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ABSTRACT
Cross-app collaboration via inter-component communication is a
fundamental mechanism on Android. Although it brings the ben-
efits such as functionality reuse and data sharing, a threat called
component hijacking is also introduced. By hijacking a vulnerable
component in victim apps, an attack app can escalate its privilege
for operations originally prohibited. Many prior studies have been
performed to understand and mitigate this issue, but no defense is
being deployed in the wild, largely due to the deployment difficul-
ties and performance concerns. In this paper we present SCLib, a
secure component library that performs in-app mandatory access
control on behalf of app components. It does not require firmware
modification or app repackaging as in previous works. The library-
based nature also makes SCLib more accessible to app developers,
and enables them produce secure components in the first place
over fragmented Android devices. As a proof of concept, we de-
sign six mandatory policies and overcome unique implementation
challenges to mitigate attacks originated from both system weak-
nesses and common developer mistakes. Our evaluation using ten
high-profile open source apps shows that SCLib can protect their 35
risky components with negligible code footprint (less than 0.3% stub
code) and nearly no slowdown to normal intra-app communication.
The worst-case performance overhead is only about 5%.
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1 INTRODUCTION
Android has been the dominant player in smartphone markets in
the last few years. On Android, different apps collaborate with each
other via inter-component communication. Although such flexible
cross-app collaboration brings the benefits of functionality reuse
and data sharing, component hijacking [26] is also introduced in
which an attack app hijacks a vulnerable component in victim apps
to bypass Android sandbox and escalate its privilege [15], causing
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confused deputy problems [22] such as permission misuse [21],
data manipulation [26], and content leaks [43].

Many approaches have been proposed to mitigate component
hijacking. One major line of the research [10, 12, 19, 30] is to mod-
ify and extend the Android operating system to supervise inter-
component communication. The other direction [41] is to patch
app binaries with repackaging [38]. Both are useful if they could be
deployed in the wild, but nearly no proposal has been integrated
into Android or adopted by Google Play to date, largely due to
the compatibility and performance concerns. For example, repack-
aging violates Android’s app verification mechanism and thus is
not favorable by app markets and developers who own the source
code. Consequently, component hijacking remains a serious open
problem in the Android ecosystem. As one of our contributions, we
make a comprehensive comparison on existing defenses in §3.2.

Key idea. In this paper, we provide a new perspective to prac-
tically defending against component hijacking. Our solution is a
secure component library, shorted as SCLib, which performs in-app
mandatory access control on behalf of app components. Due to its
library-based nature, SCLib requires neither firmware modification
nor app repackaging, significantly reducing the deployment difficul-
ties. Specifically, we propose two deployment models as shown in
Figure 1, the developer-driven and the end user-driven deployment.
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(a) Developer-driven deployment via regular app updates.
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(b) End user-driven deployment via Boxify [11].

Figure 1: Two deployment models of SCLib.
Deployment models. SCLib can be compiled by app develop-

ers into their original apps via the regular app updates (e.g., for
functionality improvement), which are then pushed to user devices
and automatically installed by Google Play. This deployment model
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introduces minimal burden to developers because they have ac-
cumulated experiences to integrate third-party libraries, such as
OkHttp [8] and advertisement libraries. Further, SCLib can help
developers secure their apps in the first place (rather than applying
patches after apps have been released) over fragmented Android de-
vices [2] (a major limitation of firmware modification approaches).

To further enable end users to secure their apps directly, we
envision the second deployment model through state-of-the-art
app sandboxing technology, e.g., Boxify, which sandboxes any other
app into its own process space and delegates their inter-component
communication via a reference monitor called Broker. Note that
Boxify does not require root privilege, firmware modification, or
app repackaging.We refer interested readers to [11] for more details.
As shown in Figure 1(b), SCLib can be plugged into Boxify as part
of its policy module or its shim code in each isolated app. Since
SCLib’s design is generally the same for both deployment models,
we present it under the first deployment in the rest of this paper.

SCLib design. As a major component of SCLib, we devise a set
of practical in-app policies to defend against component hijacking.
Our policy checking is based on enforcement primitives that previ-
ous efforts have not fully leveraged, including various component
attributes and input data of incoming requests. SCLib automatically
collects these primitives at entry points of the protected compo-
nents, and enforces “just-enough” policies from the pre-defined
policy set. As a proof of concept, we design six mandatory poli-
cies that either directly deny illegal requests or alert users via a
pop-up dialog for suspicious requests. These policies can mitigate
component hijacking originated from both system weaknesses and
common developer mistakes, half of which have not been tackled
by previous efforts. Moreover, we design SCLib to cover all four
types of components for the first time (see §3.2).

In the course of implementing SCLib, we identify and overcome
three major challenges that are unique in our context. First, An-
droid currently fails to provide the caller identity information to
most callee components, as explained in [10]. This caller identity,
however, is essential in implementing our mandatory access control
policies. Unlike the previous solution [10] that modifies Android
source code, SCLib leverages the Binder side channel to recover
caller app identities at the application layer (see §4.3). Second, it
is nearly infeasible to pop up alert dialog in the intercepted com-
ponents due to the lack of appropriate user interface context and
limited function return timing thresholds. We solve this problem by
a novel dialog-like Activity transition technique, which overcomes
both context and timing restrictions while maintaining user experi-
ence and policy enforcement logic (see §4.4). Third, there is lack of
API support to collect certain component attributes (e.g., whether
an exported component is explicitly or implicitly exported). SCLib
performs runtime Android manifest analysis by itself (see §4.5).

SCLib is a lightweight solution by design. It enforces policy
checking only at the entry points, and thus has no additional over-
head of information flow tracking that is required in some existing
approaches, e.g., AppSealer [41]. In addition, SCLib only affects
the performance of certain exported components that require pro-
tection. In contrast, hooking-based checking, e.g., Aurasium [38],
adds overhead to both exported and non-exported components.
Firmware modification approaches introduce overhead to all inter-
and intra-app communications in all apps within the system.

Android framework and kernel 
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caller app 

Attack 
component 
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Victim 
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Figure 2: The threat model of component hijacking.

Evaluation. We evaluate SCLib using ten high-profile open
source apps. We show that these well-tested apps contain 35 risky
components that SCLib can contribute more protection. Our mea-
surement further finds that SCLib introduces negligible code foot-
print — less than 0.3% stub code in all cases. Furthermore, by
performing eight detailed security case studies, we demonstrate
SCLib’s unique values as compared to developers’ own patches
and Android platform updates. Finally, our performance evalua-
tion shows that SCLib incurs modest overhead to those protected
components (no overhead at all to other components).

The remainder of this paper is organized as follows. We first
introduce the threat model in §2, outline the objectives and analyze
existing solutions in §3. The design and implementation of SCLib
are presented in §4. In §5, we evaluate SCLib’s efficacy and efficiency.
Finally, we conclude the paper in §6.

2 THREAT MODEL
Figure 2 presents our threat model of component hijacking on
Android. The adversary is a caller app, and the victim is a callee app
that contains a component that is exported. The attack component
in the caller app sends a crafted IPC (inter-process communication)1
request to the exported component to maliciously trigger its code
execution for a privileged operation, e.g., permission misuse [21]
and data manipulation [26]. In this sense, component hijacking
belongs to the classic confused deputy problem [22]. Note that
although Figure 2 shows only two parties, our defense can handle
hijacking via one or multiple middle app(s).

More specifically, we underline two in-scope threats that are not
considered in some related works.
• Unlike some existing work [21, 43], we do not assume that
exported components protected with above-normal permis-
sions [9] are always safe. We do not consider it safe because
for an exported component protected with a dangerous-
level permission, an attack app can still register the corre-
sponding permission for sending IPC requests. Additionally,
a recent report [5] showed that even components with a
signature-level permission could be compromised, because
the attack app can pre-claim that permission as normal if it
is installed earlier than the victim app.
• Similarly, for the attack app, we do not assume that it always
has zero or few permissions since it can claim the same
permission as the misused permission in a victim app. The
benefit for doing so is that it may deceive the IPC call chain-
based permission checking [16, 19]. We do assume that the
attack app has no root privilege though.

1A.k.a. ICC (inter-component communication) [29] on Android.



Note that unauthorized Intent receipt [14] and malicious app
colluding [27] is out of the scope of this paper.

3 OBJECTIVES AND RELATEDWORKS
3.1 Design Objectives
To defend against component hijacking in the wild, we identify the
following four objectives:

O1 No firmware modification. The approach does not rely
on firmware customization. It should also work without the
root privilege.

O2 No app repackaging. The approach does not repackage
target apps in bytecode or binary rewriting [25, 42].

O3 Handling all four types of components. The proposed
solution shall protect all four types of Android components,
including Intent-based components (i.e., Activity, Service,
and Receiver) and non-Intent based components (i.e., Provider).
Note that in this paper, we simplify BroadcastReceiver and
ContentProvider as Receiver and Provider, respectively.

O4 Minimal impact on normal operations. The solution has
minimal performance impact on normal app functionality
and intra-app communication.

3.2 Analysis of Existing Solutions
We now analyze how existing solutions defend against component
hijacking and the extent to which they achieve the aforementioned
four objectives. Table 1 summarizes our analysis on major defenses
against component hijacking.

First, most existing defenses require firmware modification (O1:
✗). This includes Saint [30] for adding install- and run-time policies
that require developers to specify, IPC Inspection [19], Quire [16],
TrustDroid [13], Scippa [10], Bugiel et al. [12] for using system-
wide reference monitors to check inter-component call chains to
prevent privilege (mainly permissions [21]) escalation, and Kantola
et al. [24] for inferring and restricting unintentional component
exposure. More recently, IEM [40] extends the Android framework
to enable user-layer Intent firewall apps. All these prior works
take advantage of the open-sourced nature of Android to make
code changes and provide more secure OS design principles, but
in the real world, they were not adopted by smartphone vendors.
Additionally, end users have no capability to flash the modified
firmware in general.

A particularly interesting example is IntentFirewall [1]. Although
it was introduced into the Android Open Source Project (AOSP)
repository over four years ago, it is still experimental and not an of-
ficially supported feature of the Android framework [39], probably
due to its limitations [39]. The SEAndroid community is exploring
the idea of using IntentFirewall as a potential replacement of their
experimental Intent MAC mechanism [7], because in the original
form of SEAndroid [32], it does not audit app-layer IPC. SEAndroid
tries to reconstruct Android’s sandbox from the previous Linux UID-
based discretionary access control to the present SELinux-confined
mandatory access control. It can restrict certain app flaws such as
direct file leak [32] but not component hijacking or indirect file
leak [33, 34], because it is challenging to efficiently audit every IPC
at the system level without affecting normal app functionality. Even
if one day a solid Intent MAC might be activated, it still faces the
deployment challenges to protect fragmented and outdated devices.

Table 1: A comparison ofmajor defenses against component
hijacking.

Core Idea Objectives (see §3.1)
O1 O2 O3 O4

Saint [30] Adding install- and run-time policies ✗ ✔ H# ✗

IPC Inspection [19] Checking IPC call chains ✗ ✔ ✗ ✗

Quire [16] Checking IPC and RPC call chains ✗ ✔ ✗ ✗

TrustDroid [13] Mediating IPC in middleware layer ✗ ✔ H# ✗

Bugiel et al. [12] Mediating IPC in different layers ✗ ✔ H# ✗

Aurasium [38] Intercepting sensitive API calls ✔ ✗ H# H#
Kantola et al. [24] Restricting component exposure ✗ ✔ ✗ ✔

IntentFirewall [1] A system-layer firewall to check Intents H# ✔ ✗ ✗

AppSealer [41] Flow checking of incoming Intents ✔ ✗ ✗ ✗

Scippa [10] Building system-centric IPC call chains ✗ ✔ ✗ ✗

IEM [40] Enabling user-layer Intent firewall apps ✗ ✔ ✗ ✗

✔= applies; H#= partially applies; ✗= does not apply.

Second, other defenses typically need to perform app repackag-
ing (O2: ✗). Aurasium [38] and AppSealer [41] are the two notable
examples. Specifically, Aurasium repackages apps to insert API
hooking code to intercept sensitive API calls. It mainly aims to
prevent malware but can also be used to mitigate component hi-
jacking in which sensitive APIs (in a victim app) are triggered by an
attack app. On the other hand, AppSealer is specialized to generate
patched apps that introduce flow tracking to avoid critical APIs
being triggered by malicious Intents. Both approaches are attractive
from the security’s perspective, but they also face the deployment
difficulties: (i) repackaging is unlikely adopted by app developers
because they own the source code and do not want repackaging to
affect the original code quality; (ii) app stores are unlikely to de-
ploy repackaging-based approaches because they (including Google
Play) have no access to the developers’ private signing keys.

Third, none of the prior efforts has fully handled all four types
of components (O3: ✗; O3: H#). Most of them only protect the Intent-
based components, whereas the non-Intent based Provider compo-
nent is largely under-treated. Although all underlying Android IPC
communications go through the Binder driver [23, 31], Intent and
Provider are two different higher-level abstractions of Binder [20].
Existing approaches either just modify the Android framework to
supervise Intent IPC (e.g., [16, 19]), or only recover Intents’ seman-
tic from the kernel-layer Binder (e.g., [10, 12]). Approaches such as
AppSealer [41] and IEM [40] also explicitly target at Intent-based
components. Note that although some approaches (e.g., [13, 30])
mentioned the protection for Provider to some extent, the generic
and broader app Provider vulnerabilities [43] were not touched
because the problem itself was discovered only afterwards.

Fourth, nearly no defenses satisfy the requirement of minimal
checking on normal operations (O4: ✗). Except the work from Kan-
tola et al. [24], firmware modification approaches have to monitor
all IPC communications in all apps within the system. Although
they achieve the whole-system coverage, the performance was sac-
rificed by not focusing on apps or components that need protection.
Moreover, they often need to retrieve the corresponding permis-
sion for each call chain, which also increases the overhead. On
the other hand, Intent flow based repackaging approaches such
as AppSealer [41] can concentrate on protecting risky app com-
ponents, but its data flow tracking is expensive. Hooking-based
API checking in Aurasium [38] is lightweight; however, it does not
differentiate sensitive API calls resulting from user operations or
malicious IPC.



4 SCLIB: SECURE COMPONENT LIBRARY
This section covers the design and implementation details of SCLib.
We begin with an overview of SCLib in §4.1, and then present some
important MAC policies that SCLib is capable of enforcing (§4.2).
After that, we discuss the detailed implementation of SCLib with
the focus on our novel ways of handling the challenges.

4.1 Design Overview
Figure 3 presents the overall design of SCLib. At the high-level
view, SCLib is a regular user-space library that could be easily inte-
grated into apps on different Android platforms. SCLib aims to be a
secure component library that performs in-app mandatory access
control (MAC) on behalf of app components to defend against com-
ponent hijacking. With a set of pre-defined MAC policies in SCLib,
developers can overcome the by-default system weaknesses and
common mistakes. Moreover, as a library, SCLib inherently requires
no firmware modification or app repackaging (O1: ✔; O2: ✔).

Using SCLib consists of two phases, i.e., the compile- and run-
time phase as shown in Figure 3. Firstly in the compile-time phase,
developers include SCLib into their app projects and run our tool
suite to help SCLib identify risky components that need protection.
Then limited amounts of stub codes are added into entry functions
of risky components (usually two LOC per entry) so that SCLib can
intercept incoming IPC flows. Note that the whole procedure could
be automatic with just a run of our tool suite. Due to the page limit,
we skip the details of compile-time designs in this paper, and leave
them to the technical report version [35].

In the run-time phase, SCLib automatically collects enforcement
primitives and enforces policy checking without developers’ in-
volvement. To make practical in-app policies to facilitate the access
control, SCLib collects a number of enforcement primitives that
previous efforts have not fully leveraged and takes all four types of
Android components into consideration (O3: ✔). Considering that
SCLib’s checking is conducted only at entry points and only for
risky components, it makes SCLib lightweight (O4: ✔). With SCLib,
the incoming IPC flow no longer directly executes the component
codes. Instead, it has to first go through SCLib’s checking that could
generate three possible outputs: deny, alert, and allow. Only in
the allow case will the execution flow go back to the component
code immediately. In the case of alert, SCLib pops up an alert
dialog for users to make a decision — flow resumes if the users
choose to allow the call. If SCLib determines to deny to call, control
will return to the calling environment immediately.

4.2 In-app MAC Policy Design
It is important to understand the policies SCLib is designed to en-
force before we present other details. Remember that our objective
is to have mandatory access control (MAC) policies to stop common
component hijacking issues that result from system flaws or devel-
oper mistakes. Table 2 lists six representative MAC policies (P1 to
P6) we have designed. From a high-level view, policies P1 and P2
patch the system weaknesses, P3 to P5 mitigate common developer
mistakes, and P6 filters a common attack. Note that we do not claim
that they cover all hijacking issues; instead, our purpose is to show
how to design in-app SCLib policies for major categories of attacks
and for different components. Our policies thus serve as templates
or baselines for more enhanced or customized policies.

SCLib 

Risky component 

Incoming IPC flow 

Adding Stub Codes in 
Entry Functions (Step 2) 

Enforcing In-App  
Access Control (Step 4) 

Compiling-time Phase Run-time Phase 

2 1 

Victim 
app 

3 4 Rest of code 

Intercepted  IPC flow 

AC Decision 

Identifying Risky 
Components (Step 1) 

Extracting Enforcement  
Primitives (Step 3) 

Entry functions SCLib’s stub codes 
Figure 3: A high-level overview of SCLib.

Trusting intra-app IPC by default. A common point among
all six policies is that we consider the IPC calls initiated from the
same app/developer trusted. That is, only an external IPC call from
a third-party app will be checked, i.e., IDa , IDv . This by-default
rule is important in two aspects. First, it effectively minimizes the
usability issues for normal user operations, because only the exter-
nal IPC for certain exported components (i.e., risky components)
will trigger the alerts. Second, it strengthens SCLib’s access control
capabilities because another app from the same developer now can
be trusted through the app identity and its developer certificate
checking. In contrast, solutions such as IntraComDroid [24] and
Android Lint simply stop all incoming IPC calls, including those
from the same developer, by un-exporting components.

Fixing system weaknesses with P1 and P2. We now show
how to design SCLib policies to mitigate system flaws. To this
end, we design policies P1 and P2 to fix two major weaknesses in
Android. The first is that Android prior to 4.2 by default exports
all Provider components even if they do not claim the exported
attribute. This over-ambitious exposure rule led to thousands of vul-
nerable Provider components [43]. Although Google later disabled
it, there are still many by-default exported Provider components in
apps compiled with old SDK according to recent studies [28, 36]. To
make the new rule available to all apps and all phones (including
those under 4.2), we design policy P1 to mimic the current system
rule at the app layer. Specifically, SCLib directly denies an external
IPC request to the callee Provider that does not claim the exported
attribute (¬ExportedAttr).

P2, on the other hand, fixes a more complicated and less-known
system flaw [5] where an attack app installed earlier can pre-claim
a custom permission in the victim app with the purpose of down-
grading its protection level, e.g., from signature to normal. Con-
sequently, the attack app can hijack a “private” component that was
originally protected with signature-level permissions. Based on
this root cause, policy P2 first determines whether there is a custom
permission defined in the callee component, i.e., ∃(PermAttrv <
SysPerms). If it exists, we further check whether or not it has been
pre-claimed by the caller app, i.e., PermAttrv = PermAttra . In prac-
tice, we can simplify policy P2 for the signature-level custom
permissions by leveraging the fact that an external IPC can come
only when the signature permission has been downgraded.



Table 2: MAC policies in SCLib. Here are the six representative policies (P1 to P6) we have designed.
ID Policy Name † Policy Representation ‡
P1 No By-default Exported Provider P if IDa , IDv ∧ ¬ExportedAttr : deny H#
P2 No Pre-claimed Custom Permission All if IDa , IDv ∧ ∃(PermAttrv < SysPerms) ∧ PermAttrv = PermAttra : deny H#

P3 Alerting Implicitly Exported A, S, R if IDa , IDv ∧ ¬ExportedAttr ∧ ActionAttr < SysActions : alert ✔Components with Custom Action
P4 Alerting Explicitly Exported Provider P if IDa , IDv ∧ ExportedAttr = true: alert ✗

P5 Checking System-only Broadcasts R if IDa , IDv ∧ ∃(ActionAttr ∈ SysActions) ∧ InputAction , ActionAttr : deny ✔

P6 Filtering Sql Injection for Provider P if IDa , IDv ∧ ∃(AttackStr ∈ InputPara): deny ✗

† lists which components this policy is applicable to. All: all four components; A: Activity; S: Service; R: Receiver; and P: Provider.
‡ indicates whether a policy has been covered by previous efforts. ✔= covers by [24]; ✗= does not cover; H#= partially covers by system
updates. Note that [24] simply un-exports components in policy P3, which would cause incompatibility issues while ours will not.

Preventing developer mistakes with P3 to P5. In this part,
we show that how SCLib prevents three common developer mis-
takes using policy P3 to P5. We first discuss policy P3 and P4 to
take care of developers who mistakenly export their components or
simply did not realize the threats from exported components. Specif-
ically, for policy P3, our insight is that if developers register custom
Intent actions for their implicitly exported components, very likely
they do not intend to export those components. While policy P4 is
based on themeasurement results in [28, 43] that many explicitly ex-
ported Provider components can also leak sensitive data. To prevent
these two types of mistakes, policy P4 checks ExportedAttr and pol-
icy P3 further checks the custom actions (ActionAttr < SysActions).
To reduce false positives, we choose the alert for policy P3 and
P4. Moreover, since custom actions and Provider components are
much less-called by inter-app IPC, we expect that our alert policies
would not disrupt user experience.

Then we have policy P5 to mitigate a developer mistake that
appears at the code level (instead of manifest). That is, a Receiver
component that registers system-only broadcasts is still hijack-able
if it does not check the incoming Intent action explicitly in the
code [37]. Our measurement of ten high-profile open source apps
in §5 shows that a couple of them made this mistake. To defend,
policy P5 automatically checks the input action (on behalf of callee
component) against the system-only action claimed in manifest,
i.e., ∃(ActionAttr ∈ SysAction) ∧ InputAction , ActionAttr .

Stopping a common attack with P6. Finally, we propose pol-
icy P6 as a prominent example to show SCLib’s capability of stop-
ping common attacks. Specifically, policy P6 aims to filter SQL
injection for Provider. As demonstrated in [43], an attack app can
hijack a Provider component to inject malicious SQL statements.
For example, the adversary sets the projection parameter of the
query function as a special phase “* from private_table;”. As
these special inputs are different from normal queries, we use
keyword-based filtering (such as the expression like “xxx from
yyy;”) to stop them. Similarly, we can stop the directory traversal
attack [43] in openFile entry of Provider by leveraging some file
path patterns. Furthermore, we can devise alert policies to protect
permission-protected components to stop an adversary that claims
corresponding dangerous permissions, as we will conduct case
studies in §5.2.
4.3 Recovering Caller Identity via the Binder

Side Channel
Having discussed the policies that SCLib is designed to enforce, we
now turn to some implementation details to show how SCLib man-
aged to overcome the design challenges. In this specific subsection,
we show how SCLib recovers the caller identify (C2) via the Binder

· · · · · ·
177341: call  from 7569:7590 to 173 :0 node 176320 handle 17 size 156:4
177342: reply from 173:1462 to 597:624 node 0 handle -1 size 0:0
177343: async from 173:475 to 597:0 node 857 handle 2 size 68:0
177344: reply from 173:310 to 7569:7590 node 0 handle -1 size 20:0
177345: call  from 6767:6767 to 597 :0 node 4298 handle 1 size 84:4
177346: reply from 597:1277 to 6767:6767 node 0 handle -1 size 24:4
·· · · · ·

(attack app) (/system/bin/surfaceflinger)

(victim app) (system_server)

ID          Action   PID (process id):TID (thread id)     Node (not important)

Figure 4: An example of the Binder transaction_log.

side channel at the path of /sys/kernel/debug/binder/transac
tion_log. More specifically, for each risky IPC call intercepted, we
retrieve the recent Binder logs from this side channel and analyze
them to recover the corresponding caller app identity. Figure 4
shows a transaction_log example when an attack app exploits
an Activity component in the victim app. Each Binder log starts
with a unique transaction ID followed by the Binder action and
the process/thread IDs of the caller and callee processes. The last
part, node information, is not important — so we skip here. Note
that in the kernel-layer Binder driver, app processes do not directly
interact with each other. Instead, the high-level IPC always in-
volves a number of interactions between apps and system processes
(see [10] for more details). For example, the attack app (PID: 7569)
and the victim app (PID: 6767) here leverage the surfaceflinger
and system_server processes to delegate their communication.

Our extensive tests of Binder logs in different components show
that they all follow the same pattern, based on which we propose a
simple yet effective algorithm to recover caller identities. We still
use Figure 4 to illustrate this algorithm. The first step is to locate
the Binder log that “calls from” the callee PID for the first time,
i.e., the transaction 177345. Then we trace back to identify the first
app process, i.e., PID 7569, which is the caller app we are looking
for. Since there is no fixed PID pattern for non-system processes,
we further extract the corresponding UID and package name for
analysis. More specifically, if the UID is smaller than 10000 or if the
package name is a system binary, it must be a system process.

Since there is a timing window to retrieve the recent Binder logs,
SCLib performs the Binder analysis before othermodules. To further
decrease the delay, we focus on extracting and saving the logs first,
and postpone the actual analysis. Our tests show that in this way, we
can reliably retrieve the required Binder logs. Moreover, we found
that accessing the Binder transaction log is allowed even in some
smartphones with SEAndroid. We tested more than ten Android
device models and found that the majority of them allow the access
in the SEAndroid enforcing mode, including Samsung Galaxy S6
Edge+, Nexus 4/5/5X/6P, and several Huawei/Samsung/XiaoMi
phones.



4.4 Popping Up Alerts via the Dialog-like
Activity Transition

To enforce the alert policies, SCLib needs to pop up an alert dialog
for users to choose “allow” or “deny”. However, this is a challenging
task due to the following reasons:
• Background components such as Provider and Service do
not have an appropriate UI Context to display alert dialogs.
Even for Activity, it cannot pop up dialogs when onCreate()
is still being intercepted, (i.e., not return yet).
• Some components’ entry functions (e.g., Activity’s onCreate()
and Receiver’s onReceive()) need to return in a short time.
Therefore, we cannot hold on the execution of these func-
tions and wait for users’ decisions.

To address these issues, we opt for a different strategy instead
of directly displaying an alert dialog. The basic idea is to launch
a dialog-like Activity from the intercepted component via the
startActivity() API. For entry functions that are sensitive to
execution time, SCLib immediately returns the execution flow to
them by assuming users choosing “deny”. If users select “allow”
later, SCLib re-sends the same Intent2 content on behalf of the
original caller app. Since the callee app has no way to distinguish
the caller identity, the original execution flow can resume. While
for other time-insensitive entry functions, SCLib can pause their
component execution and wait for users to make a decision on the
alert dialog.

Due to the page limit, we refer interested readers to our technical
report [35] for the implementation details of this dialog-like Activity
transition approach.

4.5 Extracting Component Attributes by
Run-time Manifest Analysis

To overcome the challenge that we do not have API support to
collect certain component attributes, SCLib performs Android man-
ifest analysis by itself. In particular, we choose the run-time analysis
instead of compile-time analysis because it does not bother develop-
ers and neither needs the additional file storage. Also, it is immune
to app updates and can handle new components well.

The basic procedure is to dynamically retrieve and parse Android
Manifest.xml of the callee app. Specifically, for the callee com-
ponent, we extract its raw exported status, the registered Intent
actions, and the associated permissions. We then correlate the app
permission entries to obtain their protection levels and determine
whether an associated permission is defined by the system or the
callee. We also build a list of system-defined and system-only Intent
actions based on the Stowaway result [17] and Android source code
so that we can determine whether a given component listens to
system Intent actions or not.

5 EVALUATION
In this section, we evaluate SCLib in three aspects. Firstly in §5.1, we
measure the component statistics of ten high-profile open source
apps to find out how many risky components could benefit from
SCLib and how much code footprint SCLib introduces. Then in

2Provider’s entry functions are not sensitive to execution time, so we focus
on Intent-based communications here.

Table 3: Size of stub code to protect risky components.
Application Lines of

Java codes
Lines of

stub codes
Extra code
percentage

Telegram 222,074 32 0.014%
Zxing Barcode 43,221 24 0.056%

Terminal Emulator 11,507 30 0.261%
K-9 Mail 51,416 62 0.121%
WordPress 81,076 22 0.027%

Signal Messenger 63,137 34 0.054%
Wire 52,808 2 0.004%

Bitcoin Wallet 18,695 40 0.214%
ChatSecure 36,911 18 0.049%

Zirco Browser 9,638 26 0.270%

§5.2, we assess the security effectiveness of SCLib against attacks in
different components. Finally in §5.3, we measure the performance
overhead of SCLib under different scenarios.

5.1 Applying SCLib
We first get an idea about the extent to which typical Android apps
export their components to others, and the corresponding code
footprint when we apply SCLib to protect these components. To this
end, we collect the latest source code of ten high-profile open source
apps from their GitHub sites at the time of our research (November
2016). The detailed statistics of these apps are available in our
technical report [35]. We find that every tested app exports some of
its components, and 67.3% are implicitly exported. Moreover, a total
of 35 component are risky and thus require SCLib’s protection.

We further measure the additional stub code introduced by SCLib.
Specifically, we calculate the number of additional lines of code
based on the type of risky component and the number of entry
functions of that type. The results in Table 3 show that the code
footprint introduced by SCLib is negligible at less than 0.3% in all
cases. Note that since SCLib is implemented in Java and will be
instrumented in Java environments, we only compare our code
footprint based on the number of lines of Java code in each apps,
though some tested apps also contain many C/C++ codes. Addi-
tionally, the jar file of SCLib itself is also very small — only around
30KB before compression.

5.2 Security Evaluation
To perform security evaluation, we identify eight vulnerable or risky
components from the aforementioned ten apps. As shown in Table 4,
these cases cover all four types of Android components and all six
policies we designed. In this subsection, we present our detailed
analysis of the eight case studies to demonstrate SCLib’s unique
values in mitigating developer mistakes and system weaknesses
when compared to developers’ own patches and Android platform
updates.

Case 1: Fixing vulnerable componentswithout losing com-
patibility.The first case, Terminal Emulator (jackpal.androidterm),
is a good example to illustrate that the developers’ own patches
sometimes could cause incompatibility issues that SCLib can avoid.
Terminal Emulator contained a vulnerable component called Remote
Interface in its version 1.0.63. The component is implicitly ex-
ported and can be triggered by a crafted Intent to execute arbitrary
commands without any user interaction. To fix this vulnerabil-
ity, the developers removed the programmatic command execu-
tion functionality in RemoteInterface [3, 4]. However, there were



Table 4: Security case studies: Using SCLib to protect vulner-
able/risky components.

ID Target Component (†) App Policy
1 RemoteInterface (A; I) Term Emulator P3 (alert)
2 MessageProvider (P; E) K-9 Mail P4 (alert)
3 RemoteControlReceiver (R; I) K-9 Mail P3 (alert)
4 TermService (S; I) Term Emulator P3 (alert)
5 ZircoBookmarksProvider (P; I) Zirco Browser P1 (deny)
6 New/Clear KeyReceiver (R; I) Signal P2 (deny)
7 AppStartReceiver (R; I) Telegram P5 (deny)
8 WeaveContentProvider (P; I) Zirco Browser P6 (deny)
† means Type; Export, i.e., the component type (four types of compo-
nents) and the export status (implicitly or explicitly exported).

other apps3 that continue to utilize this programmatic interface
and the patch thus caused an incompatibility issue4 on those apps.
Additionally, simply un-exporting the component as proposed by
IntraComDroid [24] would cause the same incompatibility issue.

In contrast, SCLib fixes this vulnerability in a more elegant way
that results in no incompatibility issue and no additional developer
effort. Specifically, since RemoteInterface registers an Intent fil-
ter to take a custom Intent action, it satisfies our policy P3 (see
Table 2). As a result, SCLib pops up an alert dialog when an ex-
ternal app tries to trigger the programmatic command execution
in RemoteInterface. In this way, SCLib notifies users on poten-
tial attacks while keeping the app compatible with other legacy
apps (that call RemoteInterface). SCLib also saves the developers’
effort in making the patches — Terminal’s developers performed
around 200 lines of code changes to construct the patch [3].

Case 2 & 3 & 4: Enforcing security beyond Android’s ex-
isting security mechanisms. In this part, we first present how
SCLib enhances protection of two risky components in K-9 Mail
(com.fsck.k9) — MessageProvider as in case 2 and RemoteControl
Receiver as in case 3. Both components are exported and have self-
defined dangerous-level permissions. The rationale behind this
design is that K-9 Mail has a number of extension apps [6] which
need to access these two components. To share components to other
apps with different signatures, the most secure way Android cur-
rently provides is to define a dangerous-level permission, as what
K-9 Mail did. However, this is too coarse-grained and cannot pre-
vent a malicious app from claiming the corresponding permissions
to steal users’ emails via MessageProvider. Indeed, according to
a comprehensive survey [18], users generally skip the permission
inspection during app installation or simply cannot understand the
permission meanings, which makes the attacks here realistic.

With SCLib, K-9Mail now can achieve a more fine-grained access
control by enabling users allow/deny a particular external app on
the alert dialog. K-9 Mail would not have been capable of achieving
such fine-grained security because: (i) Intent-based components
such as RemoteControlReceiver have no existing method of ob-
taining caller identity, an important primitive Android currently
fails to provide; and (ii) even though MessageProvider has an API
to extract the caller identity, it cannot pop up alert dialogs.

3To name a few, see code snippets in https://goo.gl/HK3HgJ, https://goo.gl/
0t78J8, https://goo.gl/xPjlv3, and https://goo.gl/xOs5zN.
4A bug report was actually issued after the patch, but the developers of
Terminal closed all links after the project was finished.

Further, TermService in case 4 demonstrates a clearer exam-
ple where developers actually demand the capability of differ-
entiating different caller app identities. According to its code at
http://tinyurl.com/termservice, we see that the developers want
to determine whether an external app or its own Activity makes
the incoming IPC. However, TermService tries to achieve this by
checking whether the incoming Intent contains a custom action
that is claimed in the <intent-filter>. Developers believe that an
external app would use that custom action to launch IPC, but actu-
ally an attack app can explicitly call TermService without setting
that action. Consequently, TermService’s action-based checking
can be bypassed. With SCLib, we can prevent such attacks and
provide developers a solid mechanism to differentiate external IPC
calls.

Case 5 & 6: Fixing system weaknesses with a broader plat-
form and app coverage. Next, we introduce two cases to illus-
trate that SCLib can fix system weaknesses with a broader platform
and app coverage than Android’s system updates. In case 5, Zirco
Browser (org.zirco)’s ZircoBookmarksProvider is by default ex-
ported by Android system, causing the leakage of users’ bookmarks.
Although Android changed this by-default policy since 4.2, the new
exposure policy is not applicable to apps with a target SDK version
below 4.2. In contrast, SCLib leverages the policy P1 to protect all
implicitly exported Provider components even when they run on
legacy phones or are compiled with target SDKs of older versions.

As another example, Signal PrivateMessenger (org.thoughtcrime.
securesms) contains two dynamically registered Receiver compo-
nents, NewKeyReceiver and ClearKeyReceiver, which are pro-
tected with a custom signature-level permission called ACCESS_
SECRETS. As explained in §4.2, they are subject to the permis-
sion pre-occupy attack. Android fixes this weakness only after 5.0,
whereas SCLib can eliminate its impact even on Android versions
prior to 5.0.

Case 7 & 8: Fixing common developer mistakes and stop-
ping common attack patterns. We now present case 7 and 8
to illustrate how SCLib helps fix a common developer mistake
and stop a common attack pattern, respectively. In case 7, Tele-
gram (org.telegram.messenger) defines an AppStartReceiver
component to listen to the BOOT_COMPLETED broadcast, but the
developers forgot to check this system-only action in its code
(see http://tinyurl.com/startreceiver), making it possible that the
component execution be triggered by any app. With SCLib, de-
velopers no longer need to worry about such checking because
SCLib automatically performs the checking based on policy P5. We
further mimic a SQL injection attack on WeaveContentProvider
in case 8, which can be defended by our policy P6, as shown in
http://tinyurl.com/sqlweave.

5.3 Performance Evaluation
We now evaluate the performance overhead of SCLib under differ-
ent scenarios. Here we focus only on the results. Interested readers
can refer to our technical report [35] for more details about evalua-
tion methodology and experimental setup. Table 5 shows the per-
formance results for the tested Activity and Provider, respectively.
We can see that the cumulative overhead (i.e., the worst-scenario
overhead) is below 5% for both components, with 4.42% for Activity

https://goo.gl/HK3HgJ
https://goo.gl/0t78J8
https://goo.gl/0t78J8
https://goo.gl/xPjlv3
https://goo.gl/xOs5zN
http://tinyurl.com/termservice
http://tinyurl.com/startreceiver
http://tinyurl.com/sqlweave


Table 5: Breakdown of SCLib’s overheads.
Scenario Category Time cost Overhead %

Activity
Original
scenario Normal IPC latency: t0 464.40ms -

Overheads
introduced
by SCLib

Binder analysis: t1 8.73ms 1.88%
Manifest analysis: t2 0.24ms† 0.05%†

Policy assessment: t3 0.05ms 0.01%
Popping up alerts: t4 11.53ms 2.48%
Sum (worst-scenario) 20.55ms 4.42%

Provider
Original
scenario Normal IPC latency: t0 ′ 10.82ms -

Overheads
introduced
by SCLib

Getting caller identity: t1 ′ 0.24ms 2.22%
SQL filtering: t1.5 ′ 0.001ms 0.01%

Manifest analysis: t2 ′ 0.146ms† 1.35%†

Policy assessment: t3 ′ 0.014ms 0.13%
Sum (worst-scenario) 0.401ms 3.71%

† SCLib analyzes manifest only once for the entire lifecycle of the app.
In the Activity context, manifest analysis takes 2.41ms in the first run
and zero for the rest of runs. Similarly, the analysis of the first run on
Provider takes 1.46ms. Therefore, we calculate an estimated value by
assuming that there are ten IPC transactions in a lifecycle of the app.

and 3.71% for Provider. Also, the absolute cumulative timing over-
head is only 20.55ms and 0.4ms, which is unnoticeable to human
users. Moreover, we would like to underline that SCLib brings over-
heads only at the entry points of risky components, while existing
defenses cause slowdown to the entire app or system.

6 CONCLUSION AND FUTUREWORKS
In this paper, we presented a practical and lightweight approach
called SCLib to defend against component hijacking in Android
apps. SCLib is essentially a secure component library that performs
in-app mandatory access control on behalf of app components. We
designed six mandatory policies for SCLib to stop attacks originated
from both system weaknesses and common developer mistakes.
We have implemented a proof-of-concept SCLib prototype and
demonstrated its efficacy and efficiency. In the future, we will try
to integrate SCLib into Boxify [11] after its code is released.
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