepSeek-
R1 hosted on Microsoft Azure. Temperature settings were fixed
at 0 for all models except 03-mini, which does not support
temperature adjustments, to minimize output randomness and
reproduction. For the CVE and DeFiHackLabs datasets, we
analyze the entire codebase, while for the Code4rena datasets,
we focus our analysis on the vulnerable contracts identified
in the reports due to the substantial size of these projects. We
believe this approach does not significantly affect detection
performance and results, as the vulnerable contracts generally
represent the most critical components within the audits.

2) Results and Analysis: Similar to RQ2, we manually
review the outputs of LLMs to identify TPs and FPs, the
results are shown in the Table II. GPT-40-mini achieved the
highest recall (74.7%, 121 TPs) but also the highest FPs (951),
outperforming the best traditional tool SoMo (8.0% recall).
GPT-40 balanced precision and recall better (103 TPs, 488

TABLE III
THE RESULT OF LLMS ON DETECTING AC VULNERABILITIES WITHOUT
DATA LEAKAGE.

TP FP FN Total Cases
GPT-40-mini 40 o 304 mm 15 m 55
GPT-40 29 mm 155 m 26 mm 55
GPT-03-mini 25 mm 47 30 mmm 55
DeepSeek-R1 4 = 10 8 mmm 12
1 modifier onlyMinter () {
2 msg.sender == minterAddress; // No revert
3 s
4}

Fig. 6. A vulnerable onlyMinter modifier from Code4rena reports.

FPs), while GPT-03-mini prioritized precision (94 TPs, 102
FPs). DeepSeek-R1 showed moderate results (86 TPs, 55 FPs).

To mitigate the impact of data leakage on detection, we
also evaluated LLMs on a sanitized dataset, excluding the
vulnerability reported before training (knowledge cutoff dates:
GPTs: 2023-10, DeepSeek-R1: 2024-07). As shown in Table I,
while TP declined across models, FPs remained stable, and
overall performance still surpassed traditional tools (13 TPs).

Overall, LLMs demonstrate unique strengths in detecting
AC vulnerabilities by leveraging their semantic understanding
of code context, akin to human auditors. For example, all
evaluated LLMs successfully identified a critical flaw in a
Codedrena audit report where a modifier [45] lacked a revert
statement (line 2) (shown in Fig. 6). Traditional tools like
Slither or AChecker missed this issue because they focus on
their syntactic patterns, e.g., PE or modifier bypass, rather than
logical correctness, highlighting the ability of LLMs to infer
intent from incomplete patterns.

However, LLMs also exhibit limitations. Their performance
notably declines when lacking explicit context. They often
struggle with complex, multi-layered vulnerabilities involving
cross-contract interactions or indirect state changes. In the
addLiquidity function [46] shown in Fig. 7, the assignment
listToken[_token]=true (line 3) introduced a flaw by
enabling unauthorized token listings, but only DeepSeek-R1
detected this. Other models produced FPs. This reflects LLMs’
limited ability to track implicit state dependencies across
contracts or distinguish between intentional and hazardous
patterns. In contrast, specialized tools like AChecker or
PrettySmart, which focus on specific AC patterns, might have
detected this vulnerability if they recognized the criticality of
the 1istToken state variable.

In addition, LLMs’ propensity for hallucination leads to
FPs in cases where protections exist but are overlooked. For
instance, in the function setUPs [47] shown in Fig. 8, GPT-
40, GPT-40-mini, and GPT-03-mini erroneously flagged this
as a vulnerability, failing to recognize the required check in
line 2. In contrast, DeepSeek-R1 avoided this FP by reasoning.

function addLiquidity (...) public {

1
2 cee
3 listToken[_token] = true; // AC flaw
4 users|[_token][...].tz += 100 ether;
5%
Fig. 7. A vulnerable addLiquidity function in DeFiHackLabs’s incidents.

function setUPs (...) public {
require (upaddress[to] msg. sender) ;
upaddress[to] = newAddr;

// AC

LN =

Fig. 8. A non-vulnerable setUPs function with AC mechanism.

TABLE IV
THE RESULT OF LLMS ON DETECTING AC VULNERABILITIES WITH AN
ALTERNATIVE PROMPT.

TP FP FN Total Cases
GPT-40-mini 106 = 516 m 56 mm 162
GPT-40 91 mm 358 m 71 == 162
GPT-03-mini 79 = 102 1 83 mm 162
DeepSeek-R1 85 mmm 126 1 77 == 162

This highlights the trade-off between precision and recall in
LLMs, where high recall may lead to increased false positives
due to overfitting on common patterns. Models with enhanced
reasoning capabilities, such as DeepSeek-R1, reduce FPs by
contextualizing code semantics but at the cost of lower TP
rates. This trade-off underscores the challenge of balancing
precision and recall in LLM-based detection.

In order to further analyze the potential of LLMs in detecting
AC vulnerabilities, we conducted additional experiments using
a new prompt that assigns LLM the role of “an experienced
smart contract developer” with optimized instructions for
clarity and structured reasoning. The results are presented
in Table IV. Overall, with the alternative prompt, both TPs
and FPs decreased modestly. The LLM became slightly
more conservative in its judgments. However, the overall
effectiveness remained similar: the order of magnitude of FPs
was still significant, and simply modifying the prompt did not
fundamentally improve precision or recall. This further confirms
that combining LLMs with SA or other hybrid methods is
necessary to achieve practical accuracy.

Finding 8: LLMs excel at identifying explicit, contextually

obvious vulnerabilities (e.g., missing modifiers) effectively

but struggle with complex AC logic. Hybrid approaches
combining LLMs and static analysis could address multi-
contract workflows while reducing hallucinations via itera-
tive prompts or fine-tuning.
Cost Analysis. To explore the practicality of deploying LLMs,
we analyzed both financial and temporal costs. Running all
models on per-vulnerability detection costs of $0.018, $0.016,
$0.001, and $0.004, respectively. The GPT models delivered
results rapidly, with response times of 5-10 seconds per
analysis, while DeepSeek-R1 required about 2 minutes per
query due to computational optimizations. Despite variations
in speed and cost, all models operated within economically and
temporally acceptable thresholds, making them viable options
for enhancing AC vulnerability detection.

VI. DISCUSSION

A. Implications for Practitioners

Our study provides practical implications for both smart
contract developers and tool creators. For developers, we show
that widely-used static analyzers often fail to detect access

10

control vulnerabilities that rely on implicit logic or cross-
contract context. We recommend supplementing these tools
with manual code reviews and dynamic analysis, especially
for contracts with complex permission structures. Developers
should also be cautious about over-relying on modifiers, and
instead adopt hybrid AC patterns, e.g., combining role checks,
time constraints, and signature validations. These patterns are
harder to bypass but are currently under-supported by tools.
For tool creators, our findings reveal critical blind spots
in current analyzers stemming from their reliance on shallow
syntactic rules and lack of semantic understanding. To improve
AC vulnerability detection, future tools should: (1) broaden rule
coverage to include overlooked AC enforcement styles (e.g.,
using tx.origin, contract ownership via this, or multi-
signature patterns); (2) incorporate inter-contract reasoning to
handle delegation and proxy contracts, which are increasingly
prevalent; and (3) improve alert quality by providing contextual
explanations and ranking results based on risk and confidence.
Our results also show that LLMs are capable of identifying
semantic and context-dependent flaws that escape conventional
tools. While LLLMs alone are not yet production-ready due to
scalability and hallucination issues, integrating them into static
analyzers as semantic engines or pre-filters offers a promising
hybrid path forward. These improvements can help bridge the
gap between academic prototypes and the practical needs.

B. Future Directions

Our work in RQ4 focused on whether general LLM models
have the potential to uncover AC issues missed by traditional
static analysis tools. As our findings show, pure LLM-based
approaches can do so, but still face significant challenges with
hallucinations and incur additional costs. To address these
limitations, future research could explore hybrid frameworks
that combine LLMs’ semantic reasoning with static analysis
tools’ syntactic checks. For instance, LLMs could be used
to pre-screen contracts and identify high-risk functions for
deeper analysis by traditional tools, or to provide contextual
explanations for alerts generated by static analyzers, thereby
improving their interpretability and reducing false positives.
Another promising direction is to finetune LLMs with domain-
specific knowledge from smart contract security, which could
enhance their understanding of AC patterns and reduce hallu-
cinations. This could involve training on a curated dataset of
verified vulnerabilities and secure coding practices, enabling
the models to learn more accurate representations of AC logic.

C. Threats to Validity

1) External Validity: A key threat to validity is the size
of the vulnerability dataset, which could bias results toward
specific AC flaw types. To mitigate this, we aggregate data
from CVE entries, incidents recorded in DeFiHackLabs, and
Code4rena audit reports, ensuring diversity across disclosure
sources and vulnerability patterns. Another concern is the
representativeness of contracts in practice mining, as analyz-
ing a non-comprehensive sample might skew findings. We
address this by including 1.2 million verified contracts from

Ethereum-compatible chains, covering DeFi protocols, NFTs,
governance systems, etc. Finally, LLM’s data leakage could
inflate performance metrics if models encountered test samples
during training. To minimize this risk, we evaluated LLMs on
a sanitized validation dataset, excluding potential data leakage.

2) Internal Validity: Internal validity risks include bias
during data collection and classification, where subjective
judgments in labeling could introduce inconsistencies. To
minimize this, two authors independently classified each vul-
nerability using open card sorting, with further disagreements
resolved through consensus discussions. Another potential
limitation stemmed from tool execution failures. To mitigate
this, we adhered to default settings from their respective
publications [11]-[14] for all tools (Slither and Mythril are
following the settings in [17]), tripled the time limit to 30
minutes (vs. 10 minutes in their respective publications [11]-
[14]), and retried failed executions to maximize valid outputs.
Additionally, LLM’s configuration variability might impact
detection consistency. We mitigated this by fixing LLM
temperatures to 0, ensuring reproducibility and reducing noise
in outputs.

VII. RELATED WORK

Empirical Study on Vulnerability Detection for Smart Con-
tracts. Several studies have evaluated vulnerability detection
tools for smart contracts. Rameder er al. [48] conducted a
literature review on security tools utilizing fuzzing, formal
methods, and static analysis. Ghaleb er al. [15] proposed
SolidiFI to inject 9,369 vulnerabilities, evaluating six static
analysis tools’ detection capabilities. Durieux et al. [16]
assessed tools on 69 labeled and 47,518 unlabeled contracts,
revealing accuracy limitations in real-world settings. Ren et
al. [17] proposed a four-step methodology to assess nine
security tools on 46,186 contracts. Monteiro [18] developed
SmartBugs, a framework evaluating seven tools on 47,661
contracts for scalability. Li et al. [19] introduced a fine-grained
vulnerability taxonomy and evaluated eight SAST tools via
an extensible benchmark. Chaliasos et al. [49] evaluated 5
SOTA security tools on 127 attacks and conducted a survey of
49 developers and auditors. Their finding emphasize the need
to develop specialized tools catering to the distinct demands,
which also motivate our work.

Several studies have also examined dynamic security tools.
For example, Wu et al. [50] conducted an empirical evaluation
of the usability and effectiveness of fuzzing-based tools.
In addition, related work has also focused on constructing
benchmarks for tool evaluation. Zheng et al. [20] developed
a benchmark dataset specifically targeting reentrancy-related
security issues. Furthermore, Zheng et al. [51] utilized the
Smart Contract Weakness Classification Registry to build
datasets based on 1,199 security audits.

Our research differs fundamentally from the aforementioned
studies in several key aspects: (i) We focus exclusively on
a single domain, AC vulnerabilities, which have emerged as
one of the most severe security risks with distinct demands

11

in smart contracts in recent years. (ii) We categorize a cause-
based taxonomy of AC vulnerabilities and conduct a detailed
evaluation and analysis of SOTA security tools in this domain.
(iii)y We explore the potential of LLMs in detecting AC issues,
providing valuable insights and directions for future research.
Access Control Vulnerability Detection and Repair for
Smart Contracts. AC vulnerabilities are critical threats to
smart contracts, driving diverse detection and mitigation
solutions. Liu et al. [12] introduced SPCon, the first tool
for detecting permission-related issues by analyzing historical
transactions. Ghaleb et al. [11] proposed AChecker, which
applies static data flow analysis to detect AC vulnerabilities.
Zhong et al. [13] developed PrettySmart, targeting privilege
escalation by inferring permission constraints. Fang et al. [14]
introduced SoMo to identify AC issues related to bypassing
modifiers. Apart from these specialized tools, general SAST
tools also employ predefined security rules to identify AC
vulnerabilities, including Slither [9], Mythril [10], Securify [52],
Manticore [53], Osiris [54], Oyente [55], and Maian [56].
Beyond detection, Zhang et al. [57] proposed ACFix, which
mines common RBAC to repair AC issues using LLMs.

VIII. CONCLUSION

This study presents a comprehensive investigation into AC
vulnerability detection in smart contracts. We constructed a
multi-source dataset of 180 real-world AC vulnerabilities,
enabling a cause-based taxonomy and temporal evolution
analysis. Our systematic evaluation of SOTA tools revealed
critical limitations: existing approaches achieved only 3-8%
recall due to insufficient handling of semantic complexity
and context-dependent permissions. In parallel, we explored
the potential of LLMs, which demonstrated superior semantic
reasoning (53-75% recall) but faced challenges in hallucination
mitigation and scalability. By integrating empirical gap analysis,
longitudinal vulnerability trends, and LLM capabilities, this
paper underscores the urgent need for adaptive, context-aware
detection frameworks. These findings provide actionable in-
sights for advancing AC security in smart contract ecosystems.

ACKNOWLEDGEMENTS

We thank all reviewers for their constructive comments. This
research is partially supported by a research fund provided by
HSBC, HKUST TLIP Grant FF612, and Lingnan Grant SUG-
002/2526. This research is also supported by the National
Research Foundation, Singapore, and DSO National Labo-
ratories under the AI Singapore Programme (AISG Award
No: AISG4-GC-2023-008-1B); by the National Research
Foundation Singapore and the Cyber Security Agency under
the National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN); and by the Prime Minister’s Office, Singapore
under the Campus for Research Excellence and Technological
Enterprise (CREATE) Programme. Any opinions, findings and
conclusions, or recommendations expressed in these materials
are those of the author(s) and do not reflect the views of
the National Research Foundation, Singapore, Cyber Security
Agency of Singapore, Singapore.

[1]
[2]

[3

[t}

[4]
[5]

[6]

[8]

[9

—

[10
(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

“Defillama,” https://defillama.com/, May 2025.

H. Liu, D. Wu, Y. Sun, H. Wang, K. Li, Y. Liu, and Y. Chen, “Using
my functions should follow my checks: Understanding and detecting
insecure OpenZeppelin code in smart contracts,” in 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 3585-3601. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity24/presentation/liu-han

Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and Y. Liu,
“Gptscan: Detecting logic vulnerabilities in smart contracts by combining
gpt with program analysis,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ser. ICSE '24. New
York, NY, USA: Association for Computing Machinery, 2024. [Online].
Available: https://doi.org/10.1145/3597503.3639117

“Defillama hacks,” https://defillama.com/hacks, May 2025.

“Owasp smart contract top 10,” https://owasp.org/www-project-smart-co
ntract-top-10/, May 2025.

“Public mint,” https://web3sec.notion.site/c582b99cd7a84be48d972ca212
6a2alf?v=4671590619bd4b2ab16a15256e4fbbal &p=c26e99d8419adfc
2930183100b0a32f6&pm=s, May 2025.

“Public transferownership,” https://web3sec.notion.site/c582b99cd7a84b
e48d972ca2126a2alf?v=4671590619bd4b2ab16al5256e4tbbal &p=ea5
29b8b0b77424691035bee47044c2a&pm=s, May 2025.

“Benddao incident,” https://coded4rena.com/reports/2024-07-benddao,
May 2025.

J. Feist, G. Grieco, and A. Groce, “Slither Analyzer,” Jun. 2023.
[Online]. Available: https://github.com/crytic/slither

“Mythril,” https://github.com/Consensys/mythril, May 2025.

A. Ghaleb, J. Rubin, and K. Pattabiraman, “Achecker: Statically detecting
smart contract access control vulnerabilities,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, pp.
945-956.

Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in smart
contracts with role mining,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2022. New York, NY, USA: Association for Computing Machinery,
2022, p. 716-727.

Z.Zhong, Z. Zheng, H.-N. Dai, Q. Xue, J. Chen, and Y. Nan, “Prettysmart:
Detecting permission re-delegation vulnerability for token behaviors in
smart contracts,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE *24. New York, NY,
USA: Association for Computing Machinery, 2024.

Y. Fang, D. Wu, X. Yi, S. Wang, Y. Chen, M. Chen, Y. Liu, and L. Jiang,
“Beyond “protected” and “private”: An empirical security analysis of
custom function modifiers in smart contracts,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1157-1168. [Online]. Available:
https://doi.org/10.1145/3597926.3598125

A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug
injection,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p. 415-427.
T. Durieux, J. a. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE '20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 530-541.

M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai,
“Empirical evaluation of smart contract testing: what is the best choice?”
in Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 566-579.

A. P. C. Monteiro, “A study of static analysis tools for ethereum smart
contracts,” Ph.D. dissertation, Master’s thesis, Instituto Superior Técnico,
2019.

K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu, H. Wang, Y. Liu, and
Y. Chen, “Static application security testing (sast) tools for smart contracts:
How far are we?” Proceedings of the ACM on Software Engineering,
vol. 1, no. FSE, pp. 1447-1470, 2024.

12

[20]

[21]
[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
(32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Z. Zheng, N. Zhang, J. Su, Z. Zhong, M. Ye, and J. Chen, “Turn
the rudder: A beacon of reentrancy detection for smart contracts on
ethereum,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 295-306.

“Common vulnerabilities and exposures,” https://www.cve.org/CVERec
ord/SearchResults?query=smart+contract, May 2025.

“Past defi incidents,” https://github.com/SunWeb3Sec/DeFiHackLabs,
May 2025.

“Codedrena audits reports,” https://codedrena.com/reports, May 2025.
“Study data of the paper,” 2025. [Online]. Available: https:
//github.com/HelayLiu/AccessControl Vulnerabilities

M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis: Preventing
authentication & [and] access control vulnerabilities in web applications,”
in 18th USENIX Security Symposium (USENIX Security 09). USENIX
Association, 2019.

F. Sun, L. Xu, and Z. Su, “Static detection of access control vulnerabilities
in web applications,” in 20th USENIX Security Symposium (USENIX
Security 11). San Francisco, CA: USENIX Association, Aug. 2011.
“Safemoon incident,” https://web3sec.notion.site/c582b99cd7a84be48d97
2ca2126a2alf?v=4671590619bd4b2ab16a15256e4fbbal &p=fa3c3cffd
3254¢c0181ae3f9cd640890b&pm=s, May 2025.

“Common weakness enumeration,” https://cwe.mitre.org/, May 2025.
“Cwe-284: Improper access control,” https://cwe.mitre.org/data/definitio
ns/284.html, May 2025.

D. Spencer, Card sorting: Designing usable categories.
Media, 2009.

“Sourcify,” https://github.com/ethereum/sourcify, May 2025.
J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824-24 837, 2022.

“Maia dao incident,” https://codedrena.com/reports/2023-09-maia, May
2025.

“Cve-2018-10705,” https://www.cve.org/CVERecord?id=CVE-2018-107
05, May 2025.

“Liquidxv2zap incident,” https://web3sec.notion.site/c582b99cd7a84bed
8d972ca2126a2alf?7v=4671590619bd4b2ab16al5256e4fbbal &p=b703b
4b9bf134e40a65f716£87277602&pm=s, May 2025.

“Entropygenerator incident,” https://code4rena.com/reports/2024-07-trai
tforge, May 2025.

“Bego token incident,” https://web3sec.notion.site/c582b99cd7a84be48d
972ca2126a2alf?v=4671590619bd4b2ab16a15256e4fbbal &p=5f0b5f9
£1412498fb5691538c4e8ce88&pm=s, May 2025.

“Cve-2018-10666,” https://www.cve.org/CVERecord?id=CVE-2018-106
66, May 2025.

“Linearvesting incident,” https://web3sec.notion.site/c582b99cd7a84bed
8d972ca2126a2alf?7v=4671590619bd4b2ab16al5256e4fbbal &p=31b06
970c5584811a942b3835b7b052f&pm=s, May 2025.

“Lockmanager incident,” https://code4rena.com/reports/2024-05-muncha
bles, May 2025.

“Arbitrary send eth,” https://github.com/crytic/slither/blob/master/slither/
detectors/functions/arbitrary_send_eth.py, May 2025.

“Controlled delegatecall,” https://github.com/crytic/slither/blob/master/sl
ither/detectors/statements/controlled_delegatecall.py, May 2025.
“Dependence on origin,” https://github.com/Consensys/mythril/blob/de
velop/mythril/analysis/module/modules/dependence_on_origin.py, May
2025.

“Public burn,” https://web3sec.notion.site/c582b99cd7a84be48d972ca212
6a2alf?v=4671590619bd4b2ab16a15256e4fbbal &p=f91fe4168c59469
fb5t5deefc9e00at0&pm=s, May 2025.

“Rabbithole incident,” https://code4rena.com/reports/2023-01-rabbithole,
May 2025.

“Addliquidity incident,” https://web3sec.notion.site/c582b99cd7a84be48d
972ca2126a2alf?v=4671590619bd4b2ab16a15256e4fbbal &p=c30d3fc
e9e13476eal 16137aefcf3al10&pm=s, May 2025.

“Stakingrewards contract,” https://bscscan.com/address/0x274b3e185¢c9c
8f4ddef79cb9a8dc0d94£73a7675, May 2025.

S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Ethereum
smart contract analysis tools: A systematic review,” IEEE Access, vol. 10,
pp. 57037-57062, 2022.

S. Chaliasos, M. A. Charalambous, L. Zhou, R. Galanopoulou, A. Gervais,
D. Mitropoulos, and B. Livshits, “Smart contract and defi security
tools: Do they meet the needs of practitioners?” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.

Rosenfeld

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

ICSE "24. New York, NY, USA: Association for Computing Machinery,
2024.
S. Wu, Z. Li, L. Yan, W. Chen, M. Jiang, C. Wang, X. Luo, and H. Zhou,

“Are we there yet? unraveling the state-of-the-art smart contract fuzzers,”

in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2024.

Z. Zheng, J. Su, J. Chen, D. Lo, Z. Zhong, and M. Ye, “Dappscan:
Building large-scale datasets for smart contract weaknesses in dapp
projects,” IEEE Transactions on Software Engineering, vol. 50, no. 6,
pp. 1360-1373, 2024.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vecheyv, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, 2018, pp. 67-82.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1EEE, 2019, pp. 1186-1189.

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th annual computer
security applications conference, 2018, pp. 664—676.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference, ser. ACSAC
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 653-663.

L. Zhang, K. Li, K. Sun, D. Wu, Y. Liu, H. Tian, and Y. Liu, “Acfix:
Guiding llms with mined common rbac practices for context-aware repair
of access control vulnerabilities in smart contracts,” IEEE Transactions
on Software Engineering, 2025.

13

