
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Scalable Online Vetting of Android Apps for
Measuring Declared SDK Versions and Their
Consistency with API Calls

Daoyuan Wu · Debin Gao · David Lo

Received: March 2019 / Accepted: September 2020

Abstract Android has been the most popular smartphone system with multiple
platform versions active in the market. To manage the application’s compatibility
with one or more platform versions, Android allows apps to declare the supported
platform SDK versions in their manifest files. In this paper, we conduct a system-
atic study of this modern software mechanism. Our objective is to measure the
current practice of declared SDK versions (which we term as DSDK versions after-
wards) in real apps, and the (in)consistency between DSDK versions and their host
apps’ API calls. To successfully analyze a modern dataset of 22,687 popular apps
(with an average app size of 25MB), we design a scalable approach that operates
on the Android bytecode level and employs a lightweight bytecode search for app
analysis. This approach achieves a good performance suitable for online vetting
in app markets, requiring only around 5 seconds to process an app on average.
Besides shedding light on the characteristics of DSDK in the wild, our study quan-
titatively measures two side effects of inappropriate DSDK versions: (i) around 35%
apps under-set the minimum DSDK versions and could incur runtime crashes, but
fortunately, only 11.3% apps could crash on Android 6.0 and above; (ii) around 2%
apps, due to under-claiming the targeted DSDK versions, are potentially exploitable
by remote code execution, and half of them invoke the vulnerable API via embed-
ded third-party libraries. These results indicate the importance and difficulty of
declaring correct DSDK, and our work can help developers fulfill this goal.

Keywords SDK Version · API Call · Android Fragmentation · App Analysis

Daoyuan Wu
E-mail: dywu@ie.cuhk.edu.hk
Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong.

Debin Gao
E-mail: dbgao@smu.edu.sg
School of Information Systems, Singapore Management University, Singapore.

David Lo
E-mail: davidlo@smu.edu.sg
School of Information Systems, Singapore Management University, Singapore.

2 Daoyuan Wu et al.

1 Introduction

In recent years, we have witnessed the extraordinary success of Android, a smart-
phone operating system owned by Google. At the end of 2013, Android became
the best-selling phone and tablet OS. As of 2015, Android evolved into the largest
installed base of all operating systems. Over these years, Android keeps leading
the global smartphone market share at over 80% [6]. Along with the fast-evolving
Android, its fragmentation problem becomes more and more serious. Although
new devices ship with the recent Android versions, there are still huge amounts of
existing devices running old versions of Android [13].

To better manage the application’s compatibility across multiple platform ver-
sions, Android allows apps to declare the supported platform SDK versions in
their so-called “manifest” app configuration files (manifest afterwards). We term
these declared SDK versions as DSDK versions. The DSDK mechanism is a modern
software mechanism with which, to the best of our knowledge, few systems are
equipped until Android. Nevertheless, it receives little attention so far, and few
understandings are known about the effectiveness of the DSDK mechanism.

In this paper, we aim to conduct a systematic study on the Android DSDK

mechanism. Specifically, our objective is to measure the current practice of DSDK

versions in real apps, and the (in)consistency between DSDK versions and their
host apps’ API calls. To make our measurement results representative, we select
popular apps with at least one million installs each on Google Play as the dataset.
More specifically, we have collected a large-scale dataset with 22,687 popular apps
(570.8GB in total, with an average app size of 25MB), which covers 90.2% of
all such apps (both free and paid ones) available on Google Play. Furthermore,
our study utilizes the latest Android API evolution and covers all 28 versions of
Android SDKs or API levels1.

After collecting the dataset and building the API-SDK mapping, we perform
a systematic DSDK and API call analysis of each individual app. We design our
approach scalable and robust so that it can be readily deployed by online app
markets (e.g., Google Play) to timely notify developers of the DSDK inconsistency
in their apps. Given this objective, dataflow-based analysis is not suitable because
existing Android dataflow analyses (notably FlowDroid [15] and Amandroid [43])
are expensive even when analyzing medium-sized apps, e.g., requiring ∼4 min-
utes for the 8MB Nextcloud app2 [27]. Moreover, they need to first transform or
decompile Android app bytecode into an intermediate representation (e.g., Soot
Jimple or Java bytecode), the process of which is not fully accurate [38] and often
leaves some apps unanalyzable in many previous studies [53] [17] [34] [39].

In our approach, we thus operate on the original Android bytecode level and
employ a lightweight bytecode search for app analysis. Specifically, we retrieve DSDK
versions and API calls directly from each app without decoding the manifest file
and without transforming app bytecode, which enables robust processing of all
22,687 popular apps. We also handle multidex [5], a special Android bytecode
mechanism that is often skipped by prior works but common in modern apps
— 5,008 apps in our dataset split their bytecodes into multiple files. With the
correctly extracted app bytecodes, we then search these bytecode texts to obtain

1 The latest Android version at the time of our writing is Android 9 (API level 28).
2 https://f-droid.org/en/packages/com.nextcloud.client/

https://f-droid.org/en/packages/com.nextcloud.client/

Measuring Declared SDK Versions and Their Consistency with API Calls 3

valid API calls that are not guarded by VERSION.SDK INT checking (developers can
use such if statements to invoke an API only in certain Android platforms) and
are also not in uninvoked third-party libraries. In this way, our approach preserves
the scalability and makes itself suitable for online vetting: the median and average
time for analyzing an app in our dataset is only 4.75s and 5.39s, respectively.

Theoretically, our lightweight approach is less accurate than dataflow-based
approaches. This is because we did not perform (the expensive) flow tracking, and
false positives certainly appear. Fortunately, this limitation would not affect the
real usage of our approach, since in our objective, the approach is used by online
app markets for checking apps uploaded by developers. In other words, we can ask
developers to manually check the inconsistency warnings in their apps. Moreover,
the manual effort required in such checking is also limited — around 80% apps
have fewer than ten potentially inconsistent API calls each. This indicates that the
number of inconsistency warnings per app reported by our bytecode search is well
manageable for developers to perform a one-time manual check. It is worth noting
that this paper is not for bug detection; instead, we aim for a comprehensive study
on the current DSDK practice and its potential impacts. By employing a lightweight
yet conservative approach, we can maximize the coverage of valid code and thus
minimize false negatives (the dataflow tracking is sometimes too tight and could
fail to process complex implicit flows, e.g., as high as 13 different kinds of implicit
flows missed in FlowDroid according to a systematic assessment recently [20]).

In a nutshell, our study sheds light on the current DSDK practice of app de-
velopers and quantitatively measures two side effects caused by the inconsistency
between DSDK versions (configured by the app developers in the manifest file) and
API calls (made by the app during its execution). Specifically, the compatibility
effect occurs when a minimum DSDK version is set too low so that certain APIs
do not even exist in the corresponding lower versions of Android platforms. The
consequence of such compatibility effect can cause runtime crashes. Additionally,
the security effect could also happen when a target DSDK version is outdated (i.e.,
a lower version of APIs will be used even when a device runs on later versions of
Android), causing that a vulnerable API is still rendered by the underlying system
when the app runs on higher versions of Android. Next, we present our three sets
of measurement results on DSDK versions and their inconsistency with API calls.
Note that due to the conservative nature of our approach, the measurement results
reported in this paper represent an upper bound of all potential DSDK problems
(under the condition that common analysis difficulties, such as native code, are
not considered).

Firstly, our measurement reveals some interesting characteristics of declared
SDK versions in the wild. Specifically, nearly all apps define the minSdkVersion

attribute, but 4.76% apps still do not claim the targetSdkVersion attribute (in
our dataset collected in late 2018). Fortunately, this percentage has significantly
dropped from 16.54% in 2015, which indicates that DSDK attributes nowadays are
more widely adopted in modern apps. We further find that the minimal platform
version most apps support nowadays is Android 4.1, whereas the most popular
targeted platform version is Android 8.0. The median version difference between
targetSdkVersion and minSdkVersion also increases from 8 (in our last analysis
in 2015) to 9 (currently in the 2018 dataset).

Secondly, in terms of compatibility inconsistency, we find that around 35%
apps under-set the minSdkVersion value, causing them to crash when running on

4 Daoyuan Wu et al.

lower versions of Android platforms. Fortunately, only 11.3% apps could crash
on Android 6.0 and above. We also show that by employing bytecode search for
SDK INT checking, our approach can reduce 17.3% false positives of compatibility
inconsistency results. A detailed analysis of the Android APIs incurring compat-
ibility inconsistency further reveals that some API classes, such as view, webkit,
and system manager related classes, are commonly misused.

Thirdly, our analysis of security inconsistency shows that around 2% apps
set an outdated targetSdkVersion attribute and also invoke a dangerous Web-
View API, making themselves exploitable by remote code execution. In particular,
around half of these vulnerable apps invoke the vulnerable addJavascriptInterface()
API only because of their embedded third-party libraries. Additionally, our byte-
code search of the addJavascriptInterface() invocation also helps reduce 12.2%
false positives.

To summarize, we highlight the contributions of this paper as follows:

– (New problem) To the best of our knowledge, we are the first to conduct a
systematic study on DSDK, a modern software mechanism that allows apps to
declare the supported platform SDK versions. We also give the first demysti-
fication of the DSDK mechanism and its two side effects on compatibility and
security. In particular, our preliminary conference version of this work [51] has
motivated several recent follow-up works [30] [27] on bug detection.

– (Novel approach) We propose a robust and scalable approach that operates di-
rectly on the original bytecode level and leverages lightweight bytecode search
to timely notify developers of the DSDK inconsistency in their apps. The evalu-
ation using 22,687 popular apps (with an average app size as large as 25MB)
shows that our approach achieves a good performance suitable for online app
vetting, requiring only around 5 seconds to process an app on average.

– (New findings) Our measurement study obtains three major new findings, in-
cluding (i) 4.76% apps still do not claim the targetSdkVersion attribute,
although this percentage has significantly dropped from 2015 to 2018, (ii)
around 35% apps under-set the minimum DSDK versions and could incur run-
time crashes, but fortunately, only 11.3% apps could crash on Android 6.0 and
above, and (iii) around 2% apps, due to under-claiming the targeted DSDK ver-
sions, are potentially exploitable by remote code execution, and half of them
actually invoke the vulnerable API via embedded third-party libraries.

In this journal article, we extend our preliminary conference version [51] from
the following perspectives: (1) We integrate a lightweight bytecode search into
our approach so that it can be deployed by online app markets to timely notify
developers of the DSDK inconsistency in their apps. We also add support for
multidex-based apps and enhance the detection of uninvoked third-party libraries.
(2) We evolve our dataset from an old set of 23,125 random apps in 2015 to a
recent set of 22,687 popular apps in November 2018. We also find a lightweight
way to build the latest API-SDK mapping. (3) By running experiments using
the improved approach and dataset, we obtain more representative results and
compare some of our new findings with the previous ones.

Measuring Declared SDK Versions and Their Consistency with API Calls 5

2 Demystifying Declared SDK Versions and Their Two Side Effects

In this section, we first demystify declared platform SDK versions in Android
apps, and then explain their two side effects if inappropriate DSDK versions are
used. Note that DSDK is different from the typical compilation SDK, which is only
for compiling apps while DSDK is mainly for interpreting run-time API behaviors.

2.1 Declared SDK Versions in Android Apps

Listing 1 illustrates how to declare supported platform SDK versions in An-
droid apps by defining the <uses-sdk> element [10] in apps’ manifest files (i.e.,
AndroidManifest.xml [2]). These DSDK versions are for the runtime Android sys-
tem to check apps’ compatibility, which is different from the compiling-time SDK
for compiling source codes. The value of each DSDK version is an integer, which
represents the API level of the corresponding SDK. For example, if a developer
wants to declare Android SDK version 5.0, she can set its value to 21. Since each
API level has a precise mapping of the corresponding SDK version [14], we do
not use another term, declared API level, to represent the same meaning of DSDK

throughout this paper.

<uses -sdk android:minSdkVersion="integer"

android:targetSdkVersion="integer"

android:maxSdkVersion="integer" />

Listing 1: The syntax for declaring platform SDK versions in Android apps.

We explain the three DSDK attributes as follows:

– The minSdkVersion integer specifies the minimum platform API level required
for an app to run. The Android system refuses to install an app if its minSdkVersion
value is greater than the system’s API level. Note that if an app does not de-
clare this attribute, the system by default assigns the value of “1”, which means
that the app can be installed in all versions of Android.

– The targetSdkVersion integer designates the platform API level that an app
targets at. An important implication of this attribute is that Android adopts
backward-compatible API behaviors of the declared target SDK version, even
when an app is running on a higher version of the Android platform. Android
makes such compromised design because it aims to guarantee the same app
behaviors as expected by developers, even when apps run on newer platforms.
It is worth noting that if this attribute is not set, the minSdkVersion is used.

– The maxSdkVersion integer specifies the maximum platform API level on which
an app can run. However, this attribute is not recommended and already dep-
recated since Android 2.1 (API level 7). Modern Android no longer checks or
enforces this attribute during the app installation or re-validation. The only
effect is that Google Play continues to use this attribute as a filter when it
presents users a list of applications available for downloading. Note that if this
attribute is not set, it implies no restriction on the maximum platform API
level.

6 Daoyuan Wu et al.

From app manifest:

minSDK maxSDK

From app API calls:

minLevel maxLevel

Added APIs Removed APIs

Android platforms:

Crash Less secure

targetSDK

A patched API

1 2 3 4

Fig. 1: Illustrating the two side effects of inappropriate DSDK versions.

2.2 Two Side Effects of Inappropriate DSDK Versions

Fig. 1 illustrates two side effects of inappropriate DSDK versions. We first explain
the used symbols, and then describe the two side effects. As shown in Fig. 1, we can
obtain minSDK, targetSDK, and maxSDK from an app manifest file. Based on
the API calls of an app, we can calculate the minimum and maximum API levels
it requires, i.e., minLevel and maxLevel. Eventually, the app will be deployed to
a range of Android platforms between minSDK and maxSDK.

2.2.1 Side Effect I: Causing Runtime Crashes

The blue part of Fig. 1 shows two scenarios in which inappropriate DSDK versions
could cause compatibility-related inconsistency. The first scenario is minLevel >
minSDK, which means a new API is introduced after the minSDK. Conse-
quently, when an app (i) runs on Android platforms between minSDK and minLevel
(marked as block 1 in Fig. 1) and (ii) executes that new API, it will crash. We ver-
ified this case using the VpnService class’s addDisallowedApplication() API,
which was introduced on Android 5.0 at API level 21. We invoked this API in
the MopEye app [48] and ran it on an Android 4.4 device. When the app ex-
ecuted the addDisallowedApplication() API, it crashed with the java.lang.

NoSuchMethodError exception.

The second scenario is maxSDK > maxLevel, which suggests that an old API
is removed at the maxLevel. Although it looks like the app would crash when it
runs on Android platforms between maxLevel and maxSDK, it turns out that
Google intentionally keeps the forward compatibility (by keeping those removed
APIs in the framework as hidden APIs) so that developers have no concern in over-
setting maxSdkVersion. As a result, this scenario would not cause runtime method
availability errors. Therefore, in this paper, we measure only the first scenario of
compatibility inconsistency that can cause runtime crashes.

Measuring Declared SDK Versions and Their Consistency with API Calls 7

2.2.2 Side Effect II: Making Apps Vulnerable

The red part of Fig. 1 shows the scenario where inappropriate DSDK versions cause
failure for the app that should be patched. Supposing an app calls an API whose
implementation is vulnerable at targetSDK, even when the app runs on an up-
dated Android system (with API level > targetSDK), Android still exhibits
the compatibility behaviors, i.e., the vulnerable implementation of the API at
targetSDK in this case.

Table 1: Vulnerable APIs or components on Android and their patched versions.

Vulnerable APIs/Components Patched SDKs (Android) Changed Behavior

file:// scheme in WebView targetSDK ≥ 16 (4.1+) Fix flawed same-origin policy [46]
Content Provider component targetSDK ≥ 17 (4.2+) Disable the default exposure [54]
addJavascriptInterface() targetSDK ≥ 17 (4.2+) Stop Java reflection for RCE [45]

PreferenceActivity class targetSDK ≥ 19 (4.4+)
Add isValidFragment() for apps

to prevent Fragment Hijacking [37]

javascript: in WebView targetSDK ≥ 19 (4.4+)
JavaScript URLs are executed in
a separate WebView context [47]

Context.bindService() targetSDK ≥ 21 (5.0+) Do not accept Implicit Intents [29]

Table 1 summarizes the previously reported vulnerable APIs or components
on Android and their patched versions. They were all wide-spread API-level vul-
nerabilities on Android, causing significant security impacts. Although by-default
fixes were subsequently provided at the API level, as shown in Table 1, they often
require developers’ cooperation at the app level (e.g., updating app configura-
tion). Otherwise, vulnerabilities could still appear even on patched versions of
Android [29] [49]. In our context, an app could be exploited if they invoke the
vulnerable APIs without declaring the updated targetSdkVersion. As a result,
analyzing these “old” vulnerabilities is still worthwhile and could demonstrate the
security impact of our study.

In this paper, we specifically measure the vulnerable addJavascriptInterface()
API for two reasons. First, it has a clear API pattern for inconsistency measure-
ment, while other cases in Table 1 involve multiple component-level factors that
could cause a vulnerability. Second, the addJavascriptInterface() API gives rise
to the most serious security issue [42]. By exploiting this API, attackers are able to
inject malicious code, which can cause remote code execution (e.g., stealing sensi-
tive information from a victim app or SD card). Google later fixed this weakness
on Android 4.2 and above. However, if an app sets the targetSdkVersion lower
than 17 and also calls this API, the system will still render the vulnerable API
behavior even when running on Android 4.2+. Such vulnerable app examples are
available at https://sites.google.com/site/androidrce/.

3 Methodology

To understand how DSDK versions are used in the wild and the pervasiveness of the
two side effects in real apps, we propose an automatic approach for a systematic

https://sites.google.com/site/androidrce/

8 Daoyuan Wu et al.

Each App

Manifest
Manifest

Analysis

Bytecode

Search

Valid API Calls &

their SDK versions

Min/Target/Max

DSDK versions
Compa

rison

App Analysis

Bytecode

Document

Analysis

API-SDK

mapping

Android API

Documents

Uploaded

Android Apps

Consistency

Results

Offline Phase Online Phase

Developers

upload their

apps to app

markets.

App markets

check and return

DSDK-API

(in)consistency.

Fig. 2: The overview of our methodology.

measurement. In this section, we first present an overview of our methodology,
and then its two main analysis phases.

3.1 Overview

Our main design goal is to help the app markets timely notify developers the DSDK

inconsistency in their apps. Fig. 2 illustrates its overall design, where the app
analysis part is conducted in the online phase. Since our app analysis requires the
API-SDK mapping as an input (for calculating API levels of all valid API calls in
an app), we further conduct Android API document analysis to build a mapping
between each Android API and their corresponding SDK versions (or API levels).
As this step is performed only once, we include it in the offline phase.

The majority of our approach is designated for the online vetting of apps.
Specifically, whenever developers upload a new or updated app to app markets,
we first unzip this app to obtain its bytecode DEX file(s). We then launch man-
ifest analysis to robustly retrieve an app’s declared SDK versions. For bytecode
analysis, the novelty is that we propose a lightweight bytecode search, instead of
heavyweight dataflow analysis, to extract valid API calls. Finally, we leverage the
API-SDK mapping to calculate the range of the corresponding API levels from
API calls, and compare them with the declared SDK versions. The output is the
(in)consistency results between declared SDK versions and API calls. It is worth
noting that multiple-apk analysis [51] is no longer needed in our online analysis,
because app markets control all versions of APKs and multiple-apk mechanism is
largely used for different hardware configuration [8].

3.2 Offline Phase: API Document Analysis

In this subsection, we present our offline phase in detail, including both the
methodology and results of API document analysis.

Measuring Declared SDK Versions and Their Consistency with API Calls 9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
API Level or SDK Version

0

500

1000

1500

2000

2500

3000

3500

4000
#

 A
d
d
e
d
 A

P
Is

7

983

672
518

0
104

11031183

104

1760

258
19

798

41

713

393

670
800

110

2581

117

1657

3627

110

3218

107

1415

474

Fig. 3: The distribution of added Android APIs across different SDK versions.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
API Level or SDK Version

0

200

400

600

800

1000

1200

1400

#
 R

e
m

o
v
e
d
 A

P
Is

1

122

5 0 0 0
39 67

1 30 35
0

62
0 24 42

180

4 1
69

5

1307

9 0 24 0

371

504

Fig. 4: The distribution of removed Android APIs across different SDK versions.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
API Level or SDK Version

0

200

400

600

800

1000

1200

1400

#
 D

e
p
re

ca
te

d
 A

P
Is

4
51

2
48

0 0 0
35

0 22 2 22 6 0

559

60 47 22 4

325

1359

138

249

2

190

2

507

15

Fig. 5: The distribution of deprecated Android APIs across different SDK versions.

10 Daoyuan Wu et al.

Building the API-SDK mapping. There are two potential approaches for
building the API-SDK mapping. One is to analyze Android API documents by
parsing a SDK document called api-versions.xml. A previous API study [35]
and our preliminary study [51] leveraged this approach to obtain initial and added
APIs, but they did not cover removed and deprecated APIs because of no such
information in the api-versions.xml file. Hence, they also needed to analyze the
HTML files in the api diff directory, which is unfortunately error-prone [51]. The
other approach is to directly retrieve the API-SDK mapping from each SDK jar

file. However, different SDK releases under the same API level may have some API
differences, and there are over 600 releases3 for the 28 API levels at the time of our
writing. As a result, conflicted API mappings could be recorded, e.g., marking the
Gravity.getAbsoluteGravity API removed in SDK version 16 and then added
back in version 17 [30].

Fortunately, we find that the first approach now covers all kinds of Android
APIs. Specifically, the latest api-versions.xml file released in Android 9 SDK
records all added, removed, and deprecated APIs. Therefore, we can simply parse
this file to obtain a complete API-SDK mapping.

Document analysis results. With the accurate API-SDK mapping, we are
able to present a comprehensive evolution of Android APIs across different SDK
versions. Fig. 3, 4, and 5 plot the distribution of added, removed, and deprecated
Android APIs from API level 2 to the very recent API level 29, respectively.
Overall, we find that 26,466 (67.8%) out of the total 39,034 Android APIs are
changed. This result indicates that Android APIs evolve dramatically during the
whole evolution.

The biggest change in the Android API evolution is to add 23,542 APIs since
level 2, as shown in Fig. 3. Specifically, Android 7.0 (API level 24) changed most,
with 3,627 new APIs introduced. Android 8.0 (API level 26) and Android 5.0 (API
level 21) also introduced a significant number of new APIs, with 3,218 and 2,581
APIs added, respectively. Other versions of platforms with a large number of added
APIs are Android 3.0 (API level 11), Android 6.0 (API level 23), and Android
9.0 (API level 28). These new Android APIs bring a huge risk of compatibility
inconsistency, causing runtime crashes on lower versions of Android. In particular,
we notice that over half (13,306, 56.5%) of all the added APIs are introduced since
Android 5.0, giving them a higher chance of causing compatibility inconsistency
than the rest of added APIs.

In contrast, only 4,830 (18.2%) APIs involve the removal change (i.e., removed
or deprecated; some of them are also introduced after API level 2), with 3,671 APIs
deprecated and 2,902 APIs finally removed. According to Fig. 4 and 5, the biggest
removal happens in Android 5.1 and 6.0 (API level 22 and 23), with 1,359 APIs
deprecated and 1,307 APIs removed afterwards. Moreover, Android 9.0 (API level
28) deprecates 507 APIs and its next version (API level 29) removes 504 of them,
which suggests that Google plans to remove a large number of APIs in the release
of Android 9.0. Additionally, although Android 4.1 (API level 16) deprecated 559
APIs, only 222 APIs were removed in the subsequent Android 4.2 and 4.3.

To sum up, 23,542 (60.3%) out of all the 39,034 Android APIs are introduced
at a SDK version other than the initial Android SDK version (i.e., API level 1),
which brings a high risk for developers to under-set the minSdkVersion attribute.

3 See tags in https://android.googlesource.com/platform/frameworks/base.git/+refs.

https://android.googlesource.com/platform/frameworks/base.git/+refs

Measuring Declared SDK Versions and Their Consistency with API Calls 11

On the other hand, much fewer Android APIs, 7.4% of all APIs, are mapped to
a range of SDK versions that have an upper limit (i.e., deleted in recent SDK
versions).

3.3 Online Phase: Android App Analysis

In this subsection, we present three major modules in the online analysis phase,
namely manifest analysis, bytecode search, and consistency comparison in Fig. 2.

3.3.1 Retrieving DSDK Versions via Manifest Analysis

To robustly retrieve DSDK versions from all apps, we propose a new manifest anal-
ysis method that leverages aapt (Android Asset Packaging Tool) [1] to retrieve
DSDK directly from each app without extracting and decoding the manifest file.
This method is more robust than the traditional apktool-based manifest extrac-
tion [4], which requires to extract and decode the manifest into a plaintext file.
Indeed, our aapt-based approach can successfully analyze all 22,687 apps, whereas
a previous work [52] showed that apktool failed six times in the analysis of just
1K apps. Specifically, we utilize the dump baging command in aapt to extract
the DSDK versions. In this way, we can directly retrieve the correct DSDK versions
without analyzing raw manifest files. Therefore, even when an app contains old or
unreferenced manifest files, it would not affect our analysis.

In the course of implementation and evaluation, we observed and handled two
kinds of special cases. First, some apps define minSdkVersion multiple times, for
which we only extract the first value. Second, we apply the default rules (see
Sec. 2.1) for apps without minSdkVersion and targetSdkVersion defined. More
specifically, we set the value of minSdkVersion to 1 if it is not defined, and set the
value of targetSdkVersion (if it is not defined) using the minSdkVersion value.

Besides retrieving DSDK, our manifest analysis also parses all components reg-
istered in the manifest to generate a list of valid components and their root (Java)
class names. This information will be used in the app analysis module to exclude
uninvoked third-party libraries. Specifically, we execute the dump xmltree com-
mand in aapt to output all component information. In the process of parsing
these components, we also generate their root class names according to this rule:
if the component class does not overlap with the app package or <application>

name (i.e., this class could be from a third-party library), we record the entire class
name as the root class; otherwise, only the leading two or three name portions are
treated as the root class.

3.3.2 Extracting Valid API Calls via Bytecode Search

The main module in our app analysis is to extract valid API calls. A valid API call
is a call not guarded by the VERSION.SDK INT checking (a mechanism developers
can use to invoke an API only in certain Android platforms). It should also not
appear in uninvoked third-party libraries that are essentially dead code. To guar-
antee the scalability for online vetting, we propose a lightweight bytecode search,
instead of dataflow-based approaches, for app analysis, because existing Android
dataflow analyses, notably FlowDroid [15] and Amandroid [43], are expensive even

12 Daoyuan Wu et al.

v1F

E

D

C

B

A

Bytecode Text

i2

c1

f1

i1

......

......

B
y

te
co

d
e

S
ea

rc
h

Fig. 6: A high-level overview of our bytecode search mechanism.

when analyzing medium-sized apps, e.g., requiring ∼4 minutes for just an app of
size 8MB [27].

Moreover, we operate on the original Android bytecode level without decompil-
ing app bytecodes, which helps reduce false negatives. This is because the process
of transforming or decompiling Android app bytecode into an intermediate rep-
resentation (usually Java bytecode) is not fully accurate [38]. As a result, many
previous studies [53] [17] [34] [39] often failed to handle some apps, causing false
negatives in their analysis. In contrast, by directly analyzing app bytecodes, we
robustly process all 22,687 popular apps in our dataset. Specifically, we leverage
the dexdump tool [50] to translate compressed bytecodes into plain bytecode texts
(similar to using objdump to generate assembly code texts), upon which we can
then launch bytecode search to extract valid API calls. Note that dexdump, as
an official Android SDK tool, is very robust, and it does not generate interme-
diate representation. We also dump (multiple) app bytecodes into a (combined)
plaintext [50] to handle multidex [5], a special bytecode format often skipped by
prior works but indeed common in modern apps — 5,008 apps in our dataset split
their bytecodes into multiple files. Hence, we avoid another common source of false
negatives.

In the rest of this subsection, we first introduce the basic bytecode search
mechanism before describing our bytecode search of VERSION.SDK INT checking
and vulnerable API calls in details. We then explain how we exclude uninvoked
third-party libraries during the search process.

The basic bytecode search mechanism. Fig. 6 shows a high-level overview
of our bytecode search mechanism. The bytecode text outputted by dexdump is a
sequence of code statements, hierarchically organized by different class and method
bodies. In Fig. 6, we show six method bodies (from method A to method F), where

Measuring Declared SDK Versions and Their Consistency with API Calls 13

1 VpnService.Builder builder = new VpnService.Builder ();
2 if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) {
3 builder.addDisallowedApplication(Constant.PkgName);
4 }

Listing 2: An example of VERSION.SDK INT checking.

their corresponding class bodies are omitted for simplicity. As illustrated in the
figure, our bytecode search scans these methods to locate inconsistent API calls
(e.g., call site i1 and i2 in method A and C, respectively) and vulnerable API
calls (e.g., call site v1 in method F). We can perform further search to determine
in which class an interested method is invoked, e.g., Fig. 6 shows that method
F (containing vulnerable API call v1) is called by another method D. Besides
the method search, we can also launch if statement search to locate conditional
checking, e.g., statement c1 that surrounds call site i2 in method C.

Searching VERSION.SDK INT checking. As mentioned earlier in this subsec-
tion, developers can use if statements with VERSION.SDK INT checking to invoke
an API only in certain Android platforms, thus avoiding the inconsistency prob-
lem. Listing 2 shows an example of VERSION.SDK INT checking, which invokes the
addDisallowedApplication() API (introduced since API level 21) only on An-
droid 5.0 and above. To avoid such false positives, our approach must handle the
VERSION.SDK INT checking.

Our strategy is to perform both API call and VERSION.SDK INT checking search
and see whether the two search results overlap in the same method. For example,
in Fig. 6, our bytecode search locates both checking statement c1 and API call
i2 in method C. Since these two search results overlap and API call i2 is invoked
below checking statement c1, we are thus confident that this API call has been
guarded with a corresponding VERSION.SDK INT checking. Moreover, according to
a recent study [27], 88.65% of the DSDK checking usages directly compare the
VERSION.SDK INT variable with a constant Android version number, which makes
our bytecode search strategy appropriate.

Searching vulnerable API calls. For a vulnerable API call, we further
employ bytecode search to determine whether it is initialized by app’s own code
or library code. This is particularly important for the vulnerable API studied
in this paper, namely addJavascriptInterface(), because a previous study has
shown that over 47% of top 40 ad libraries create their Javascript Interfaces [45].
Specifically, after locating vulnerable API call v1 in method F, we further search
the invocation(s) of method F to check its origin class.

Excluding uninvoked third-party libraries. An important issue during
our bytecode search is to exclude uninvoked third-party libraries. To tackle this
problem, we cannot simply employ library detection (e.g., LibScout [18] and LibD [32])
to exclude all libraries, because this approach also ignores those invoked and thus
valid library code. To keep valid libraries as much as possible while minimizing the
false positives raised by uninvoked libraries, we propose a lightweight yet practical
approach that combines both heuristics-based component analysis and API-based
bytecode search. Specifically, we first conservatively exclude all the code that has
no relationship with app component information even though some of them might
be functionality-supporting code. We achieve this by performing manifest anal-

14 Daoyuan Wu et al.

ysis and generating root classes for all registered components, as mentioned in
Sec. 3.3.1. A class whose code does not appear in any root class is thus recognized
as an uninvoked library or dead code. Note that even for a valid third-party library,
only its registered components will be analyzed because not all code in a library
will be invoked by the main app. Furthermore, when a candidate API call is going
to be reported during the detection phase, we launch one more bytecode search
to double check its invocations. Eventually, the identified inconsistency cases will
be confirmed by developers, and as we will discuss in Sec. 6, the effort of perform-
ing such checking is minimal. In this way, we consider valid third-party libraries
but also minimize their potential false positives, without relying on the expensive
dataflow-based analysis that does not meet the objective of online vetting in app
markets.

3.3.3 Calculating API Levels and Comparing Their Consistency with DSDKs

With the extracted API calls, we use the API-SDK mapping to compute the
range of corresponding API levels (i.e., from minLevel to maxLevel, as explained
in Sec. 2.2). The minLevel of an app is the maximum of all its valid API calls’
corresponding minLevel values (i.e., all correspondingly added SDK versions),
while the maxLevel of an app is the minimum of all valid API calls’ corresponding
maxLevel values (i.e., all correspondingly removed SDK versions). If an API is
never removed, we set a large flag value (e.g., 100,000) to represent its maxLevel

value.
We then compare the extracted DSDK values with the calculated API levels

to obtain the following two kinds of inconsistency (as previously mentioned in
Sec. 2.2):

– minSdkVersion < minLevel: the minSdkVersion is set too low and the app
would crash when it runs on platform versions between minSdkVersion and
minLevel.

– targetSdkVersion < maxLevel: the targetSdkVersion is set too low and the
app could be updated to the version of maxLevel. If the maxLevel is infinite,
the targetSdkVersion could be adjusted to the latest Android version.

4 Evaluation

Our evaluation aims to answer the following five research questions:

RQ1 What are the current DSDK characteristics in popular real-world apps?
RQ2 How pervasive is the compatibility-related inconsistency in real-world apps?
RQ3 How pervasive is the security-related inconsistency is in real-world apps?
RQ4 How scalable is our inconsistency detection approach?
RQ5 What is the updatablity of the buggy apps? Are they still being maintained?

We choose popular real-world apps, instead of randomly selected apps or open-
source apps, for evaluation, because they are most likely installed by regular users
(according to Google Play installs). Hence, the obtained measurement results can
reflect the DSDK practice in the wild. In this section, we first describe how we collect
such a large dataset in Sec. 4.1. Based on this dataset, we then answer the five
research questions from Sec. 4.2 to Sec. 4.6.

Measuring Declared SDK Versions and Their Consistency with API Calls 15

P
E
R

S
O

N
A

LI
Z

A
T
IO

N

T
O

O
LS

P
H

O
T
O

G
R

A
P
H

Y

E
N

T
E
R

T
A

IN
M

E
N

T

M
U

S
IC

_A
U

D
IO

LI
FE

S
T
Y
LE

E
D

U
C

A
T
IO

N

P
R

O
D

U
C

T
IV

IT
Y

FI
N

A
N

C
E

C
O

M
M

U
N

IC
A

T
IO

N

S
H

O
P
P
IN

G

V
ID

E
O

_P
LA

Y
E
R

S

S
O

C
IA

L

B
O

O
K

S
_R

E
FE

R
E
N

C
E

T
R

A
V

E
L_

LO
C

A
L

H
E
A

LT
H

_F
IT

N
E
S
S

N
E
W

S
_M

A
G

A
Z

IN
E
S

B
U

S
IN

E
S
S

M
A

P
S
_N

A
V

IG
A

T
IO

N

S
P
O

R
T
S

W
E
A

T
H

E
R

FO
O

D
_D

R
IN

K

A
U

T
O

_V
E
H

IC
LE

S

A
R

T
_D

E
S
IG

N

C
O

M
IC

S

M
E
D

IC
A

L

H
O

U
S
E
_H

O
M

E

D
A

T
IN

G

B
E
A

U
T
Y

LI
B

R
A

R
IE

S
_D

E
M

O

P
A

R
E
N

T
IN

G

E
V

E
N

T
S

App Categories on Google Play

0

200

400

600

800

1000

1200

#
 A

p
p
s

997997990988988

856818793
739718696

632
567

505489446
354318297272

182168
121 95 77 75 69 68 54 37 37 6

(a) 32 non-game app categories.

G
A

M
E
_R

A
C

IN
G

G
A

M
E
_C

A
S
U

A
L

G
A

M
E
_S

IM
U

LA
T
IO

N

G
A

M
E
_P

U
Z

Z
LE

G
A

M
E
_A

R
C

A
D

E

G
A

M
E
_A

C
T
IO

N

G
A

M
E
_E

D
U

C
A

T
IO

N
A

L

G
A

M
E
_S

P
O

R
T
S

G
A

M
E
_A

D
V

E
N

T
U

R
E

G
A

M
E
_R

O
LE

_P
LA

Y
IN

G

G
A

M
E
_S

T
R

A
T
E
G

Y

G
A

M
E
_C

A
R

D

G
A

M
E
_B

O
A

R
D

G
A

M
E
_W

O
R

D

G
A

M
E
_C

A
S
IN

O

G
A

M
E
_T

R
IV

IA

G
A

M
E
_M

U
S
IC

App Categories on Google Play

0

200

400

600

800

1000

#
 A

p
p
s

915 912 908 891
825 821

701
633

520 495 457

343
279 278 270

214
135

(b) 17 game app categories.

Fig. 7: Bar charts of the distribution of popular apps across different categories.

4.1 Dataset

We collect popular apps on Google Play via the AndroZoo repository [11], which
contains a total of 3,699,731 unique4 Google Play apps at the time of our crawl-
ing on 11 November 2018. However, AndroZoo does not provide the app in-
stall information, which is needed to determine the popularity of each app. To
quickly locate popular apps, we leverage the top app lists available at https:

//www.androidrank.org. Specifically, we crawled top 1,000 app in each Google
Play category (49 categories in total, including 17 different game sub-categories),
and recorded the package names of apps with over one million installs. This al-
lows us to obtain a list of 25,144 popular apps, 22,687 (the rest are either paid
apps or not indexed by AndroZoo) of which are available on AndroZoo. We then
downloaded these 22,687 apps as our dataset.

To understand the distribution of these popular apps across different app cate-
gories, we plot bar charts in Fig. 7 that cover both 32 non-game app categories and
17 game sub-categories. In particular, 17 game sub-categories contribute to a total

4 An app is unique if its package name, instead of SHA1/256, is different from other apps.

https://www.androidrank.org
https://www.androidrank.org

16 Daoyuan Wu et al.

0 20 40 60 80 100

The APK size of each app (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 8: CDF plot of the APK file size of each app in our dataset.

of 10,695 popular apps, which indicates that game apps are commonly installed
by real-world Android users. According to Fig. 7, app categories like “Personal-
ization”, “Tools”, “Photography”, “Entertainment”, and “Music” also produce a
large number of popular apps, almost 1K popular apps per category. We notice
that daily-used categories, such as “Communication” and “Social”, however, do
not generate an equivalent number of popular apps, with only 600 to 700 popular
apps. This is because in these categories, several very popular apps, e.g., WeChat
and Facebook, dominate a large portion of the market share. Lastly, it is also
reasonable for some unpopular categories, such as “Medical” and “Libraries &
Demo”, to have a limited number of popular apps.

It is also important to measure the distribution of app size in our dataset. Fig. 8
plots the CDF (cumulative distribution function) of the APK file size of each app
in our dataset. We can see that over 40% apps have a size larger than 20MB, and
over 20% apps are even larger than 40MB each. This indicates that a significant
portion of modern apps are no longer small. Indeed, the average app size in our
dataset is 25MB, much larger than the size of apps used in several prior dataflow
analysis studies (e.g., apps below 5MB were evaluated in AppContext [53], and
the maximum app size in IctApiFinder [27] is 8MB). Therefore, scalability is a key
design objective for our approach, and we will evaluate it extensively in Sec. 4.5.

4.2 RQ1: Characteristics of Declared SDK Versions in the Wild

In this section, we report a total of four findings regarding RQ1. We also compare
these new findings with our previous results in [51], which measured a dataset of
22.7K apps crawled in 2015.

Finding 1-1: Nearly all apps define the minSdkVersion attribute, but 4.76%
apps still do not claim the targetSdkVersion attribute, although this percentage
has significantly dropped compared to our prior analysis in 2015. Table 2 shows
the number and percentage of non-defined DSDK attributes in our dataset. We can
see that nearly all apps have defined the minSdkVersion attribute while almost

Measuring Declared SDK Versions and Their Consistency with API Calls 17

Table 2: The number and percentage of non-defined DSDK attributes in our dataset.

Non-defined % Non-defined

minSdkVersion 5 0.02%
targetSdkVersion 1,079 4.76%
maxSdkVersion 22,623 99.72%

zero app defines the maxSdkVersion attribute. This result is good because, as we
described in Section 2.1, defining minSdkVersion is necessary while maxSdkVersion
is not. However, we also notice that 1,079 (4.76%) apps still do not claim the
targetSdkVersion attribute, which causes their targetSdkVersion values be set
to the corresponding minSdkVersion values by default.

Fortunately, the percentage of non-defined targetSdkVersion has dropped sig-
nificantly as compared to our prior analysis in 2015, from 16.54% to 4.76%. One
important factor is the popularity of Android Studio in recent years, which has
become the de-facto IDE (integrated development environment) for Android app
development. Since Android Studio by default sets and enforces the minSdkVersion
and targetSdkVersion attributes, the percentage of non-defined targetSdkVersion

naturally drops and we expect that this percentage will further decrease with more
apps getting updated.

Finding 1-2: Some targetSdkVersion attributes are set to outlier values.
We find that a total of 45 apps in our dataset declare their targetSdkVersion

attributes as outlier values, which is close to our prior analysis result in 2015 when
we encountered 55 such cases. There are two types of outlier values. The first is
that targetSdkVersion is set to an API level not in the range of released SDKs.
At the time of our analysis, the valid API levels are from 1 to 28 (Android 9.0).
However, 12 apps set their targetSdkVersion to larger than 28, namely 29, 30,
and 31. In our prior analysis [51], one app even set its targetSdkVersion value
to 10000. This is probably because their developers want to always target at the
latest Android SDK.

The other type of outliers is that the targetSdkVersion value is set to a
value lower than the minSdkVersion value. Normally, targetSdkVersion should be
greater than or equal to minSdkVersion, but 33 apps have negative targetSdkVersion
− minSdkVersion values. This number is almost the same as that in our prior anal-
ysis in 2015 (34 apps at that time). In particular, one app (com.leftover.CoinDozer)
defines its targetSdkVersion as 0, although its minSdkVersion value is 8. We be-
lieve that this class of outliers is due to developers’ mistakes in declaring the DSDK

attributes.

Finding 1-3: The minimal platform version most apps support is Android
4.1, whereas the most targeted platform version is Android 8.0. This has dra-
matically evolved since our last analysis in 2015. We first study the distribu-
tion of minSdkVersion. According to Fig. 9, the majority (89%) of apps have
minSdkVersion lower than or equal to level 16 (Android 4.1), which means that
they can run on nearly all (99.5%) Android devices in the market nowadays [13].
Specifically, the minimal platform version most apps support is Android 4.1 (level
16), while that in our last analysis in 2015 was only Android 2.3 (level 9). How-
ever, Android 2.3 still ranks in the second place, with 3,614 apps’ minSdkVersion

18 Daoyuan Wu et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Minimum SDK Version

0

1000

2000

3000

4000

5000
#

 A
p
p
s

15 7
196

380
190 80

748

1129

3614

1359

779

45 82

3293
3429

4868

571
272

1026

4

509

16 52 13 1 9 0 0

Fig. 9: Distribution of minSdkVersion.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Target SDK Version

0

500

1000

1500

2000

2500

3000

3500

#
 A

p
p
s

7 2 63
204

78 9

305282294252231
23

121

473405379

797

500

2076

301

1097

1587

2897

891

1748

3469

3047

1136

Fig. 10: Distribution of targetSdkVersion.

targeted at. Besides Android 4.1 and 2.3, two Android 4.0.x (level 14 and 15)
platform versions are also commonly defined as apps’ minSdkVersion.

On the other hand, Fig. 10 plots the distribution of targetSdkVersion. We
can see that 80% apps set their targetSdkVersion values to larger than or equal
to level 19 (Android 4.4). In particular, the two most targeted platform versions
are the most recent Android 8.0 (level 26) and 8.1 (level 27), while those in our
last analysis in 2015 were Android 4.4 and 5.0. This suggests that modern apps
keep pace with the evolution of the Android operating system. Besides Android 8,
Android 6.0 (level 23) and 4.4 (level 19) still hold a significant portion of apps with
the corresponding targetSdkVersion setting. Moreover, Android 7.0.x (level 24
and 25) and Android 5.0.x (level 21 and 22) also attract considerable apps being
targeted at.

Finding 1-4: The median version difference between targetSdkVersion and
minSdkVersion is 9, while that in our last analysis was 8. This 11% increase
indicates that Android apps nowadays need to support more Android platforms.
We define a new metric called lagSdkVersion to measure the version difference

Measuring Declared SDK Versions and Their Consistency with API Calls 19

0 5 10 15 20 25

targetSDKVersion - minSDKVersion

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 11: CDF plot of lagSdkVersion.

between targetSdkVersion and minSdkVersion, as shown in Equation 1.

lagSdkVersion = targetSdkVersion− minSdkVersion (1)

After removing the negative lagSdkVersion values (i.e., outliers mentioned in
Finding 1-2), we draw the CDF plot of lagSdkVersion in Fig.11. We first find
that the median value of lagSdkVersion in our dataset is 9, while that in our last
analysis in 2015 was 8. It indicates that Android apps nowadays need to support
more Android platforms. This conclusion is further supported by the percentage
of apps that have a lagSdkVersion value greater than 12. Compared to our prior
analysis, this percentage has increased from 5% to 20%, which clearly shows that
more and more apps nowadays support a wide range of Android platforms. On the
other hand, the percentage of apps that have the same value for targetSdkVersion
and minSdkVersion has also dropped from 20% in 2015 to 6.4% in 2018.

4.3 RQ2: Inconsistency Results with Compatibility Effect

In this section, we report three important findings regarding RQ2. Besides pre-
senting compatibility results as the major finding, we summarize the reduced false
positives by our bytecode search as compared to the prior conference version,
and show that the newly added API classes are common sources of compatibility
inconsistency.

Finding 2-1: Around 35% apps under-set the minSdkVersion value, causing
them potentially crash when running on lower versions of Android platforms. For-
tunately, only 11.3% apps could crash on Android 6.0 and above. As explained in
Sec. 3.3.3, the compatibility inconsistency happens if minSdkVersion is less than
minLevel. In our experiments, we thus count the number of API calls that have
higher API level than minSdkVersion in each app, and denote it by minOverNum.
The higher value an app’s minOverNum is, the more likely that this app has the
compatibility inconsistency.

20 Daoyuan Wu et al.

0 20 40 60 80 100

API calls with higher API level than minSdkVersion

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 12: CDF plot of minOverNum in each app.

3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

minLevel for apps with backward compatibility inconsistency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

#
 a

p
p
s

in
 e

a
ch

 m
in

Le
v
e
l

2 13 78 49 152 148
21

917

566

110
355

35

548

954

224

604

31

4183

30

2777

780

75

1653

10 48

Fig. 13: Bar chart of the number of apps in each minLevel.

Fig. 12 shows the CDF plot of minOverNum in each app. We find that 14,363
(63.3%) apps have at least one API call that has higher API level than the cor-
responding minSdkVersion. To further increase the confidence of our analysis,
we count the 8,019 (35.4%) apps that invoke over five different API calls with
higher API levels than corresponding minSdkVersion. Therefore, we estimate that
around 35% apps could crash when running on lower versions of Android plat-
forms because they under-set the minSdkVersion value. Fortunately, we find that
the number of inconsistency warnings per app reported by our bytecode search is
well manageable for developers — 77.8% of the 14,363 apps have fewer than 10
different inconsistent API calls. It is thus not difficult for developers to perform a
one-time manual check.

Fortunately, apps with compatibility inconsistency issues could crash only on
certain Android platforms. More specifically, they could crash only on versions of
platforms between minSdkVersion and minLevel, as illustrated earlier in Sec. 2.2.
Therefore, it is necessary to study on which Android platforms those buggy apps
could crash, because nowadays some lower versions of Android hold a limited

Measuring Declared SDK Versions and Their Consistency with API Calls 21

a
p
p
.j
o
b
.J
o
b
S
e
rv

ic
e

v
ie

w
.V

ie
w

a
p
p
.A

ct
iv

it
y

co
n
te

n
t.

C
o
n
te

x
t

w
e
b
ki

t.
W

e
b
S
e
tt

in
g
s

a
p
p
.F

ra
g
m

e
n
t

a
p
p
.j
o
b
.J
o
b
P
a
ra

m
e
te

rs

w
e
b
ki

t.
W

e
b
V

ie
w

v
ie

w
.V

ie
w

T
re

e
O

b
se

rv
e
r

a
p
p
.N

o
ti

fi
ca

ti
o
n
$

B
u
ild

e
r

w
e
b
ki

t.
W

e
b
R

e
so

u
rc

e
R

e
q
u
e
st

w
e
b
ki

t.
W

e
b
V

ie
w

C
lie

n
t

w
id

g
e
t.

Fr
a
m

e
La

y
o
u
t

v
ie

w
.D

is
p
la

y

a
p
p
.A

p
p
O

p
sM

a
n
a
g
e
r

w
e
b
ki

t.
W

e
b
R

e
so

u
rc

e
R

e
sp

o
n
se

co
n
te

n
t.

p
m

.P
a
ck

a
g
e
M

a
n
a
g
e
r

a
p
p
.A

ct
iv

it
y
M

a
n
a
g
e
r

o
s.

U
se

rM
a
n
a
g
e
r

co
n
te

n
t.

p
m

.P
a
ck

a
g
e
In

st
a
lle

r

Top Android API classes that incur compatibility inconsistency

0

1000

2000

3000

4000

5000

6000

#
 A

ff
e
ct

e
d
 A

p
p
s

5150
4663

4320

2225 2050 2032 1969 1919 1833 1792 1720 1630 1577 1562
1273 1253 1188 1145 1086 1079

Fig. 14: Bar chart of the top 20 Android API classes (with “android.” prefix
omitted) that incur compatibility inconsistency in our dataset.

market share, e.g., only 10.7% for Android lower than 5.0 as of July 2020 [13].
As a result, even if some apps are buggy with compatibility inconsistency, they
cannot trigger the crash on user phones equipped with recent versions of Android.

Since minLevel is the indicator for maximum versions of Android platforms a
buggy app could crash on, we plot a bar chart of minLevel in Fig. 13 for the 14,363
app detected with potential compatibility inconsistency. We can see that only
2,566 (11.3% of 22,687) apps could crash on Android 6.0 and above (via counting
apps with minLevel larger than 23), and similarly 1,786 (7.9%) for Android 7.0
and above. In other words, most (11,797 out of 14,363) of potentially buggy apps
cannot exhibit their incompatibility bugs on the majority of Android phones that
are with 74.8% market share in July 2020 [13]. Furthermore, 8,990 out of 14,363
apps could crash only on Android lower than 5.0, which significantly limits the
consequences of their incompatibility issues.

Finding 2-2: We find that by employing bytecode search for SDK INT checking,
our approach can reduce 17.3% false positives of compatibility inconsistency results.
As mentioned in Sec. 3.3.2, a false positive of compatibility inconsistency could
appear if an API call guarded with SDK INT checking is not detected. Here we
measure the number of such false positives that could be excluded by the bytecode
search. We find that our search of SDK INT checking avoids 3,003 apps from being
mistakenly marked with compatibility inconsistency. Since there are at most 14,363
apps (i.e., true positives) that could crash when running on lower versions of
Android platforms, the percentage of reduced false positives due to bytecode search
is at least 17.3%.

Finding 2-3: A detailed analysis of Android APIs that incur compatibility
inconsistency reveals that some API classes, such as view, webkit, and system
manager related classes, are commonly misused. We further try to understand
the common sources of compatibility inconsistency by analyzing the newly added
Android APIs that incur compatibility inconsistency in our dataset. We find that
6,454 (27.4% of all 23,542) newly added APIs from 1,138 unique classes cause

22 Daoyuan Wu et al.

Fig. 15: A case study of the DSDK issue with incompatibility effect: Solo VPN.

compatibility inconsistency in at least one app in our dataset. In particular, 232
(20.4%) API classes affect more than 100 different apps each, making them the
common sources of compatibility inconsistency. Fortunately, half of API classes
only affect fewer than 10 apps each, which suggests that only some portions of
API classes are prone to misuses.

We thus take a closer look at the top 20 Android API classes that cause com-
patibility inconsistency. As shown in Fig. 14, all of these classes affect over 1K apps
each. In particular, the JobService class (introduced in Android 5.0, level 21) alone
could cause compatibility inconsistency in around 5K apps. Other commonly mis-
used API classes include those related to view (e.g., the View, Activity, Context,
and Fragment classes), webkit (e.g., the WebSettings and WebView classes), and
system manager (e.g., the AppOpsManager and UserManager classes). These classes
nearly occupy all the top 20 misused ones.

Case study: Solo VPN. To demonstrate the impact of incompatibility DSDK

issues, we identify a problematic app in our dataset and try to make it crash at
the runtime. However, it is non-trivial to dynamically achieve this because a crash
point may hide deep in certain paths or under certain conditions, which is why
the previous work, CiD [30], requested developers themselves to help validate their
detection results [3]. To simplify our testing, we intentionally targeted at the VPN
apps based on the observation that some VpnService APIs require Android 5.0 at
the API level 21. After testing a few VPN apps in our dataset, we quickly identified
a buggy app, Solo VPN (co.solovpn, version: 1.32), which crashed immediately
after we clicked the “Connect” VPN button on an Android 4.1 device. Fig. 15 shows
the alert dialog popped up, stating that “Unfortunately, SoloVPN has stopped”.

4.4 RQ3: Inconsistency Results with Security Effect

In this subsection, we present a total of three findings regarding RQ3.

Measuring Declared SDK Versions and Their Consistency with API Calls 23

Finding 3-1: Around 2% apps set an outdated targetSdkVersion attribute
and also invoke a dangerous WebView API, making themselves exploitable by re-
mote code execution. As explained in Sec. 2.2.2, we measure inconsistency results
with the security effect by analyzing each app’s addJavascriptInterface() API
call and the declared targetSdkVersion attribute. In our dataset, 2,791 apps in-
voke the addJavascriptInterface() API, which suggests that calling this Web-
View API is necessary in many apps. However, 484 of them, i.e., 2.1% of the entire
dataset of 22,687 apps, still set an outdated targetSdkVersion attribute below
level 17, making themselves not only exploitable on Android lower than 4.2 but
also vulnerable on higher versions of Android platforms. This could be avoided if
their targetSdkVersion values are updated.

Finding 3-2: Our bytecode search of addJavascriptInterface() invocation
helps reduce 12.2% false positives. Recall from Sec. 3.3.2 that we perform bytecode
search to check whether an addJavascriptInterface() API call is invoked by a
valid class. We find that without such checking, 551 apps can be detected with
vulnerable combination of addJavascriptInterface() and targetSdkVersion. In
other words, our search of addJavascriptInterface() invocation avoids 67 (551
- 484) apps from being mistakenly marked with security inconsistency. Hence, we
conclude that our bytecode search reduces 12.2% false positives in the context of
addJavascriptInterface().

Table 3: The top five library classes that introduce addJavascriptInterface()

API call in vulnerable apps and the number of apps affected.

Library Class # Vulnerable Apps

Lcom/flurry/android/CatalogActivity; 41
Lcom/openfeint/internal/ui/NativeBrowser; 30

Lcom/doodlemobile/gamecenter/moregames/MoreGamesActivity; 19
Lcom/gau/go/launcherex/theme/classic/FullScreenAdWebPage; 17

Lcom/amazon/ags/html5/overlay/GameCircleUserInterface; 13

Finding 3-3: Around half of the vulnerable apps invoke the addJavascript

Interface() API only because of their embedded third-party libraries. Our ap-
proach can also determine whether the addJavascriptInterface() API is in-
voked by app’s own code or embedded by a third-party library. It turns out that
214 (44.2%) of 484 vulnerable apps invoke addJavascriptInterface() only be-
cause of their embedded third-party libraries. In particular, five libraries affect at
least 10 vulnerable apps each. Table 3 lists their class names and the number of
apps affected. We can see that the popular Yahoo Flurry SDK [7] and OpenFeint
Game SDK [9] cause some apps with outdated targetSdkVersion vulnerable.

This finding gives two implications. First, developers must check whether a
third-party library invokes some vulnerable APIs before embedding it into apps.
Second, library producers also need to ensure that certain dangerous APIs are
invoked only in safe versions of Android platforms, because a library can be used
in any app with all kinds of targetSdkVersion values.

Case study: Exsoul Browser. To demonstrate the impact of insecure DSDK

issues, we try to exploit a problematic app in our dataset. To exploit addJavascript
Interface vulnerabilities, an adversary needs to inject a piece of malicious Javascript

24 Daoyuan Wu et al.

Fig. 16: A case study of the DSDK issue with security effect: Exsoul Browser.

code into a vulnerable WebView-based interface in the victim app. He or she
could achieve this by either intercepting the HTTP traffic via a Man-In-The-
Middle proxy or tricking victim users to directly browse a malicious website.
We chose the second more convenient way and directly targeted at the browser
apps in our dataset for tests. There was only one browser app, Exsoul Browser
(com.exsoul), reported with DSDK security problems. We used it to browse a
demonstration exploit website that we prepared before, http://www4.comp.polyu.
edu.hk/~appsec/about/rceNew.html, which would output “Has RCE Vulnerabil-
ity” if the tested browsing interface is vulnerable. As shown in Fig. 16, we success-
fully validate the addJavascriptInterface vulnerability in Exsoul Browser on
an Android 4.1 device. We also find that Exsoul Browser exposed a Javascript
interface named “android”, which allows a malicious website to execute arbi-
trary commands by simply invoking this Javascript code: android.getClass().
forName("java.lang.Runtime").getMethod("getRuntime",null).invoke(null,

null).exec(cmdArgs).

4.5 RQ4: Performance Metrics of Our Approach

In this section, we evaluate performance metrics of our approach to answer RQ4.

Finding 4-1: Our approach achieves good scalability with an average time of
5.39s and the analysis time of 90% apps in less than 10 seconds. This makes our
approach suitable for online vetting. In Fig. 17, we present CDF plot of the amount
of time required for our approach to analyze each app. We can see that more than
50% apps can be analyzed in less than five seconds each, with the median time
of 4.75s. The average analysis time of all the 22,687 apps is only 5.39s. These
results indicate that our approach achieves good scalability, therefore suitable for
online vetting. App markets can deploy our approach to timely notify developers
the DSDK inconsistency in their apps.

In contrast, dataflow-based approaches [30] [27] suffer from the scalability prob-
lem. Specifically, CiD [30] failed to analyze 387 apps (out of a dataset of 2,000 apps)
due to timeouts and bugs. This 19.4% timeout or failure rate makes it infeasible
for online vetting, let alone performance statistics were also not clear for those

http://www4.comp.polyu.edu.hk/~appsec/about/rceNew.html
http://www4.comp.polyu.edu.hk/~appsec/about/rceNew.html

Measuring Declared SDK Versions and Their Consistency with API Calls 25

0 5 10 15 20 25

Analysis time (seconds) per app

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 17: CDF plot of the amount of time required for our approach to analyze each
app.

successfully analyzed. On the other hand, IctApiFinder [27] takes 3 minutes and
45 seconds to analyze only an app of 8MB (the app is available via historical
versions on https://f-droid.org/en/packages/com.nextcloud.client/), a size
much smaller than the average size (25MB) of our dataset. This suggests that Ic-
tApiFinder is impractical to perform online vetting of a modern app dataset from
Google Play (all apps evaluated by IctApiFinder were open-source apps from the
F-Droid website).

Finding 4-2: A further correlation analysis between analysis time and app size
shows that the performance of our approach is approximately in a linear relation-
ship with DEX file size of the app. We find that the performance of our approach
is always under control regardless of app size. This can be evaluated by perform-
ing a correlation analysis between analysis time and app size. In Fig. 18, we draw
a scatter plot of the relationship between analysis time and the size of DEX file
of the app (APK file contains both bytecode and resource files while DEX file is
only for bytecode). According to this figure, the analysis time and DEX file size
are approximately in a linear relationship, at the rate of around 30 seconds for
a 40MB DEX file (note that we count the file size of multiple DEX files if any).
There are some outliers of small apps with more analysis time (e.g., five apps un-
der 20MB exceeding 30s), which is largely because these apps involve much more
vulnerable API calls to search. On the other hand, the outliers of large apps with
less analysis time is due to unused third-party libraries embedded. Overall, the
linear relationship between analysis time and app size indicates that our approach
can achieve good performance even with large apps.

4.6 RQ5: The Updatability of The Buggy Apps

In this subsection, we continue to understand the updatability of apps that were
measured with DSDK issues in our dataset, i.e., whether they are still maintained
by their developers. This is important because compared with the updatable apps

https://f-droid.org/en/packages/com.nextcloud.client/

26 Daoyuan Wu et al.

0 10 20 30 40 50

Analysis time (seconds) per app

0

10

20

30

40

50

T
h
e
 D

E
X

 f
ile

 s
iz

e
 (

M
B

)
o
f

e
a
ch

 a
p
p

Fig. 18: Scatter plot of the relationship between analysis time and DEX size.

Deprecated < 2015 2016 2017 2018 2019

The latest year of app release on Google Play

0

1000

2000

3000

4000

5000

6000

T
h
e
 n

u
m

b
e
r

o
f

a
p
p
s

1146

217 249
411

797

5539

Fig. 19: Bar chart of the distribution of apps that were measured with DSDK issues
in our dataset and their latest release years on Google Play.

that could eventually address their DSDK issues via the app updates, outdated apps
have no maintainers to periodically update and fix their DSDK problems. To study
to what extent this problem is, we use 8,359 unique apps (8,019 incompatible
apps and 484 vulnerable apps) that were reported with potential DSDK problems
in Sec. 4.3 and 4.4 for the analysis. Since our dataset was crawled in November
2018, we collected the latest release date of those buggy apps on Google Play in
early December 2019. We believe that this one-year time frame allows us to test
the app updatability by analyzing whether apps have been updated in 2019 or
not. We show our finding in the next paragraph.

Finding 5: Around 20% of the 8,359 buggy apps were never updated in 2019,
and 13.7% have been deprecated from Google Play, causing a total of 33.7% apps
outdated. Fig. 19 shows a bar chart of the distribution of apps that were measured
with DSDK issues in our dataset and their latest release years on Google Play.

Measuring Declared SDK Versions and Their Consistency with API Calls 27

According to this figure, 5,539 (66.3%) apps have been updated at least once in
2019, which allows their developers to upgrade DSDK versions to fix their DSDK

problems. However, there are still one third of the measured apps not updatable.
Specifically, the latest release years of 1,674 (20%) apps have been 2018, 2017,
2016, and even before 2015. Besides these “old” apps, we find that 1,146 (13.7%)
apps are even deprecated from Google Play for various reasons (e.g., being taken
down by developer themselves or violating the advertisement policy on Google
Play). No matter for what reasons, they are no longer on Google Play due to no
further maintenance, whereas their previously downloaded versions could still be
in user phones. Both old and deprecated apps incur a large number of outdated
apps in the wild, with a total of 33.7% in our dataset. Therefore, it is worthwhile
for researchers to further develop techniques for automatically fixing DSDK issues
in those outdated apps.

5 Implications

In this section, we further present two implications on the qualitative analysis of
identified DSDK problems and actionable countermeasures for developers.

Implication 1: Android’s original design of the DSDK mechanism, despite the
good intention, does not satisfy the expectation of developers’ real usage. One ma-
jor problem is that it is difficult to evolve the DSDK versions correctly when apps
are updated with new or deprecated APIs. The original DSDK design is a static
mechanism, and there was no automatic mechanism to dynamically update the
outdated DSDK versions. However, quite a number of apps are updated frequently,
e.g., 1,448 of the top 10,713 apps studied in 2014 were updated on a bi-weekly
basis or even more frequently [36]. In this way, it is challenging for developers
to maintain the DSDK versions while they are already busy with the functional-
ity update. Moreover, the addJavascriptInterface() vulnerabilities reported in
Sec. 4.4 indicate that there is a semantic gap between the targetSdkVersion de-
sign and developers’ understanding. Indeed, it is somehow confusing that lower
versions of API behaviors would be used even when an app is running on a higher
version of the Android platform (see Sec. 2). To our knowledge, this is not the
first case where a misunderstanding between Android’s design and developers’
knowledge happens. Another notable example is that Android once by default ex-
ported all content provider components that have no android:exported attribute
defined, which caused a large number of vulnerable apps [54] since developers did
not expect their content provider components to be exported.

It is worth noting that this implication is only our plausible conjecture. Based
on the factual analysis results reported in Sec. 4, other conjectures could also be
possible. However, no matter what the causes are from the developers’ perspective,
the consequences remain the same and significant.

Implication 2: To mitigate the DSDK problems, the Android community could
take countermeasures from different levels. We list the following three actionable
countermeasures that can be adopted by different stakeholders:

– Google Android could provide better IDE (integrated development environ-
ment) to help developers check DSDK versions before uploading their apps to
the markets. Such checking is ideally automatic and should launch whenever

28 Daoyuan Wu et al.

there are new changes in apps. We have seen a good trend in the recent An-
droid Studio IDE, which performs more user-friendly DSDK checking than its
predecessor, i.e., the Android Lint plugin in Eclipse.

– The app markets can deploy our approach to perform a quick and mandatory
checking of each uploaded app. The suspicious DSDK conflicts and recommen-
dations need to be either approved or dismissed. In this way, we can guarantee
that developers are at least aware of potential DSDK problems in their apps.

– As the last line of defense, end-user Android devices can dynamically upgrade
DSDK versions in victim apps or enforce mandatory access control [49] so that
they are no longer incompatible or vulnerable at the operating system level.
This is especially important for the apps no longer maintained (see Sec. 4.6).

6 Threats To Validity

In this section, we summarize some major threats to the validity of our study.

Firstly, same as typical Android static analysis, our approach does not handle
Java reflection, dynamic code loading, native code, and complicated code obfusca-
tion. However, some apps may employ these mechanisms to access certain Android
APIs. If one such API call has inconsistency issues, a false negative would appear.
Since these code protection mechanisms are usually used in malware, our statistical
results of popular apps will be less affected and we will consider these mechanisms
in our future work.

Secondly, although our bytecode search in Sec. 3.3.2 has minimized false pos-
itives caused by VERSION.SDK INT checking and uninvoked third-party libraries,
it is theoretically less accurate than dataflow-based approaches. Fortunately, in
our deployment model, we can rely on developers to manually check and correct
inconsistency reported by our approach. Moreover, as evidenced in Sec. 4.3, the
manual effort required in such checking is also limited — around 80% apps are
reported with fewer than ten inconsistent API calls each, which is manageable for
developers to perform a one-time manual check. Due to this limitation, the mea-
surement results reported in this paper represent an upper bound of all potential
DSDK problems (under the condition that the common analysis difficulties above
are not considered). This satisfies our objective of conducting a comprehensive
DSDK study, whereas it is not suitable for bug detection.

Thirdly, the consistency detection in this paper focuses on changed APIs, but
there are also added and removed Java/Android fields during the SDK evolution.
To build the mapping between fields and SDK versions, we found that we can lever-
age the same document analysis method in Sec. 3.2, because the api-versions.xml
file also records added, removed, and deprecated fields in all Android classes. By
inputting this mapping to our app analysis, we can extend our consistency detec-
tion to evolved Android fields as well in our future work.

Lastly, although we have updated the original 2015 dataset with a recent
dataset crawled in November 2018 and further checked its updatability in Decem-
ber 2019, we are not able to keep updating it. As a result, the findings reported
in this paper may not represent the latest scenarios. We invite other researchers
to replicate our findings on more recent datasets.

Measuring Declared SDK Versions and Their Consistency with API Calls 29

7 Related Work

In this section, we summarize some related research on declared SDK versions,
Android APIs, and Android app static analysis.

7.1 Research on Declared SDK Versions

To the best of our knowledge, there were no systematic studies on declared SDK
versions previously, except for some specific studies on the targetSdkVersion

or minSdkVersion attributes in different scenarios. Notably, Wu and Chang [46]
showed that due to using outdated targetSdkVersion attributes, many Android
browser apps were vulnerable to file:// vulnerabilities. They further demon-
strated more security consequences caused by outdated targetSdkVersion at-
tributes [47]. Following this line of research, Mutchler et al. [37] conducted a large-
scale measurement of multiple vulnerabilities that are affected by the fragmented
targetSdkVersion attributes. Wei et al. [44] also studied Android fragmentation
with the focus on compatibility issues. In particular, our preliminary conference
version of this work [51] has motivated three recent follow-up works [30] [27] [40] on
detecting compatibility issues caused by inappropriate minSdkVersion attributes.
Compared to all these works, our study is the first systematic work on measuring
all kinds of DSDK versions and their (in)consistency with API calls.

7.2 Android API Studies

Besides DSDK and fragmentation, our paper is also related to prior studies on
Android APIs or SDKs. Among these studies, the work performed by McDonnell
et al. [35] is the closest to our paper. They also studied the Android API evolution
but focused on how client apps follow Android API changes. In contrast, our
focus is the consistency between apps’ DSDK and API calls. Other related works
have studied the correlation between apps’ API change and their success [33],
the deprecated API usage in Java-based systems [21], the inaccessible APIs in
Android framework and their usage in third-party apps [31], and the Android
Alarm API usage and their impacts to network latency [12]. In particular, the
work conducted by Almeida et al. [12] analyzed targetSdkVersion in the apps that
invoke Alarm APIs. Additionally, several security papers analyzed the mappings
between Android APIs and their permissions [23] [16] [19].

7.3 Android App Static Analysis

A large number of Android studies have leveraged static analysis in many appli-
cations over past years. The major methodology can be roughly classified into
control-flow based reachability analysis and dataflow-based taint analysis. For the
reachability analysis, RiskRanker [26] and Woodpecker [25] are two pioneer repre-
sentative works in the domains of malware detection and vulnerability discovery,
respectively. They tested the reachability from entry points to sink APIs. In con-
trast, more prior works employed dataflow analysis to taint the propagation flows

30 Daoyuan Wu et al.

of an interested data variable. FlowDroid [15], Amandroid [43], DroidSafe [24], and
HornDroid [22] are representative works in this research direction. In particular,
FlowDroid and Amandroid have been used or customized in many follow-up static
analysis tools (e.g., [53] [17] [41] [28] [27]). One common thing between reachability
analysis and dataflow analysis is that they both require to generate an app call
graph, the precision of which affects the entire analysis accuracy. However, gener-
ating a high-precision call graph requires expensive pointer analysis [43], and the
scalability concern is why we proposed lightweight bytecode search for our online
vetting of API-SDK inconsistency in this paper.

8 Conclusion and Future Work

In this paper, we conducted a systematic study of declared SDK versions in An-
droid apps, a modern software mechanism that received little attention. We mea-
sured the current practice of declared SDK versions or DSDK versions in a large
set of 22,687 modern apps and the inconsistency between DSDK versions and their
host apps’ API calls. To facilitate the analysis that can be readily deployed by
app markets for online vetting, we proposed a robust and scalable approach that
operates on the Android bytecode level and employs a lightweight bytecode search
for app analysis. We have obtained some interesting new findings, including (i)
4.76% apps do not claim the targeted DSDK versions, although this percentage has
significantly dropped over recent three years, (ii) around 35% apps under-set the
minimum DSDK versions and could incur runtime crashes, but fortunately, only
11.3% apps could crash on Android 6.0 and above, and (iii) around 2% apps, due
to under-claiming the targeted DSDK versions, are potentially exploitable by re-
mote code execution, and half of them invoke the vulnerable API via embedded
third-party libraries. In the future, we plan to conduct more DSDK case studies and
report buggy cases to app developers and markets for fixes, and further improve
our approach to mitigate some threats to validity.

Acknowledgements We thank editors and all the reviewers for their valuable comments and
helpful suggestions. This research/project is supported by the Singapore National Research
Foundation under the National Satellite of Excellence in Mobile Systems Security and Cloud
Security (NRF2018NCR-NSOE004-0001) and partially supported by a direct grant (ref. no.
4055127) from The Chinese University of Hong Kong.

References

1. aapt: Android Asset Packaging Tool. http://elinux.org/Android_aapt
2. The AndroidManifest.xml file. http://developer.android.com/guide/topics/manifest/

manifest-intro.html
3. API compatibility issues in the emdete/tabulae project. https://github.com/emdete/

tabulae/issues/12
4. apktool. https://ibotpeaches.github.io/Apktool/
5. Enable multidex for apps with over 64K methods. https://developer.android.com/

studio/build/multidex
6. IDC: Smartphone Market Share. https://www.idc.com/promo/

smartphone-market-share/os
7. Integrate Flurry SDK for Android. https://developer.yahoo.com/flurry/docs/

integrateflurry/android/

http://elinux.org/Android_aapt
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://github.com/emdete/tabulae/issues/12
https://github.com/emdete/tabulae/issues/12
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://developer.yahoo.com/flurry/docs/integrateflurry/android/
https://developer.yahoo.com/flurry/docs/integrateflurry/android/

Measuring Declared SDK Versions and Their Consistency with API Calls 31

8. Multiple APK support - Android Developers. https://developer.android.com/google/
play/publishing/multiple-apks

9. Openfeint is the largest mobile social gaming network in the world. http://www.
openfeint.com/

10. The uses-sdk manifest element. http://developer.android.com/guide/topics/
manifest/uses-sdk-element.html

11. Allix, K., Bissyandé, T.F., Klein, J., Traon, Y.L.: AndroZoo: Collecting millions of Android
apps for the research community. In: Proc. MSR (2016)

12. Almeida, M., Bilal, M., Blackburn, J., Papagiannaki, K.: An empirical study of Android
alarm usage for application scheduling. In: Proc. Springer PAM (2016)

13. Android: Distribution dashboard. https://developer.android.com/about/dashboards/
14. Android: Platform codenames, versions, and API levels. https://source.android.com/

source/build-numbers.html
15. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y., Octeau, D.,

McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In: ACM PLDI (2014)

16. Au, K., Zhou, Y., Huang, Z., Lie, D.: PScout: Analyzing the Android permission specifi-
cation. In: Proc. ACM CCS (2012)

17. Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E.:
Mining apps for abnormal usage of sensitive data. In: Proc. ACM ICSE (2015)

18. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in Android and its
security applications. In: Proc. ACM CCS (2016)

19. Backes, M., Bugiel, S., Derr, E., McDaniel, P.D., Octeau, D., Weisgerber, S.: On Demysti-
fying the Android Application Framework: Re-Visiting Android Permission Specification
Analysis. In: Proc. USENIX Security (2016)

20. Bonett, R., Kafle, K., Moran, K., Nadkarni, A., Poshyvanyk, D.: Discovering flaws in
security-focused static analysis tools for Android using systematic mutation. In: Proc.
USENIX Security (2018)

21. Brito, G., Hora, A., Valente, M.T., Robbes, R.: Do developers deprecate APIs with re-
placement messages? a large-scale analysis on Java systems. In: Proc. IEEE SANER
(2016)

22. Calzavara, S., Grishchenko, I., Maffei, M.: HornDroid: Practical and sound static analysis
of Android applications by SMT solving. In: Proc. IEEE EuroS&P (2016)

23. Felt, A., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In:
Proc. ACM CCS (2011)

24. Gordon, M.I., Kim, D., Perkins, J., Gilham, L., Nguyen, N., Rinard, M.: Information-flow
analysis of Android applications in DroidSafe. In: Proc. ISOC NDSS (2015)

25. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks in stock
Android smartphones. In: Proc. ISOC NDSS (2012)

26. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: Scalable and accurate
zero-day Android malware detection. In: Proc. ACM MobiSys (2012)

27. He, D., Li, L., Wang, L., Zheng, H., Li, G., Xue, J.: Understanding and detecting evolution-
induced compatibility issues in Android apps. In: Proc. ACM ASE (2018)

28. Jia, Y., Chen, Q., Lin, Y., Kong, C., Mao, Z.: Open doors for Bob and Mallory: Open
port usage in Android apps and security implications. In: Proc. IEEE EuroS&P (2017)

29. Lei, L., He, Y., Sun, K., Jing, J., Wang, Y., Li, Q., Weng, J.: Vulnerable Implicit Service:
A Revisit. In: Proc. ACM CCS (2017)

30. Li, L., Bissyandé, T.F., Wang, H., Klein, J.: CiD: Automating the detection of API-related
compatibility issues in Android apps. In: Proc. ACM ISSTA (2018)

31. Li, L., Bissyandé, T.F., Traon, Y.L., Klein, J.: Accessing inaccessible Android APIs: An
empirical study. In: Proc. IEEE ICSME (2016)

32. Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue, R., Huo, W.: LibD: Scalable
and precise third-party library detection in Android markets. In: Proc. ACM ICSE (2017)

33. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Penta, M.D., Oliveto, R., Poshy-
vanyk, D.: API change and fault proneness: A threat to the success of Android apps. In:
Proc. ACM FSE (2013)

34. Mariconti, E., Onwuzurike, L., Andriotis, P., Cristofaro, E.D., Ross, G., Stringhini, G.:
MaMaDroid: Detecting Android malware by building markov chains of behavioral models.
In: Proc. ISOC NDSS (2017)

35. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption in the
Android ecosystem. In: Proc. IEEE ICSM (2013)

https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/google/play/publishing/multiple-apks
http://www.openfeint.com/
http://www.openfeint.com/
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/about/dashboards/
https://source.android.com/source/build-numbers.html
https://source.android.com/source/build-numbers.html

32 Daoyuan Wu et al.

36. McIlroy, S., Ali, N., Hassan, A.E.: Fresh apps: an empirical study of frequently-updated
mobile apps in the Google play store. In: Empirical Software Engineering, Volume 21,
Issue 3 (2016)

37. Mutchler, P., Safaei, Y., Doupe, A., Mitchell, J.: Target fragmentation in Android apps.
In: Proc. IEEE Mobile Security Technologies (MoST) (2016)

38. Octeau, D., Jha, S., McDaniel, P.: Retargeting Android applications to Java bytecode. In:
Proc. ACM FSE (2012)

39. Pan, X., Wang, X., Duan, Y., Wang, X., Yin, H.: Dark hazard: Learning-based, large-scale
discovery of hidden sensitive operations in Android apps. In: Proc. ISOC NDSS (2017)

40. Scalabrino, S., Bavota, G., Linares-Vásquez, M., Lanza, M., Oliveto, R.: Data-Driven
Solutions to Detect API Compatibility Issues in Android: An Empirical Study. In: Proc.
MSR (2019)

41. Shao, Y., Ott, J., Jia, Y.J., Qian, Z., Mao, Z.M.: The misuse of Android Unix domain
sockets and security implications. In: Proc. ACM CCS (2016)

42. Tiwari, A., Prakash, J., Groß, S., Hammer, C.: A Large Scale Analysis of Android — Web
Hybridization. In: Journal of Systems and Software, Volume 170 (2020)

43. Wei, F., Roy, S., Ou, X., Robby: Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of Android apps. In: Proc. ACM CCS (2014)

44. Wei, L., Liu, Y., Cheung, S.C.: Taming Android fragmentation: Characterizing and de-
tecting compatibility issues for Android apps. In: Proc. ACM ASE (2016)

45. Wei, T., Zhang, Y., Xue, H., Zheng, M., Ren, C., Song, D.: Sidewinder Targeted Attack
against Android in The Golden Age of Ad Libraries. In: Black Hat USA (2014)

46. Wu, D., Chang, R.K.C.: Analyzing Android browser apps for file:// vulnerabilities. In:
Proc. Springer Information Security Conference (ISC) (2014)

47. Wu, D., Chang, R.K.C.: Indirect file leaks in mobile applications. In: Proc. IEEE Mobile
Security Technologies (MoST) (2015)

48. Wu, D., Chang, R.K.C., Li, W., Cheng, E.K.T., Gao, D.: MopEye: Opportunistic mon-
itoring of per-app mobile network performance. In: Proc. USENIX Annual Technical
Conference (2017)

49. Wu, D., Cheng, Y., Gao, D., Li, Y., Deng, R.H.: SCLib: A practical and lightweight defense
against component hijacking in Android applications. In: Proc. ACM Conference on Data
and Applications Security and Privacy (CODASPY) (2018)

50. Wu, D., Gao, D., Chang, R.K.C., He, E., Cheng, E.K.T., Deng, R.H.: Understanding open
ports in Android applications: Discovery, diagnosis, and security assessment. In: Proc.
ISOC NDSS (2019)

51. Wu, D., Liu, X., Xu, J., Lo, D., Gao, D.: Measuring the declared SDK versions and their
consistency with API calls in Android apps. In: Proc. Springer International Conference
on Wireless Algorithms, Systems, and Applications (WASA) (2017)

52. Wu, D., Luo, X., Chang, R.K.C.: A Sink-driven Approach to Detecting Exposed Compo-
nent Vulnerabilities in Android Apps. In: CoRR arXiv, abs/1405.6282 (2014)

53. Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W.: AppContext: Differentiating
malicious and benign mobile app behaviors using context. In: Proc. ACM ICSE (2015)

54. Zhou, Y., Jiang, X.: Detecting passive content leaks and pollution in Android applications.
In: Proc. ISOC NDSS (2013)

	Introduction
	Demystifying Declared SDK Versions and Their Two Side Effects
	Declared SDK Versions in Android Apps
	Two Side Effects of Inappropriate DSDK Versions
	Side Effect I: Causing Runtime Crashes
	Side Effect II: Making Apps Vulnerable

	Methodology
	Overview
	Offline Phase: API Document Analysis
	Online Phase: Android App Analysis
	Retrieving DSDK Versions via Manifest Analysis
	Extracting Valid API Calls via Bytecode Search
	Calculating API Levels and Comparing Their Consistency with DSDKs

	Evaluation
	Dataset
	RQ1: Characteristics of Declared SDK Versions in the Wild
	RQ2: Inconsistency Results with Compatibility Effect
	RQ3: Inconsistency Results with Security Effect
	RQ4: Performance Metrics of Our Approach
	RQ5: The Updatability of The Buggy Apps

	Implications
	Threats To Validity
	Related Work
	Research on Declared SDK Versions
	Android API Studies
	Android App Static Analysis

	Conclusion and Future Work

