Demystitying OpenZeppelin’s Own Vulnerabilities
and Analyzing Their Propagation in Smart Contracts

Han Liu*, Daoyuan Wu'®, Yugiang Sun?, Shuai Wang*, Yang Liu?, Yixiang Chen¥
*The Hong Kong University of Science and Technology, Hong Kong SAR, China
TLingnan University, Hong Kong SAR, China
iNanyang Technological University, Singapore
YEast China Normal University, Shanghai, China
Emails: livhan@ust.hk, daoyuanwu@In.edu.hk, suny0056 @e.ntu.edu.sg, shuaiw @cse.ust.hk,
yangliu@ntu.edu.sg, chenyx61@aliyun.com

Abstract—OpenZeppelin is a building block for many smart
contracts on Ethereum-compatible blockchains. It provides mod-
ular and reusable libraries for various Ethereum standards
(e.g., ERC20 and ERC721) and common functionalities such as
upgradeable contracts. Little research has been done on Open-
Zeppelin security except for a recent study, which focused only on
the misuse of OpenZeppelin code, assuming OpenZeppelin itself
is secure but contract developers may not follow OpenZeppelin’s
function checks appropriately. We argue that, despite appearing
robust, OpenZeppelin itself could have many vulnerabilities, and
these library-level vulnerabilities could inadvertently affect third-
party smart contracts, even without misuse from developers.

We present ZEPCOMPARE, the first end-to-end system for
demystifying OpenZeppelin’s own vulnerabilities and analyzing
their propagation in third-party smart contracts. ZEPCOMPARE
incorporates a manual analysis stage where we review OpenZep-
pelin’s 64 historical releases, identifying 109 vulnerable-fixed code
pairs, exposing flaws in cryptographic utilities, access control,
etc. Leveraging these pairs, ZEPCOMPARE introduces facts of
changes, a novel structure capturing vulnerable and fixed code
contexts for flexible matching. Evaluated across 88,605 contracts
from three Ethereum-compatible chains, ZEPCOMPARE detects
4,708 instances of OpenZeppelin-derived vulnerabilities. Manual
sampling and a ground-truth experiment confirm that ZEpCoOM-
PARE achieves 86.7% precision and 77.1% recall. Our findings
reveal significant security risks in both historical and the latest
versions of OpenZeppelin libraries, underscoring the urgent need
for systematic auditing of foundational contracts components.

Index Terms—OpenZeppelin Library, Smart Contracts, Vul-
nerability Propagation, Vulnerability Detection.

I. INTRODUCTION

Smart contracts are self-executing digital agreements en-
coded on a blockchain [1]], automatically enforcing terms upon
predefined conditions and eliminating intermediaries. Lever-
aging blockchain’s inherent transparency and security, they
facilitate trustless execution without central authorities, leading
to widespread adoption in finance [2], [3]. However, they
remain susceptible to vulnerabilities, resulting in significant
financial losses; security attacks had caused cumulative losses
of $9.04 billion USD by November 2024, posing a major
challenge to the ecosystem and its users [4].

To standardize development and reduce vulnerabilities in
smart contracts, OpenZeppelin [5] provides a set of widely

§Corresponding author: Daoyuan Wu.

used libraries that include common math functions [6]], up-
grade mechanisms [[7], access control components [8]], and
implementations of ERC standards such as ERC20 [9]]. Despite
the vital importance of OpenZeppelin to Ethereum and its
EVM-compatible chains [[10]], little academic research has
focused on the security of OpenZeppelin. The only work we
are aware of is ZepScope [11]], which analyzed the security
checks in the official OpenZeppelin libraries and whether they
are faithfully enforced in the relevant OpenZeppelin functions
of real contracts. As a result, ZepScope detected only the
misuse of OpenZeppelin code, assuming that OpenZeppelin
itself is secure but contract developers may not follow Open-
Zeppelin’s function checks appropriately. While valuable, this
work assumes OpenZeppelin’s inherent correctness, focusing
solely on developer errors rather than flaws in the library itself.

We challenge this assumption and argue that OpenZeppelin
—despite its widespread trust and adherence to security best
practices like checks-effects-interactions [12]—may introduce
vulnerabilities into dependent contracts. Indeed, OpenZeppelin
has undergone multiple audits and reports only 19 CVEs since
2015 [[13]. More importantly, its role as a shared dependency
amplifies risks: even minor flaws could propagate to thousands
of contracts across EVM chains. Our work tries to address this
blind spot, examining how vulnerabilities in OpenZeppelin’s
codebase, rather than mere misuse by developers, could sys-
tematically undermine blockchain ecosystems. This distinction
is critical, as library-level flaws require fundamentally different
mitigations than developer errors, necessitating a paradigm
shift in smart contract security practices.

However, it is a challenging task to explore the OpenZep-
pelin’s own vulnerabilities and their propagation in third-party
contracts. (i) OpenZeppelin’s vulnerabilities span diverse types
and code patterns—from cryptographic flaws in mathematical
utilities to access control bypasses—with no unified taxon-
omy to guide detection. This heterogeneity renders rule-based
detectors ineffective, as they rely on predefined heuristics ill-
suited for novel or undocumented vulnerabilities. (ii) Unlike
other languages, developers in the Ethereum ecosystem often
customize OpenZeppelin libraries to suit their needs (we will
discuss a motivating example in Section [[I-B)), leading to a
wide range of variations in the code. Additionally, OpenZep-

pelin itself has also provided many customization options,
e.g., the _authorizeUpgrade function [14] in contract.
(iii) Although the code is not customization, employing clone-
based method [15], [[16] to detect it is difficult. There are no
existing well-documented datasets of OpenZeppelin libraries
and their vulnerabilities. OpenZeppelin library only contains
19 CVEs and does not cover any issues in the earlier versions.

To address these challenges, we propose ZEPCOMPARE,
an end-to-end system designed to demystify OpenZeppelin’s
own vulnerabilities and their propagation in third-party smart
contracts. ZEPCOMPARE operates in two phases: in the offline
phase, it extracts OpenZeppelin’s library-level vulnerabilities
as a one-time effort, and in the online phase, it detects the
extracted vulnerabilities in given smart contracts. The offline
phase begins with a manual review of OpenZeppelin’s release
history to identify security-relevant code changes and their en-
try points—functions through which vulnerabilities manifest.
Then, the core problem lies in translating these code changes
into actionable detection rules. Traditional approaches [15],
[16], which rely on syntactic or semantic code comparisons,
fail here due to the pervasive customization and semantic
complexity of vulnerabilities.

To overcome this, we introduce a novel structure called facts
of changes (formally defined in Section[[I-C), which covers not
only the affected functions and their contexts but also the struc-
tured content of both vulnerable and fixed code supporting for
flexible matching. Based on this concept, during the offline
phase, (i) extracts facts of changes that encapsulate both entry
functions and specific code alterations, and (ii) extends these
facts via an alias analysis for identifying customizations in
real-world contracts. During the online phase, ZEPCOMPARE
(7) identifies the target functions in smart contracts, (ii) extracts
all of their statements, including function calls as inlined
statements, and (iii) conducts structured matching between
the extracted contract statements and OpenZeppelin’s facts of
changes by matching vulnerable versions and excluding fixed
versions. It flexibly verifies the presence of key vulnerable
code patterns while simultaneously checking for mitigations
introduced in patched OpenZeppelin versions.

With ZEPCOMPARE’s offline module, we identify 109
pairs of OpenZeppelin vulnerable code with functions among
the 64 versions of OpenZeppelin libraries. Through manual
correlation with the Smart Contract Weakness Classification
(SWC) [17], we categorize these vulnerabilities into 20 cate-
gories, with access control-related issues being the most preva-
lent, accounting for 34 of the 109 detected vulnerabilities. We
further analyze the characteristics of these vulnerabilities. Our
analysis offers a systematic categorization of well-documented
vulnerabilities and examines their defining characteristics. (See
Section for more details).

To evaluate ZEPCOMPARE’s detection capability, we con-
duct both a ground-truth experiment comprising 35 real-
world OpenZeppelin-related bugs and a large-scale cross-
chain experiment targeting 88,605 smart contracts across
three Ethereum-compatible chains, including BSC, Ethereum,
and Avalanche. Our ground-truth experiment, compared with

ZepScope [11]], Slither [18], SmartCheck [19], Mythril [20],
Manticore [21]], and Sun et al.’’s method [16], reveals that
ZEPCOMPARE significantly outperforms these state-of-the-art
tools and methods. Specifically, ZEPCOMPARE successfully
detects 27 out of 35 ground-truth vulnerabilities, achieving
a recall of 77.1%. In comparison, Sun et al.’s method and
SmartCheck detect 14 and 8 vulnerabilities, while Slither
and ZepScope each identify only 5, and neither Mythril nor
Manticore identifies any issues. We also analyze the causes
of the failed cases for all these tools in Section On the
other hand, our large-scale experiment flags 4,708 contracts as
potentially containing vulnerabilities originating from Open-
Zeppelin libraries, meaning that, on average, only 5.3% of
the contracts require further manual verification. By randomly
sampling 100 flagged contracts from each blockchain, we con-
firm 260 as true positives and 63 as false positives, achieving
an average precision of 86.7% across the three blockchains.
From the large-scale experiment, we analyze the prevalence
and scope of the issues and identify 16 vulnerable contracts
with a total balance of $765,031 by focusing on several high-
value contracts. The artifacts of this paper are available at [22].

In summary, we make the following contributions:

o (Systematization) We conduct the first systematic study of
vulnerabilities in OpenZeppelin library across all versions
and analyze their propagation in real-world contracts.

o (Methodology) We propose ZEPCOMPARE, a novel tool
for mining security-related changes in OpenZeppelin li-
brary and detecting their propagation in real-world smart
contracts. ZEPCOMPARE employs a novel structure called
facts of changes to extract the security-related changes
in OpenZeppelin library and detect their propagation in
real-world smart contracts.

o (Evaluation) Experiment on the ground-truth dataset
shows that ZEPCOMPARE outperforms SOTA tools in
detecting OpenZeppelin-related bugs. Large-scale exper-
iments on 88,605 smart contracts from three blockchains
show that ZEPCOMPARE has a high accuracy with 86.7%
and found 16 bugs in the smart contracts.

o (Insights) We provide an understanding of the vulnerabil-
ities in OpenZeppelin library, a comprehensive list of 109
pairs of vulnerable code with details, and a qualification
of the propagation of these vulnerabilities in real-world
smart contracts.

II. PRELIMINARY AND DEFINITIONS
A. OpenZeppelin Libraries

OpenZeppelin [5] is a widely used open-source framework
for developing secure smart contracts on the blockchains [[1]].
It provides modular and reusable libraries that implement key
Ethereum standards, such as ERC20 [9] for fungible tokens
and ERC721 [23] for non-fungible tokens. By following in-
dustry best practices and undergoing security audits, OpenZep-
pelin helps mitigate common vulnerabilities, supporting the
development of secure decentralized applications (DApps) [3]].

Nevertheless, OpenZeppelin is not perfect. Over the years,
OpenZeppelin has evolved significantly, with 64 versions

1 function recover(bytes32 hash, bytes memory
signature) internal pure returns (address) {

2

3 if (signature.length != 65) {

4 return (address(0));

5 }

6 assembly {...

7 v:=byte(0,mload(add(signature , 0x60))}
8 // Inadequate validation of v

9 if (v < 27) {v += 27;}

10 if (v != 27 & v != 28) {

11 return (address(0));

12 } else {

13 return ecrecover (hash, v, r, s);
14}

Fig. 1. The vulnerable recover function in OpenZeppelin ECDSA library
(version: <= 2.1.3).

released to date. Despite 19 CVEs and GitHub security ad-
visories [13]], our research reveals a more extensive security
landscape. For example, while the oldest officially recorded
CVE is in version 4.3.0 of the OpenZeppelin library [24], the
example in Section shows an attack incident caused by a
vulnerability in OpenZeppelin as early as version 2.1.3, indi-
cating that security risks predate common acknowledgment.

B. A Motivating Example

We use an example to illustrate how OpenZeppelin could be
vulnerable in one of its core cryptography libraries and how
this vulnerability could lead to a real-world attack, as reported
by DeFi Hacks [25]. As shown in Fig. OpenZeppelin’s
ECDSA library introduced a vulnerable recover function
in version 2.1.3 and earlier, which contains a flaw in the
signature validation logic. Specifically, on line 9, the code
allows the v value, derived from the incoming signature
on line 7, to be adjusted by adding 27 when v is less than
27. This adjustment permits signatures with v. = 0 or v
= 1 to be transformed into valid signatures with v = 27
or v = 28. This introduces a vulnerability called Signature
Malleability [26], allowing an attacker to create multiple valid
signatures for the same message, which can lead to exploits.

This vulnerability of OpenZeppelin, unfortunately, caused
an attack incident in a contract named TCHtoken in May
2024 [27]. As shown in Fig. although developers made
certain customizations when reusing OpenZeppelin libraries,
the core vulnerable logic still propagated from OpenZeppelin
to TCHtoken. Specifically, TCHtoken also allowed two
types of v, including 0,1 and 27,28. The attacker harvested
previously submitted signatures and modified the v part of
the signature: instead of submitting 0x01 (1), they submitted
Oxlc (28). Since at this point v is already greater than 27
(line 9), there is no need to add 27 to v, resulting in the same
outcome as when v = 0x01. As a result, the fake signature
was successfully verified with ecrecover on line 2. The
attacker ultimately burned a large number of TCH tokens
owned by the PancakeSwap [28]] pair, which allowed him/her
to manipulate the price in the pool and take the profit.

From this example, we observe that despite significant ef-
forts to secure OpenZeppelin—for example, a $1M USD grant
was awarded in January 2023 [29]—OpenZeppelin libraries

1 function recoverSigner(bytes32 ethSignedMessage ,
bytes memory signature) internal pure
returns (address) {

2 (bytes32 r, bytes32 s, uint8 v) =
splitSignature (signature);
3 return ecrecover (ethSignedMessage ,v,r,s); }

4 function splitSignature (bytes memory sig)

internal pure returns (bytes32 r, bytes32 s,
uint8 v) {
5 require(sig.length == 65, "Invalid signature
length");
assembly {...

v:=byte (0, mload(add(sig, 96)}
// Inadequate validation of v
if (v <27) v += 27;

return (r, s, v);

— O 0 0 N

—_

}

Fig. 2. The vulnerable recoverSigner function in TCHtoken.

can still contain serious vulnerabilities, which affect real-world
smart contracts, whether in the original OpenZeppelin format
or in customized formats. In addition, the 2.1.3 version of
the ECDSA library was released in February 2019, and the
attack incident happened in June 2024, indicating that the
vulnerability persisted for a long time before being exploited.
This motivates us to develop a system to demystify OpenZep-
pelin’s own vulnerabilities across different versions and the
propagation of these vulnerabilities in third-party contracts.

C. The Definition of Facts of Changes

We define a Fact of Change as a structured entity repre-
sented by the triple F'C' = (Sent, Cyui, Ciz) to capture the
essence of a change made to a function in the OpenZeppelin
library. The components of this definition are as follows: S¢;;
denotes the Entry Function Signature, which comprises the
contract name C', e, function name F, 4, parameter types
Piypes, return value types [¢ypes, emitted events F, read/write
constants R, and a boolean indicator P specifying whether
the function is public.

The components C,,; and C'y;, are fact contents, represent-
ing the Two Changed Sequences for the vulnerable and fixed
versions of the function, respectively. Each fact content is an
ordered list of Fact Units, denoted as C' = [Fy, F, ..., F,],
where the ordering reflects the sequence of statement defini-
tions within the function. Each Fact Unit F; corresponds to a
specific statement in the code and is categorized into one of
seventeen distinct statement types. For general statements, F;
is modeled as a heterogeneous binary tree BTree(O, L, R),
where O is the operator at the root, and L and R are
the left and right subtrees representing subsequent operators.
In cases involving function calls (FC), variable assignments
(VA), or equivalent variables (EV), F; is represented as an
array [Fj1, Fio, ..., Fyi], containing multiple equivalent facts
to account for variations in code constructs.

Formally, the Fact of Change is expressed as:

FC == (Sent7 OUUl7 Cf’bﬁ)

where

Sent = (Cnam67 Fnamea Ptypesv Rtypesv Ea RW7 P)

and

(Cvula Cfm) = ([Fvulh Fvul2; B Fvuln];
[Ffirc17Ffir27 o aFfm*m])
Each Fact Unit F; is defined as:

D

if the statement ¢ {FC, VA, EV},

if the statement € {FC, VA, EV}.
)

[BTree(O, L, R)
' [Fit, ..., Fi]

III. OVERVIEW

Motivated by Section [[I-B] we aim to achieve the following
two main objectives in this paper:

Objective 1: To demystify the security issues in different
versions of OpenZeppelin’s official libraries and identify
the characteristics of these vulnerabilities.

Objective 2: To analyze the propagation of OpenZeppelin’s
vulnerabilities in third-party smart contracts, including
the effectiveness of the detection onOpenZeppelin’s se-
curity issues and the extent of their impact.

To achieve this, we propose ZEPCOMPARE, an end-to-end
system for demystifying OpenZeppelin’s own vulnerabilities
and analyzing their propagation in smart contracts. Fig.
presents an overview of ZEPCOMPARE, consisting of the
offline phase (detailed in Section and the online phase
(detailed in Section [V). Offline phase conducts a one-time
effort to demystify the vulnerabilities from the OpenZeppelin
library, and converts them into a structured format called facts
of changes (see Section |lI-C}), which are then stored in a
database. The online phase, on the other hand, is a multi-time
effort for detection of the OpenZeppelin’s own vulnerabilities
in third-party contracts. It takes the facts of changes as input
and conducts a signature pre-filtering step to identify the
functions that have similar functionalities. Then, it extracts
the code facts from the function and performs a structured
matching to determine whether the vulnerable code is present
in third-party contracts.

IV. DEMYSTIFYING OPENZEPPELIN’S VULNERABILITIES

In this section, we introduce ZEPCOMPARE’s offline mod-
ule, which demystifies OpenZeppelin’s own vulnerabilities by
extracting them as facts of changes (see Section [[I-C) in a one-
time effort. As shown in Fig.[3] ZEPCOMPARE completes three
tasks during this offline phase: identifying security-related
code changes, extracting and extending facts of changes. We
present these tasks in the following subsections.

A. Identifying Security-Related Code Changes

In order to analyze OpenZeppelin’s vulnerabilities, we need
to identify the security-related code changes in the OpenZep-
pelin repository across different versions. Although OpenZep-
pelin employs GitHub to manage its code, the commit-level
diffs do not directly reflect the original vulnerable and patched

code in the releases. Hence, we can not directly use existing
commit-level security changes identification methods [30]-
[33] to identify the security-related code changes in OpenZep-
pelin. Additionally, it is important to have a higher confidence
in the correctness of the mined vulnerabilities, as they will
be used to analyze the propagation of vulnerabilities in real-
world smart contracts. Hence, as illustrated in Fig. [3] we first
conduct a manual review of the release notes with the pull
request (PR) descriptions and security advisories to identify
all the security-related code changes in OpenZeppelin. Three
authors independently review OpenZeppelin’s release notes,
PR descriptions, and security advisories to identify candidate
security-related code diffs. Then, the authors compare their
findings. In cases where there is disagreement about whether a
code diff was security-relevant, the authors discuss the specific
case together. If consensus could not be reached through
discussion, the majority opinion is adopted.

To further map the commit-level diffs to the original re-
leases, we construct an order of the versions based on the
release time and the versioning scheme. We then map the
commit-level diffs to the related releases, ensuring that the
identified code changes are indeed officially released. For each
identified code change, we find all the entry functions, i.e.,
Sent as defined in Section that are relevant to the code
changes for subsequent analysis. Finally, we totally identify
109 pairs of entry functions and their corresponding code
changes from 938 candidates in the OpenZeppelin repository.

B. Extracting Facts of Changes

From the located entry functions and code change state-

ments, we can now extract their signatures and facts based on
the definition given in Section [[I-C]
Extracting Function Signature. For each identified target
statement, we extract its function characteristics for subsequent
recognition. In our definition, we use the Entry Function
Signature S.,;: to represent these function characteristics,
comprising a total of eight elements. First, we record the con-
tract name, function name, input parameters, return parameter
types, and whether the function is public or external. Next,
we traverse the function’s statements and record any events or
accesses to state variables and Solidity variables. This process
ultimately forms the signature of the entry function.
Extracting Facts Content. To extract the facts from the
statement, we divide the facts into several types, i.e., function
entry point statement, expression statement, loop statement,
require and return statement, if-revert statement, common
condition statement, function call statement, new variable
statement, and other statement. These selected fact types are
chosen to comprehensively capture the semantic and structural
elements of smart contract logic. We now further present each
as follows.

o Function Entry Point Statement: The function entry point
statement is recorded as a fact unit. We record the entry
function’s visibility in the left node of the fact unit. Vis-
ibility is grouped into two categories: external/public and
private/internal. The right node records the name of the

4
1] 'I \
] i 1
) L i e
1 Function ! e =
VuInerabIeL) q | feature i S 5 :
version Locating code Extracting and, | P2 T
wﬁﬂ!‘_‘i . extending Facts ! 1 5 g =
_»S - entry functions 1 C Cein 1 © g =
Human eclurltg- f 1 Covur fix | o o0
Knowledge EAtes * (. i i3
code diff ~ ! —» & w
segments : [! S 3
0 . \ / ~
Fixed version | S N X4 R
I £

) Code changes _ Facts of Changes FC
Offline 77 Alias
ZepCompare = = = = = m e e e e e e mmm - = = - S

T Tanalysis " -
Online ‘ - Y ’

+% a
I8 = Y R _Structured
*_’ - g “matching> ~ Wulnfacts Cpyy T

cosrm?;ctts Signature Target Extracted
code match functions statements

O s

Fixed facts Crix

Fig. 3. An end-to-end system for demystifying OpenZeppelin’s vulnerabilities and analyzing their propagation in smart contracts.

modifier, extended with additional elements extracted from
the modifier’s content.

Expression Statement. The expression statement is also
recorded as a fact unit. We recursively process the expres-
sion as follows: (i) For binary operations, index access,
tuple, member access, or assignments, divide into left and
right expressions, recording the operation as the root. (i7) For
unary operators or type conversions, process sub-expressions
as the left node, recording the operation/type conversion as
the root. (iii) For variables or literals, capture the variable
name as the left node, and record variable as the root.
(iv) For other expressions, capture the stringified statement,
recording other expression as the root.

Loop Statement: The loop statement is recorded as an
ordered sequence of fact units. We first use the loop and
end-loop fact units to define their boundaries. Then, we
record the loop condition as the first fact unit, followed by
the loop body. For the loop body, we recursively process
the statements using the extracting method described in this
section. Finally, we record the loop statement as an ordered
sequence of fact units.

Require and Return Statements: The require and return state-
ments are recorded as fact units. We capture and recursively
process the expression as the left node and record require
or return as the root. For require statements, we also
capture the error message in the right node.

If-Revert Statement: The if-revert statement is recorded as
a fact unit. We identify the corresponding if expression,
process it as the left node, and carefully analyze the control
flow. For revert in if or else-if conditions, we invert the
logic. For else conditions, we retain the original logic.
Finally, we record the revert statement as the right node
and if-revert as the root.

Common Condition Statement: The common condition state-
ment is recorded as two equivalent ordered sequences, e.g.,

for if condition A else B, the representation becomes:[[if
condition do A; if not condition do B], [if not condition do
B; if condition do A]]. For the sub-statements, we recur-
sively process them using the extracting method described
in this section.

o Function Call Statement: The function call statement is
recorded as a fact unit. We capture the called function name
as the left node and set the root as function call. Then,
we process each function argument using the expression
statement method, adding the list to the right node.

o New Variable Statement: The new variable statement is
recorded as a fact unit. We capture the stringified variable.
Considering flexibility (e.g., msg.sender used directly),
we further extend it by alias in Section [[V-C]

o Other Statement: Other statements are recorded as fact units.
We directly capture the stringified statement in the left node,
and record Other as the root.

C. Extending Facts via Alias Analysis

As described in Section [[V-B| we further extend the facts
using variable aliases. Not only do facts with new variable
statements require extension, but other statements involving
variables also need to extend the facts. Thus, ZEPCOMPARE
performs inter-procedural alias analysis during facts extraction.
Specifically, ZEPCOMPARE first inlines all function calls in
the OpenZeppelin code. It then traverses each function’s
statements, processing assignment statements and capturing
the variables on both sides as pairs of equivalent variables. For
right-hand values, we process the expression statement using
the method described in Section For left-hand values,
we only record the stringified value. Additionally, we extend
alias analysis from the statement level to the procedural level,
capturing arguments and parameters as pairs of equivalent
variables. Alias analysis also propagates between different sets
that share the same variable. For example, if A and B are
equivalent, and B and C are equivalent, then A and C are also

equivalent. By recursively extending the equivalent variables,
we obtain the complete set of equivalent variables.

Based on the set of equivalent variables, we extend the facts.
We perform a pre-order traversal to visit each node of the
BTree in the fact unit. If a node has an equivalent variable
in our set, we replace the node with a set containing both
the node and its equivalent variables. This process is repeated
until no further changes occur, at which point we obtain the
extended fact.

V. DETECTING THEIR PROPAGATION IN CONTRACTS

In this section, we introduce ZEPCOMPARE’s online mod-
ule, which detects the propagation of OpenZeppelin vulner-
abilities in real-world smart contracts by correlating contract
code with facts of changes. As shown in Fig.[3] ZEPCOMPARE
completes three tasks during this online phase: identifying
target functions in smart contracts, extracting statements from
target functions, and performing structured matching against
both vulnerable facts Cy,; and Cp;, using the extracted
statements. We present them in the following subsections.

A. Identifying Target Functions

The first step in online detection is identifying target func-
tions, which involves locating code segments that perform the
same functionality as specific facts. Note that this step serves
only as a preliminary screening; the subsequent matching step
will further ensure the overall effectiveness of the detector.
Our goal is to identify as many functions with potentially
similar functionality as possible. We start by analyzing func-
tion names. Special characters, such as underscores (“_"), that
appear at the beginning of function names are removed. We
then account for two common naming conventions: camel case
and snake case. We tokenize the function names based on
these conventions, generating a set of words for each function
name. Subsequently, we employ Word2Vec [34] to convert
these words into vector representations and calculate their
cosine similarity. If the similarity between the target function
name and the function name recorded in the extracted fact
exceeds a predefined threshold, we proceed to the further
matching step. In this paper, the threshold is set at 0.7, which is
chosen empirically by testing it on 100 pairs of OpenZeppelin
functions and their variants. Setting a higher threshold resulted
in some semantically similar functions being filtered out,
while a lower threshold introduced more unrelated functions.
Therefore, we chose the threshold that best balanced these
trade-offs.

We further refine the preliminary results by examining
additional function signatures. We require that the parameters
of the target function include at least those in the fact,
ensuring that all parameter types in the fact are present in
the target function. If developers have altered parameter type
names (e.g., from ERC20 to ERC20Burnable), we consider the
parameters to match if there is a substring relationship between
the two types (excluding single-letter parameter types). We
apply the same method to check the return types, emitted
events, and read/write access to constants. If all of these

signatures match, we designate the function as a target function
and proceed with further extraction and matching.

B. Extracting Statements of Target Functions

After identifying the target functions, we extract all state-
ments within the target functions for further matching. Unlike
the extraction process in the offline phase, where we pre-
cisely identified target statements, our approach here involves
locating entire target functions that may contain numerous
statements. Therefore, we extract the entire function content
for subsequent matching. Since the statements in the facts
are ordered, we first sort the statements within the function
according to their code sequence.

Unlike in Section [IV-B| in this phase, we do not perform
equivalence processing on function call statements. Instead,
when encountering a function call, we inline the called func-
tion’s content after the call. This ensures that in the subsequent
analysis, whether we match the vulnerable function call or
specific content within the function call, we can consider the
function to contain a vulnerability in OpenZeppelin. For the
remaining parts, we follow the procedure outlined in Section
to extract statements for the eight types of statements
and obtain the corresponding function content for structured
matching. Additionally, in this step, we extend the statements
with inter-procedural alias analysis to enhance the robustness
of our detection across various smart contracts in the wild.

C. Structured Matching

We proceed to compare the extracted statements from the
target function with the specific facts. As shown in Fig. [3
the matching process involves two main steps: matching the
vulnerable facts Cy,; and excluding the fixed facts C/;,.
Matching Vulnerable Facts. First, we match the vulnerable
facts with the extracted statements. Given that both our facts
and extracted statements are sequential structures, we iterate
through the fact units within a specific fact and search for
each fact unit in the extracted statements. When a fact unit is
found, we continue searching for the next fact unit, starting
from the position in the extracted statements. This process
continues until either all fact units are successfully matched
or a mismatch occurs for any fact unit. This approach allows
developers with flexibility in modifying the code while ensur-
ing that the vulnerable code remains in a certain order.

However, since our fact units form an irregular tree struc-
ture, simple equality checks are not sufficient. Therefore, we
employ a novel structured matching method. We recursively
evaluate matches according to the following rules: (i) If the
fact unit represents an equivalence structure, we check whether
any of its sub-fact units match the extracted statement. (ii)
If the fact unit has a binary tree structure, we first check if
its root node matches the extracted statement unit. If it does
not match, we proceed to match the left and right subtrees.
If it matches, we then separately match the left and right
nodes of both the fact unit and the extracted statement. (if)
If the fact unit and the extracted statement involve require
and revert statements, we convert the require statement

into a revert statement based on logical negation principles
and perform a secondary match. (iv) If the fact unit involves
a binary comparison and the comparison initially fails, we
proceed with a secondary comparison by reversing the logic
(e.g., after a failed @ > b comparison, we also verify b <= a).
In structured matching, we ultimately need to determine
whether two strings are related. These strings may represent
function names or variable names and contain semantic infor-
mation. However, since some variable names could be simple
abbreviations, matching them can still be challenging. To
address this, we devised a novel string-matching method that
combines tokenization with a lightweight semantic similarity
method which are more suitable for our task. Specifically, we
first tokenize the strings according to two naming conventions:
camel case and snake case. Since the resulting tokens tend
to be quite short, existing pre-trained models may fail to
capture their semantics, while more complex models could
be too time-consuming, especially given the large number of
matching processes required during our detection. Therefore,
we first compute the similarity between each pair of tokens
using edit distance. Then, we apply an improved Longest
Common Subsequence (LCS) algorithm [35] to check whether
one set of tokens is a subset of the other. If so, we consider
the two strings a match; otherwise, they are not matching.
With the above three strategies, we can determine whether
an extracted statement matches the fact corresponding to the
same target function.
Excluding Fixed Facts. Up to this point, we have preliminar-
ily determined whether the target function contains vulnerable
code from OpenZeppelin. However, some vulnerability fixes
involve adding additional checks, and our facts only capture
certain function signatures for identification. Additionally, the
fixed code may be quite similar to the vulnerable code. There-
fore, we incorporate matching of fixed code as a supplement
to reduce false positives. Specifically, when ZEPCOMPARE
identifies vulnerable code, it further uses the extracted fixed
facts to match the statements. As described above, we repeat
the process to determine whether the fixed fact matches the
statements. If a match is found, we consider it to be fixed code
and do not issue a warning. Otherwise, we report the presence
of vulnerable code.

VI. EVALUATION

This section addresses the two objectives outlined in Section
through our research questions (RQs):
Objective 1: (Analyzing OpenZeppelin’s Vulnerabilities):

« RQ1: What security issues are present in different
versions of OpenZeppelin’s official libraries, and what
are the characteristics of these vulnerabilities?

Objective 2: (Detection and Real-World Impact):

e RQ2: How effective is ZEPCOMPARE in detecting
OpenZeppelin’s vulnerabilities in a set of ground-truth
vulnerable smart contracts compared to other SOTA
static analysis tools?

+ RQ3: How accurate and efficient is ZEPCOMPARE in
analyzing a large set of on-chain smart contracts?

TABLE I
CATEGORIES OF OPENZEPPELIN’S VULNERABILITIES.

Categories Count

NO-SWC: Missing Authorization Validation 25
SWC-128: DoS with Block Gas Limit 10
SWC-104: Unchecked Call Return Value 10
SWC-132: Unexpected Ether Balance

SWC-124: Write to Arbitrary Storage Location
SWC-114: Transaction Order Dependence
SWC-122: Lack of Proper Signature Verification
SWC-101: Integer Overflow and Underflow
SWC-107: Reentrancy

NO-SWC: Locigal issue

SWC-117: Signature Malleability

NO-SWC: Uninitialized Contract Vulnerability
SWC-135: Code With No Effects

SWC-126: Insufficient Data Validation

SWC-113: DoS with Failed Call

SWC-111: Use of Deprecated Functions

NO-SWC: Logical Flaw in Merkle Tree Verification
NO-SWC: Storage compatibility

NO-SWC: Cross Chain issue

SWC-112: Delegatecall to Untrusted Callee

—_ = = RN NN NN WUB LGN 00 00 0

« RQ4: To what extent are vulnerabilities stemming from
OpenZeppelin libraries prevalent and impactful across
heterogeneous on-chain smart contracts?

Experimental Setting. We implemented ZEPCOMPARE using
the robust static analysis framework Slither [18]]. The exper-
iments were conducted on a machine with an AMD Ryzen
Threadripper 3970X 32-Core Processor and 252 GB of RAM,
ensuring the capacity to handle extensive computations.

A. RQI: Facts Understanding

We present the results obtained from the entire change
history of OpenZeppelin libraries in Section Among the
total 64 versions of OpenZeppelin libraries tested, we found
109 vulnerabilities and obtained 109 pairs of facts.
Categories. To address RQI1, we categorize the security is-
sues across various versions of the OpenZeppelin libraries.
We use the Smart Contract Weakness Classification (SWC)
framework [|17] as the foundational taxonomy for categorizing
vulnerabilities in OpenZeppelin’s smart contracts due to its
comprehensive and widely recognized structure. Three au-
thors independently categorized the identified vulnerabilities
using the SWC taxonomy, applying a structured card-sorting
methodology [36]. When necessary, categories were refined
or extended to accommodate emerging or nuanced vulnera-
bility types not covered by existing SWC entries. After the
independent phase, the categorizations were compared, and
discrepancies were resolved through group discussion. In cases
where consensus could not be reached, the majority opinion
was adopted to ensure resolution and reliable classification. As
shown in Table [I the 109 security issues across 64 versions
of OpenZeppelin libraries encompass 20 categories. Given the
wide range of potential classifications, we focus primarily on
the most prevalent and impactful categories.

Notably, access control-related issues accounted for 34 of
the 109 detected vulnerabilities, including SWC-122: Lack
of Proper Signature Verification (37, SWC-117: Signature

Malleability |38, and Missing Authorization Validation. These
were the most common vulnerabilities in the earlier versions
of OpenZeppelin. For example, in version 4.7.1 [39], the
recover function within the ECDSA library initially failed to
handle signature malleability correctly, making it vulnerable to
Signature Malleability (SWC-117) attacks. The issue was fixed
in version 4.7.2 by enhancing error handling and enforcing
stricter signature parameter validations, mitigating the risk of
malleable signatures. As contracts expanded in functionality
and complexity across different versions, additional types of
vulnerabilities began to emerge. For example, in version 4.9.1,
a Logical Flaw in Merkle Tree Verification allowed the proof of
arbitrary leaves for specific trees. In version 5.0.1, the SWC-
124: Write to Arbitrary Storage Location vulnerability was
identified due to improper handling of writes in dirty memory.
Fix Frequency. To further analyze fix frequency, we sys-
tematically reviewed the version history of each affected
OpenZeppelin contract. For every identified vulnerability, we
traced its initial introduction and examined all subsequent
versions to determine when and how the issue was addressed.
This process allowed us to identify recurring vulnerabilities
within the same contracts and to analyze the evolution of
related code changes over time, offering deeper insights into
the lifecycle of security fixes. The results show that most
security fixes in a contract can be related to other changes,
often aimed at reducing the attack surface. For example, in the
case of Initializable, a reentrancy issue was identified
in version 4.4.0, and by version 4.9.3, OpenZeppelin had
strengthened security by considering storage compatibility in
subsequent updates to improve robustness.

For some contracts, due to their complexity, issues may
persist even after vulnerabilities are fixed. For example, the
recover function in the ECDSA library underwent signature-
related fixes in three separate versions: 2.1.3, 2.5.0, and
4.7.1. These fixes ranged from “no longer accepting malleable
signatures” to ensuring that the recovered address cannot be
the zero address. The final enhancement involved supporting
EIP-2098 compact signatures in addition to the traditional 65-
byte signature format, enhancing compatibility and flexibility
in signature verification. There were also several changes
related to the Governor contracts. Due to the complexity
of Governor’s logic, the contract underwent modifications
in versions 4.3.3, 4.5.0, 4.7.1, and 4.9.3 to address various
issues, including access control, frontrunning, and failed calls.
Fix Complexity. In most cases, security issues in OpenZep-
pelin are addressed through straightforward code fixes, such
as adding missing validation checks. Repeated updates usually
occur due to the discovery of new vulnerabilities or logical
flaws as smart contracts evolve. However, the current code
rarely involves changes to contract architecture or dependen-
cies that would require more complex solutions, potentially
affecting the efficiency of these fixes.

B. RQ2: Comparison with the SOTA Tools

In this RQ, we evaluate ZEPCOMPARE against state-of-
the-art static analysis tools. This evaluation should address

two critical constraints identified in RQ1: (1) ZEPCOMPARE’Ss
coverage of 109 vulnerability patterns spanning 20 distinct
categories, which necessitates baselines with broad detection
scopes, and (2) its support for multi-version analysis of Open-
Zeppelin libraries, requiring tools that are compatible with
diverse Solidity compiler versions.

We selected six baseline tools representing three method-
ological approaches. First, ZepScope [11] serves as a spe-
cialized detector for OpenZeppelin misuse patterns, operating
under the assumption that the library itself is secure. Second,
four general-purpose analyzers—Manticore [21]], Slither [18],
SmartCheck [19], and Mythril [20]—were selected based on
recommendations from reference [40]], which highlights their
support for several vulnerability types discussed in RQI.
Third, Sun et al’s clone-based method [16]] complements
these by identifying code replicas of known vulnerabilities.
Notably, we excluded legacy tools like those in [15] due
to their incompatibility with modern Solidity versions and
EVM upgrades. The final baselines include three academic and
three industrial tools, chosen for their methodological diver-
sity, detection coverage, and alignment with OpenZeppelin’s
versioned ecosystem, as recommended in recent literature due
to their effectiveness [41].

To validate ZEPCOMPARE’s capabilities, we collect 35 real-
world security issues related to OpenZeppelin. The datasets
were selected based on two main criteria: (1) Source: We
chose datasets from reputable bug report platforms (i.e.,
Codedrena [42] and Sherlock [43]]) and curated bug collections
(i.e., DeFiHackLabs [25]], the SmartBugs dataset [44], the
Web3Bugs dataset [45]]) to ensure the inclusion of real-world,
security-relevant cases. (2) Relevance to OpenZeppelin: Only
contracts related to OpenZeppelin were included. This means
the contract either explicitly references OpenZeppelin in its
bug analysis or implements logic that is the same as, or very
similar to, known vulnerable OpenZeppelin code. All bugs
are confirmed by at least two authors to ensure they involved
OpenZeppelin-related flaws. These 35 bugs form our ground-
truth dataset for in-depth analysis, which we believe is in line
with or larger than several prior works [11]], [46]-[48]].

We analyzed the dataset by the tools, recording the True
Positives (TP), False Positives (FP), and False Negatives (FN)
for each tool. We conducted a function-level root cause com-
parison: only when both the function and the root cause are
correctly matched do we consider a result a TP. Otherwise, it’s
counted as a FP or a FN. This checking process was performed
through manual inspection by two authors independently, with
a third author acting as an arbiter in cases of disagreement.
Noted that, for Sun ef al.’s method [16], we provide the
vulnerable function in the OpenZeppelin library, and record
whether it can detect the vulnerability in the contract.

Table || shows the results of the five tools on our ground-
truth dataset. Specifically, ZEPCOMPARE detected 28 out of
the 35 security bugs. The remaining 7 were missed mainly due
to the following two reasons: (i) The detection granularity in
ZEPCOMPARE is larger than the issues in the ground-truth
dataset. (ii) Matching failures. We discuss these reasons in

TABLE 11
RESULTS OF ZEPCOMPARE WITH SIX SOTA TOOLS ON 35 REAL-WORLD
BUGS CONTAINING OPENZEPPELIN’S LIBRARY VULNERABILITIES.

Tool TP FP FN #Failed
ZepScope 5 3 29 1
Manticore 0 0 21 14
Sun et al. 14 0 21 0
" Slither ~ ~— 525 30 0
SmartCheck 8 29 27 0
Mythril 0 0 29 6
ZEPCOMPARE 27 0 8 0

detail on our website [22].

Sun et al.’s method [16] performed well, identifying 14
issues. However, it could not support the diverse customization
of OpenZeppelin libraries, which is a common practice in real-
world contracts. This limitation led to a false negative of 21
issues. Additionally, it needs to point out the specific function
of the vulnerability in a huge codebase of OpenZeppelin
library, which is also a hard task compared to ZEPCOMPARE'’S
automatic detection. The other five tools’ detection capabil-
ities significantly lagged behind ZEPCOMPARE. ZepScope
performed poorly compared to ZEPCOMPARE, identifying
only 5 issues. This is because ZepScope primarily focuses
on extracting and analyzing problems related to require
and if-revert statements. However, many OpenZeppelin
vulnerabilities are not solely addressed by these checks. For
example, issues like return statement overflows, calculation
errors, and signature length problems cannot be detected
using require or revert statements, making ZepScope
ineffective for such cases. The other four general static analysis
tools also performed poorly. SmartCheck and Slither only
identified 8 and 5 security issues with a high false positive,
respectively. Mythril and Manticore detect zero of the issues.
This was mainly due to (1) These tools lacking rules to detect
these specific issues, (2) some OpenZeppelin vulnerabilities
requiring consideration of edge cases, and (3) their inability
to correctly identify and assess common issues, such as
reentrancy and access control, without domain knowledge.

C. RQ3: Accuracy and Performance

In this RQ, we perform an evaluation of ZEPCOMPARE’S
accuracy and performance using a large-scale dataset of on-
chain smart contracts. We first chose Ethereum and BSC as
the primary chains to collect on-chain contracts because they
are the most popular and widely used Ethereum-compatible
chains [10], representing the mainstream of the EVM ecosys-
tem. Additionally, we included Avalanche, which is among the
top three Ethereum-compatible chains and features a unique
architecture [49] to evaluate ZEPCOMPARE’s effectiveness
across different chain designs. Then, we collected the dataset
from the top 30,000 contracts of each chain, ranked by balance.
Specifically, we retrieved the source code by crawling the
official APIs of BSCScan, Etherscan, and Snowtrace. Due to
download limits and network issues, we ultimately obtained
29,841, 29,286, and 29,478 contracts from the three chains,
respectively. We then compiled and analyzed them. To reduce

TABLE III
EVALUATION RESULTS OF ZEPCOMPARE ON 88,605 CONTRACTS ACROSS
THREE ETHEREUM-COMPATIBLE CHAINS.

Chains # # # # Sampled
ans Contracts ~ Success Failure = Warings Accuracy
BSC 29,841 29,608 233 337 80%
Ethereum 29,286 29,063 223 2,767 88%
Avalanche 29,478 28,911 567 1,604 92%
Overall 88,605 87,582 1,023 4,708 86.67%

time expenses, we set 60 parallel processes and a maximum
time of 10 minutes for the analysis.

As shown in Table ZEPCOMPARE successfully ana-
lyzed 87,582 contracts and failed on 3,069 contracts. The
failures were primarily due to compilation errors and time-
outs. Ultimately, ZEPCOMPARE flagged 4,708 contracts out
of 88,605 as potentially containing vulnerabilities originating
from OpenZeppelin libraries. This means that, on average,
around 5.3% of the contracts require further manual verifi-
cation to confirm the presence of insecure code. Given this
scale of warnings, manual review is entirely feasible, and ZEP-
COMPARE generates significantly fewer warnings compared to
similar previous work [/11].

Accuracy Evaluation. Since no ground truth is available for
such a large dataset, and manually verifying 87,582 contracts is
unrealistic, we randomly sampled 100 flagged contracts from
each chain for detailed manual inspection to assess whether
the warnings were false positives. To ensure accuracy, two
authors independently reviewed the results, and a third author
resolved any disagreements. Out of the 300 sampled contracts,
we confirmed 260 as true positives and 40 as false positives.
Table [[II] presents the results for each chain.

ZEPCOMPARE performed best on the Avalanche chain, with
92% accuracy, while its performance on the BSC chain was
slightly lower, with 80% accuracy. The decreased accuracy on
BSC is due to more modifications of OpenZeppelin code, such
as adding extra protective measures that our tool did not handle
well. The primary cause of false positives on other chains
was matching errors. To maximize detection, ZEPCOMPARE
applies relaxed criteria during the signature recognition phase,
which sometimes includes unrelated code that still meets the
structured matching criteria, leading to incorrect reports.

Overall, ZEPCOMPARE’s accuracy is acceptable, achieving
an average of 86.67% across the three blockchains, which
compares favorably to or exceeds similar studies [11], [46],
[48]]. Moreover, over 94.7% of the contracts raised no warn-
ings, indicating that large-scale deployment and manual review
of ZEPCOMPARE’s warnings are feasible.

Performance Evaluation. Additionally, to assess whether
ZEPCOMPARE is suitable for large-scale operation, we
recorded its runtime on the 87,582 contracts. With 60 parallel
processes, ZEPCOMPARE took a total of 23,296.81 seconds
to analyze all contracts, averaging 15.96 seconds per contract.
This demonstrates that ZEPCOMPARE is highly efficient, mak-
ing large-scale contract analysis feasible.

function R(bytes32 hash, bytes memory sign)

internal pure returns (address, RecoverError
) A

2 if (sign.length == 65) {

3 L

4 assembly {...}

5 return R(hash, v, r, s);

6 } else if (sign.length == 64) { //
vulnerable point : Accepting both
traditional 65-byte signatures and the
more compact 64-byte EIP-2098 signatures

7 R

8 assembly {

9 r := mload(add(sign, 0x20))

10 vs := mload(add(sign, 0x40))

11 }

12 return R(hash, r, vs);

13 } else {... // Raise Error}

14 }

Fig. 4. The vulnerable tryRecover function in case study 1, originating

from the ECDSA contract of OpenZeppelin libraries (version < 4.7.1).
D. RQ4: Prevalence and Impact

We investigate the pervasiveness and real-world conse-
quences of vulnerabilities originating in OpenZeppelin li-
braries across heterogeneous blockchain platforms. By ana-
lyzing 88,605 on-chain contracts flagged by ZEPCOMPARE
(Section [VI-C), we quantify ecosystem risks and trace vulner-
ability propagation as the following three key findings:

(i) Cryptographic Primitives Are High-Risk Surfaces in
Ethereum. Cryptographic primitives within OpenZeppelin,
despite their foundational role in enforcing trust, consti-
tute disproportionately high-risk surfaces specifically in the
Ethereum ecosystem due to their inherent complexity and
pervasive, often uncritical, reuse. Critical functions like pro—
cessMultiProof, observed in 1,407 Ethereum contract
instances—fail to adequately validate Merkle tree integrity
within NFT whitelisting mechanisms, enabling unauthorized
asset minting through proof injection. Similarly, the recover
function (identified in 843 high-risk Ethereum cases) is vulner-
able to signature spoofing without stringent input validation,
facilitating transaction replays and forged approvals. These
instances demonstrate how subtle flaws in core cryptographic
utilities can escalate into systemic attack vectors on Ethereum.
(ii) Feature Updates Introduce Instability. Feature updates
to OpenZeppelin libraries prioritize new functionality and
optimizations at the expense of backward compatibility and
robust integration, introducing latent instability. This is starkly
illustrated by Version 4.9.3, which exhibits a disproportionate
concentration of security flaws, suggesting that rapid de-
velopment cycles compromise stability testing and seamless
interoperability with deployed contracts. Consequently, de-
velopers face heightened risks of introducing regressions or
vulnerabilities when upgrading, forcing a trade-off between
leveraging innovations and maintaining system reliability.

(iii) Legacy Chains Amplify Risks. The risks are further
amplified on legacy chains, i.e., Ethereum, where technical
debt and dependency inertia create uniquely compounded
vulnerabilities. Contracts utilizing deprecated OpenZeppelin
versions (e.g., <3.4) on Ethereum demonstrate significantly

10

higher vulnerability density compared to those on BSC or
Avalanche, largely due to immutable deployments, prohibitive
migration costs, and entrenched code patterns. This persistence
of outdated, vulnerable logic transforms Ethereum into a high-
value, persistent attack surface resistant.

To further investigate OpenZeppelin-related vulnerabilities
in real-world deployments, we prioritized critical-severity is-
sues and conducted manual audits of high-value contracts.
This process identified 16 exploitable vulnerabilities affecting
contracts holding over $765,031 in cumulative assets. Findings
were validated through cross-verification by the authors and an
industry partner. We illustrate one such vulnerability through
the following case study, which highlights systemic risks in
widely deployed code.

Ethics: Any newly identified vulnerabilities were verified ex-
clusively in test environments by the authors and our industry
partner, with no public disclosure of these findings. A key
challenge in largely anonymous blockchain networks, such as
Ethereum, is the inability to directly contact the owners of
vulnerable contracts [50]]. To mitigate the risk of exploitation,
we have applied additional code obfuscation to the provided
snippets and intentionally omitted the names of the functions
and details in the code.

Case Study. As shown in Fig. 4] this vulnerability originates
from another issue [51] in the ECDSA contract of OpenZep-
pelin libraries (version < 4.7.1). It arises from the functions
accepting both traditional 65-byte signatures and the more
compact 64-byte EIP-2098 signatures, which introduces signa-
ture malleability (lines 2 and 6). This means the same signature
can be represented in multiple valid formats, allowing an
attacker to convert a previously used signature into a different
form and reuse it. Hence, attackers could bypass protections
by submitting altered versions of reused signatures, leading to
unauthorized actions like double spending.

VII. DISCUSSION

A. Threat to Validity

Internal Validity. The main threat to internal validity is the
potential bias in our manual analysis of the security-related
commit, the ground-truth dataset, and sample validation in the
large-scale experiment. To mitigate this, we involved multiple
authors in the analysis process with discrepancies resolved
through discussion and consensus. Another potential threat is
the reliance on the granularity of the line level and did not
break changes down into smaller units. This limits our tool’s
ability to detect finer-grained changes, but it represents a trade-
off between detection rate and false positive rate, aiming to
prevent excessive false positives.

External Validity. The main external validity threat is the
potential bias and not large enough in the large-scale ex-
periment, which was conducted on the on-chain contracts
of the Ethereum-compatible chains. In order to mitigate this
threat, we selected the 3 different chains and the top 30,000
contracts from each chain. The total number of the contracts
are comparable to the previous work [11]].

B. Limitations and Future Work

ZEPCOMPARE’s offline phase now relies on manual analysis
to identify security-related commits and extract change facts.
This process can be time-consuming and may not scale well
with the increasing number of library versions. Automating
this process using advanced techniques, such as machine learn-
ing or natural language processing, could enhance efficiency
and scalability. Future work could explore these avenues to
reduce manual effort and improve the tool’s adaptability to
new library versions.

ZEPCOMPARE does encounter some challenges with spe-
cific patterns, mainly related to matching errors—that is, cases
where functions are not correctly matched with the facts.
As we discussed in RQ1 and RQ2, although our method
extends function signatures to improve matching, there are still
some corner cases that escape detection. Handling these cases
would require more flexible and precise semantic analysis.
However, using LLMs for this purpose is both costly in terms
of money and speed. To address this in future iterations, we’ll
discuss the possibility of collecting more data and designing
lightweight, learning-based models tailored for the matching
task, which can improve matching accuracy while keeping
costs manageable

VIII. RELATED WORK

Static Smart Contract Analysis for Vulnerability Detection.
There are many prior works on smart contract static analysis
for vulnerability detection. Some studies focused on rule-based
methods to detect general vulnerabilities, such as Slither [18]],
Securify [52]], SmartCheck [[19], and Vanda [53]. Other studies
employed techniques like symbolic execution, taint analysis,
and model checking, including Manticore [21]], Mythril [20],
Osiris [54], Oyente [55]], Ethainter [54), Zeus [47]], Hal-
mos [56[, VetSc [57]], and Pyrometer [58]].

Some research also focused on specific vulnerabilities. For
example, Liu et al. [59]] presented SPCon, a tool based on
role mining to detect access control vulnerabilities. Similarly,
SOMO [60] and AChecker [61] used data flow analysis and
symbolic execution for AC vulnerability detection. Cecchetti ef
al. [62] introduced a security condition for preserving key
invariants while supporting secure reentrancy patterns. Sun et
al. [[63]] proposed GPTScan, which connects LLM with static
analysis to detect logic vulnerabilities. Unlike the above work,
our research focuses on vulnerabilities in the OpenZeppelin
code itself, conducting a systematic analysis and evaluating
real-world smart contracts.

In particular, Liu ef al. [11] proposed ZepScope, which
analyzed whether the relevant OpenZeppelin functions of
real-world contracts faithfully enforced the security checks
in the official OpenZeppelin libraries. There are three key
differences compared to our work: Conceptually, ZepScope
assumes OpenZeppelin libraries are standardized and free of
vulnerabilities, targeting only misuse of OpenZeppelin code,
whereas we target vulnerabilities in the OpenZeppelin code
itself. Technically, we compare candidate code segments with
both vulnerable and fixed versions using facts of changes (see

11

Section [II-C| and Section [IV-B)), while ZepScope mines only
correct-version facts from the latest OpenZeppelin libraries. In
detail, ZepScope focuses only on checking-based facts (i.e.,
require and if-revert statements), whereas we analyze
all security-related statements as described in Section |[V-B
Clone Detection in Smart Contracts. Studies have found
that code clones are more common in smart contracts than in
other ecosystems. For example, Khan et al. [64]] conducted a
large-scale study on Ethereum, finding that about 79.2% of the
code was cloned. Consequently, some research has used code
clones to detect vulnerabilities in smart contracts. For example,
Liu et al. [15] proposed a semantic-preserving representation
for smart contract bytecode to search for vulnerabilities. Sun
et al. [|16] conducted a large scale study on the Ethereum
blockchain to uncover its compositions, conduct code reuse
analysis, and identify prevalent development patterns. How-
ever, these works focus only on clone detection and ignore
the functional changes in smart contracts. Our research, in
contrast, focuses on the widespread OpenZeppelin library and
analyzes its change history to detect related vulnerabilities in
various real-world smart contracts.

IX. CONCLUSION

This paper presents the first comprehensive analysis of
vulnerabilities in OpenZeppelin libraries and their propagation
to dependent smart contracts. We propose ZEPCOMPARE, an
end-to-end system that analyzes flaws inherited from Open-
Zeppelin codebases by synthesizing facts of changes, a struc-
tured representation of vulnerability evolution across 64 library
versions. Our study reveals that even when developers use
OpenZeppelin correctly, 5.3% of contracts across three major
chains inadvertently incorporate its latent vulnerabilities, span-
ning 20 categories from access control to cryptographic flaws.
These findings demonstrate the risks emerge from flaws in
foundational components themselves, underscoring the urgent
need for proactive.

ACKNOWLEDGEMENTS

We thank all reviewers for their constructive comments. This
research is partially supported by a research fund provided by
HSBC, HKUST TLIP Grant FF612, and Lingnan Grant SUG-
002/2526. This research is also supported by the National Re-
search Foundation, Singapore, and DSO National Laboratories
under the Al Singapore Programme (AISG Award No: AISG4-
GC-2023-008-1B); by the National Research Foundation Sin-
gapore and the Cyber Security Agency under the National
Cybersecurity R&D Programme (NCRP25-P04-TAICeN); and
by the Prime Minister’s Office, Singapore under the Campus
for Research Excellence and Technological Enterprise (CRE-
ATE) Programme. Any opinions, findings and conclusions, or
recommendations expressed in these materials are those of the
author(s) and do not reflect the views of the National Research
Foundation, Singapore, Cyber Security Agency of Singapore,
Singapore.

[1]
[2]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]
[23]
[24]

[25]

REFERENCES

“Ethereum whitepaper,” https://ethereum.org/whitepaper, 2024.

D. Das, P. Bose, N. Ruaro, C. Kruegel, and G. Vigna, “Understanding
security issues in the nft ecosystem,” in Proc. ACM CCS, New York,
NY, USA, 2022, p. 667-681.

S. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. Knottenbelt, “Sok: Decentralized finance (defi),” in Proceedings of
the 4th ACM Conference on Advances in Financial Technologies, New
York, NY, USA, 2023, p. 30-46.

DeFiLlama, “Total value hacked,” https://defillama.com/hacks, Nov
2024.

“Openzeppelin library,” jhttps://github.com/OpenZeppelin/openzeppelin
-contracts, Nov 2024.

“Openzeppelin library - math,” https://github.com/OpenZeppelin/open
zeppelin-contracts/blob/master/contracts/utils/math/Math.sol, Nov 2024.
“Openzeppelin library - transparentupgradeableproxy,” https://github.c
om/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/t
ransparent/TransparentUpgradeableProxy.sol, Nov 2024.
“Openzeppelin library - access control,” https://github.com/OpenZeppe
lin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.
sol, Nov 2024.

Ethereum, “Erc-20 token standard,” https://ethereum.org/en/developers
/docs/standards/tokens/erc-20/, Nov 2024.

X. Yi, Y. Fang, D. Wu, and L. Jiang, “BlockScope: Detecting and
Investigating Propagated Vulnerabilities in Forked Blockchain Projects,”
in Proc. ISOC NDSS, 2023.

H. Liu, D. Wu, Y. Sun, H. Wang, K. Li, Y. Liu, and Y. Chen, “Using
my functions should follow my checks: Understanding and detecting
insecure OpenZeppelin code in smart contracts,” in Proc. USENIX
Security, Philadelphia, PA, Aug. 2024, pp. 3585-3601.

“Solidity documentation - security considerations,” https://docs.solidityl
ang.org/en/develop/security-considerations.html#use-the-checks-effect
s-interactions-pattern, Nov 2024.

“OpenZeppelin Library - Security Advisories,” https://github.com/Ope
nZeppelin/openzeppelin-contracts/security, Nov 2024.

OpenZeppelin, “authorizeupgrade function,” https://github.com/OpenZ
eppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUP
SUpgradeable.sol, May 2025.

H. Liu, Z. Yang, Y. Jiang, W. Zhao, and J. Sun, “Enabling clone detection
for ethereum via smart contract birthmarks,” in Proc. IEEE/ACM ICPC,
2019, pp. 105-115.

K. Sun, Z. Xu, C. Liu, K. Li, and Y. Liu, “Demystifying the composition
and code reuse in solidity smart contracts,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
796-807.

“Smart contract weakness classification,” https://swcregistry.io/, Nov
2024.

J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8-15.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the Ist international
workshop on emerging trends in software engineering for blockchain,
2018, pp. 9-16.

“Mythril,” https://github.com/Consensys/mythril, Nov 2024.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Greico,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” Nov
2024. [Online]. Available: https://github.com/trailofbits/manticore
“Website of ZepCompare,” https://github.com/HelayLiu/ZepCompare,
2025.

Ethereum, “Erc-721 non-fungible token standard,” https://ethereum.org
/en/developers/docs/standards/tokens/erc-721/, Nov 2024.
“Cve-2021-39167,” https://nvd.nist.gov/vuln/detail/CVE-2021-39167,
Nov 2024.

DeFiHackLabs, “Defi hacks,” https://github.com/SunWeb3Sec/DeFiHa
ckLabs, Nov 2024.

12

[26]

[27]

[28]
[29]

(30]

(31]

[32]

(33]

(34]

(35]

[36]
(37]
(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(51]

[52]

OpenZeppelin, “Signature malleability vulnerability in 2.1.3 verion of
openzeppelin library,” |https://github.com/OpenZeppelin/openzeppelin-c
ontracts/pull/1622, Nov 2024.

D. Lab, “Signature malleability vulnerability in tchtoken,” https://web3
sec.notion.site/c582b99cd7a84be48d972ca2126a2alf?7v=4671590619b
d4b2abl6al5256e4tbbal &p=1ebfedele2da486b89b94903{88c387ed&p
m=s, Nov 2024.

“Pancakeswap Pairs,” https://pancakeswap.finance/info/pairs, Nov 2024.
“Openzeppelin Grant,” https://blog.openzeppelin.com/openzeppelin-app
ointed-to-review-compounds- grant- proposals- to-improve-dao-security,
Nov 2024.

Y. Zhou, J. K. Siow, C. Wang, S. Liu, and Y. Liu, “Spi: Automated
identification of security patches via commits,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 31, no. 1, pp.
1-27, 2021.

T. G. Nguyen, T. Le-Cong, H. J. Kang, X.-B. D. Le, and D. Lo,
“Vulcurator: a vulnerability-fixing commit detector,” in Proc. ACM
ESEC/FSE, 2022, pp. 1726-1730.

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proc. ACM CCS, 2015, pp. 426-437.
J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E.
Hassan, “Finding a needle in a haystack: Automated mining of silent
vulnerability fixes,” in Proc. IEEE/ACM ASE. 1EEE, 2021, pp. 705-
716.

T. Mikolov, “Efficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” Journal of the ACM (JACM), vol. 24, no. 4, pp. 664-675,
1977.

J. R. Wood and L. E. Wood, “Card sorting: current practices and
beyond,” Journal of Usability Studies, vol. 4, no. 1, pp. 1-6, 2008.
“Smart contract weakness classification - scw-122,” https://swcregistry.
10/docs/SWC-122/, Nov 2024.

“Smart contract weakness classification - scw-117,” https://swcregistry.
10/docs/SWC-117/, Nov 2024.

OpenZeppelin, “Ecdsa signature malleability in openzeppelin code,” |ht
tps://github.com/OpenZeppelin/openzeppelin-contracts/security/advisori
es/GHSA-4h98-2769-gh6h, Nov 2024.

K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu, H. Wang, Y. Liu,
and Y. Chen, “Static application security testing (sast) tools for smart
contracts: How far are we?” Proc. ACM Softw. Eng., vol. 1, no. FSE,
Jul. 2024. [Online]. Available: https://doi.org/10.1145/3660772

——, “Static application security testing (sast) tools for smart contracts:
How far are we?” Proc. ACM Softw. Eng., vol. 1, no. FSE, Jul. 2024.
[Online]. Available: https://doi.org/10.1145/3660772

Codedrena, “Codedrena audit,” https://github.com/code-423n4, Nov
2024.

Sherlock, “Sherlock Audit,” https://github.com/sherlock-audit, Nov
2024.

T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in Proc.
ACM/IEEE ICSE, 2020, pp. 530-541.

Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in Proc. IEEE/ACM ICSE, 2023, pp. 615-627.

P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in Proc.
IEEE SP. 1EEE, 2022, pp. 161-178.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Proc. ISOC NDSS, San Diego, CA, 2018.

C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “ethor:
Practical and provably sound static analysis of ethereum smart con-
tracts,” in Proc. ACM CCS, 2020, pp. 621-640.

T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and probabilistic leaderless bft consensus through metastability,” arXiv
preprint arXiv:1906.08936, 2019.

J. Krupp and C. Rossow, “teEther: Gnawing at ethereum to automatically
exploit smart contracts,” in Proc. USENIX Security, Baltimore, MD,
Aug. 2018, pp. 1317-1333.

“Cve-2022-35961,” https://nvd.nist.gov/vuln/detail/CVE-2022-35961}
Nov 2024.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proc. ACM CCS, 2018, pp. 67-82.

https://ethereum.org/whitepaper
https://defillama.com/hacks
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/Math.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/Math.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/transparent/TransparentUpgradeableProxy.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/transparent/TransparentUpgradeableProxy.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/transparent/TransparentUpgradeableProxy.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/security
https://github.com/OpenZeppelin/openzeppelin-contracts/security
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol
https://swcregistry.io/
https://github.com/Consensys/mythril
https://github.com/trailofbits/manticore
https://github.com/HelayLiu/ZepCompare
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://nvd.nist.gov/vuln/detail/CVE-2021-39167
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/1622
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/1622
https://web3sec.notion.site/c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1&p=1ebfede1e2da486b89b94903f88c387e&pm=s
https://web3sec.notion.site/c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1&p=1ebfede1e2da486b89b94903f88c387e&pm=s
https://web3sec.notion.site/c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1&p=1ebfede1e2da486b89b94903f88c387e&pm=s
https://web3sec.notion.site/c582b99cd7a84be48d972ca2126a2a1f?v=4671590619bd4b2ab16a15256e4fbba1&p=1ebfede1e2da486b89b94903f88c387e&pm=s
https://pancakeswap.finance/info/pairs
https://blog.openzeppelin.com/openzeppelin-appointed-to-review-compounds-grant-proposals-to-improve-dao-security
https://blog.openzeppelin.com/openzeppelin-appointed-to-review-compounds-grant-proposals-to-improve-dao-security
https://swcregistry.io/docs/SWC-122/
https://swcregistry.io/docs/SWC-122/
https://swcregistry.io/docs/SWC-117/
https://swcregistry.io/docs/SWC-117/
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://doi.org/10.1145/3660772
https://doi.org/10.1145/3660772
https://github.com/code-423n4
https://github.com/sherlock-audit
https://nvd.nist.gov/vuln/detail/CVE-2022-35961

[53]

[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63]

[64]

L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv preprint arXiv:1809.03981, 2018.

L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulnerabil-
ities,” in Proc. ACM PLDI, 2020, pp. 454-469.

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs
in ethereum smart contracts,” in Proc. ACSAC, New York, NY, USA,
2018, p. 664-676.

“Symbolic bounded model checker for ethereum smart contracts,” https:
//github.com/al6z/halmos, Nov 2024.

Y. Duan, X. Zhao, Y. Pan, S. Li, M. Li, E Xu, and M. Zhang,
“Towards automated safety vetting of smart contracts in decentralized
applications,” in Proc. ACM CCS, 2022, pp. 921-935.

“Pyrometer,” https://github.com/nascentxyz/pyrometer, Nov 2024.

Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in
smart contracts with role mining,” in Proc. ACM ISSTA, Virtual South
Korea, Jul. 2022, p. 716-727.

Y. Fang, D. Wu, X. Yi, S. Wang, Y. Chen, M. Chen, Y. Liu, and L. Jiang,
“Beyond “protected” and “private”: An empirical security analysis of
custom function modifiers in smart contracts,” in Proc. ACM ISSTA,
New York, NY, USA, 2023, p. 1157-1168.

A. Ghaleb, J. Rubin, and K. Pattabiraman, “Achecker: Statically detect-
ing smart contract access control vulnerabilities,” in Proc. IEEE/ACM
ICSE, Melbourne, Australia, May 2023, p. 945-956.

E. Cecchetti, S. Yao, H. Ni, and A. C. Myers, “Compositional security
for reentrant applications,” in Proc. IEEE SP, 2021, pp. 1249-1267.

Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts by
combining gpt with program analysis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3639117

F. Khan, I. David, D. Varro, and S. McIntosh, “Code cloning in smart
contracts on the ethereum platform: An extended replication study,”
IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 2006—
2019, 2023.

13

https://github.com/a16z/halmos
https://github.com/a16z/halmos
https://github.com/nascentxyz/pyrometer
https://doi.org/10.1145/3597503.3639117

	Introduction
	Preliminary and Definitions
	OpenZeppelin Libraries
	A Motivating Example
	The Definition of Facts of Changes

	Overview
	Demystifying OpenZeppelin's Vulnerabilities
	Identifying Security-Related Code Changes
	Extracting Facts of Changes
	Extending Facts via Alias Analysis

	Detecting Their Propagation in Contracts
	Identifying Target Functions
	Extracting Statements of Target Functions
	Structured Matching

	Evaluation
	RQ1: Facts Understanding
	RQ2: Comparison with the SOTA Tools
	RQ3: Accuracy and Performance
	RQ4: Prevalence and Impact

	Discussion
	Threat to Validity
	Limitations and Future Work

	Related Work
	Conclusion
	References

