
GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by
Combining GPT with Program Analysis

Yuqiang Sun
Nanyang Technological University

Singapore, Singapore
suny0056@e.ntu.edu.sg

Daoyuan Wu∗
Nanyang Technological University

Singapore, Singapore
daoyuan.wu@ntu.edu.sg

Yue Xue
MetaTrust Labs

Singapore, Singapore
xueyue@metatrust.io

Han Liu
East China Normal University

Shanghai, China
hanliu@stu.ecnu.edu.cn

Haijun Wang
Xi’an Jiaotong University

Xi’an, China
haijunwang@xjtu.edu.cn

Zhengzi Xu
Nanyang Technological University

Singapore, Singapore
zhengzi.xu@ntu.edu.sg

Xiaofei Xie
Singapore Management University

Singapore, Singapore
xfxie@smu.edu.sg

Yang Liu
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

ABSTRACT
Smart contracts are prone to various vulnerabilities, leading to
substantial financial losses over time. Current analysis tools mainly
target vulnerabilities with fixed control- or data-flow patterns, such
as re-entrancy and integer overflow. However, a recent study on
Web3 security bugs revealed that about 80% of these bugs cannot be
audited by existing tools due to the lack of domain-specific property
description and checking. Given recent advances in Large Language
Models (LLMs), it is worth exploring how Generative Pre-training
Transformer (GPT) could aid in detecting logic vulnerabilities.

In this paper, we propose GPTScan, the first tool combining GPT
with static analysis for smart contract logic vulnerability detection.
Instead of relying solely on GPT to identify vulnerabilities, which
can lead to high false positives and is limited by GPT’s pre-trained
knowledge, we utilize GPT as a versatile code understanding tool.
By breaking down each logic vulnerability type into scenarios and
properties, GPTScan matches candidate vulnerabilities with GPT. To
enhance accuracy, GPTScan further instructs GPT to intelligently
recognize key variables and statements, which are then validated by
static confirmation. Evaluation on diverse datasets with around 400
contract projects and 3K Solidity files shows that GPTScan achieves
high precision (over 90%) for token contracts and acceptable preci-
sion (57.14%) for large projects like Web3Bugs. It effectively detects
ground-truth logic vulnerabilities with a recall of over 70%, includ-
ing 9 new vulnerabilities missed by human auditors. GPTScan is
fast and cost-effective, taking an average of 14.39 seconds and 0.01
USD to scan per thousand lines of Solidity code. Moreover, static
confirmation helps GPTScan reduce two-thirds of false positives.

1 INTRODUCTION
Smart contracts have emerged as the cornerstone of decentralized
finance (DeFi), providing a programmable and automated solution
for executing financial transactions. However, the security of these
smart contracts has become a major concern due to various se-
curity breaches [1, 4]. These breaches have led to financial losses
∗Corresponding author.

amounting to billions of dollars [66]. This situation is a disaster
for DeFi service providers, posing a significant threat to the entire
DeFi ecosystem and the safety of users’ assets.

Despite the availability of numerous analysis tools [29, 30, 37, 43,
56], they often focus on vulnerabilities with fixed control- or data-
flow patterns, such as re-entrancy [52, 61], integer overflow [54],
and access control vulnerabilities [36, 39, 46]. However, a recent
study conducted by Zhang et al. [65] on Web3 security bugs re-
veals that around 80% of these vulnerabilities remain undetected
by existing tools. These undetected vulnerabilities are primarily
associated with the business logic of smart contracts. Traditional
static and dynamic analysis schemes, such as Slither [37], do not
effectively address these vulnerabilities in smart contracts because
they do not aim to comprehend the underlying business logic of
smart contracts, nor do they model the functionality or consider
the roles of various variables or functions.

In this paper, we explore how recent advances in Large Lan-
guage Models (LLMs) [5] or Generative Pre-training Transformer
(GPT) [44, 49] could aid in detecting logic vulnerabilities in smart
contracts. A recent technical report [34] attempted to use GPT by
providing it with high-level vulnerability descriptions for project-
wide “Yes-or-No” inquiries, which is already easier than typical
function-level vulnerability detection. However, this approach suf-
fered from a high false positive rate of around 96% and required
advanced reasoning capabilities from GPT, necessitating the use of
GPT-4 instead of GPT-3.5. Instead, we treat GPT as a generic and
powerful code understanding tool and investigate how this capa-
bility can be combined with static analysis to create an intelligent
detection system for logic vulnerabilities.

To this end, we propose GPTScan, the first tool that combines
GPT with static analysis for detecting logic vulnerabilities in smart
contracts. To leverage GPT’s code understanding capability, we
break down each logic vulnerability type into code-level scenar-
ios and properties. Scenarios describe the code functionality under
which a logic vulnerability could occur, while properties explain
the vulnerable code attributes or operations. This approach enables
GPTScan to directly match candidate vulnerable functions based

ICSE 2024, April 2024, Lisbon, Portugal Sun et al.

on code-level semantics. However, since GPT-based matching is
still coarse-grained, GPTScan further instructs GPT to intelligently
recognize key variables and statements, which are then validated by
dedicated static confirmation modules. Moreover, a smart contract
project can consist of multiple Solidity files, making it infeasible
or costly to directly feed all of them to GPT. To address this issue,
GPTScan employs a multi-dimensional filtering process to effec-
tively narrow down the candidate functions for GPT matching.

We implemented GPTScan with the widely used GPT-3.5-turbo
model [27], which is 20 times more cost-effective [6] than the ad-
vanced GPT-4 model. Moreover, our multi-dimensional filtering al-
lowed GPTScan to utilize the default 4k context token size instead of
16k, resulting in a more economical solution. The parameters were
mainly kept at their default values, except for the temperature
parameter, which was adjusted from the default value of 1 to 0
to reduce the impact of GPT’s output randomness. To further en-
hance the reliability of GPT’s answers and minimize the influence
of output randomness, we proposed a trick called “mimic-in-the-
background” prompting, inspired by the success of zero-shot chain-
of-thought prompting [44]. For the static analysis part, GPTScan
relies on ANTLR [21] and crytic-compiler [7] to support call graph
and data dependency analysis.

To comprehensively evaluate GPTScan under different scenarios,
we collected three diverse datasets from real-world smart contracts.
Together, these datasets comprise around 400 contract projects,
3K Solidity files, 472K lines of code, and include 62 ground-truth
logic vulnerabilities. The first dataset, named Top200, consists of
smart contracts with the top 200 market capitalization. This dataset
primarily serves to evaluate the false positive rate of GPTScan. The
second dataset, referred to as Web3Bugs, was collected from the
recent Web3Bugs dataset [8]. The third dataset, called DefiHacks,
is sourced from the well-known DeFi Hacks dataset [9], which
contains vulnerable contracts that have experienced past attack
incidents. Top200 and DefiHacks primarily comprise cryptocurrency
token contract projects, whereasWeb3Bugs consists of large con-
tract projects audited on the Code4rena platform [10], with an
average of 36 Solidity files per project.

GPTScan achieves a low false positive rate of 4.39% when analyz-
ing non-vulnerable top contracts like Top200. It also demonstrates
similar performance in analyzing another set of token contracts,
DefiHacks, with a precision of 90.91%. These results indicate that
GPTScan is suitable for massive scanning of on-chain contracts.
Moreover, when analyzing large contract projects in Web3Bugs,
GPTScan still achieves an acceptable precision of 57.14%. Further-
more, GPTScan shows its efficacy in detecting ground-truth logic
vulnerabilities in theWeb3Bugs and DefiHacks datasets, with a re-
call of 83.33% and an F1 score of 67.8% forWeb3Bugs, and a recall of
71.43% and an F1 score of 80% for DefiHacks. In particular, GPTScan
identifies 9 new vulnerabilities that were not present in the audit
reports of Code4rena. This highlights the value of GPTScan as a
useful supplement to human auditors.

A further analysis of GPTScan’s running logs reveals that GPTScan
is fast and cost-effective, taking an average of only 14.39 seconds
and 0.01 USD to scan per thousand lines of Solidity code in the
tested datasets. The relatively higher cost (around 0.018 USD) and
slower speed (around 20 seconds) observed for Web3Bugs and Defi-
Hacks can be attributed to the presence of more complex functions

that cannot be filtered out by static filtering and scenario matching.
Furthermore, we diagnose that GPTScan’s static confirmation re-
duces 65.84% of the original false positive cases in the Web3Bugs
dataset. This finding underscores the importance of combining GPT
with static analysis to achieve accurate results.

Availability.GPTScan has been integrated as a part of MetaScan
(https://metatrust.io/metascan), an industry-leading smart contract
security scanning platform [22, 25]. Moreover, GPTScan’s evalua-
tion data is available at https://sites.google.com/view/gptscan for
facilitating easier comparisons in future work.

Roadmap. The rest of this paper is organized as follows. In §2,
we introduce some background information. In §3, we motivate the
need of both GPT and static analysis. Following that, in §4, we detail
the design of GPTScan, while in §5, we evaluate its performance.We
then discuss the applicability and current limitations in §6. Finally,
we summarize related work in §7 and conclude in §8.

2 BACKGROUND
In this section, we introduce some background about smart contract
vulnerabilities and GPT’s application in vulnerability detection.

Smart contract vulnerability types. Smart contracts are self-
running programs deployed on blockchain, written in a high-level
language called Solidity [11]. As described by Zhang et al. [65], there
are 26 types of vulnerabilities in smart contracts, categorized into
3 groups. The vulnerabilities in the first group are hard to exploit,
doubtful, or not directly related to the functionalities of a given
project. The second group of vulnerabilities involves the use of
simple and general oracles, not requiring an in-depth understanding
of the code semantics. Examples include Re-entrancy and Arithmetic
Overflow. Such vulnerabilities can be detected by data flow tracing
(e.g., Slither [37]), static symbolic execution (e.g., Solidity SMT
Checker [12] andMythril [13]) and other static analysis tools [29, 43,
47]. The third group of vulnerabilities requires high-level semantical
oracles for detection and is closely related to the business logic. Most
of these vulnerabilities are not detectable by existing static analysis
tools. This group comprises six main types of vulnerabilities: (S1)
price manipulation, (S2) ID-related violations, (S3) erroneous state
updates, (S4) atomicity violation, (S5) privilege escalation, and (S6)
erroneous accounting.

GPT and its application in vulnerability detection. Genera-
tive Pre-training Transformer (GPT) models, such as GPT-3.5 [49],
are large language models (LLMs) trained on vast text corpora,
including source code descriptions of different programming lan-
guages and vulnerabilities. With this knowledge, GPT can under-
stand and interpret source code, enabling zero-shot learning [44],
where examples of vulnerabilities are not needed to detect vulner-
abilities in source code. However, GPT still has a long way to go
before it can fully replace humans in code auditing [14]. David et
al. [34] provided GPTwith vulnerability descriptions and used them
to detect vulnerabilities in source code. They fed the entire project
into the GPT-4-32k model to detect 38 types of vulnerabilities in
smart contracts. However, the results were unsatisfactory and even
worse than a randommodel in terms of recall. Due to the limitations
of the GPT model on content length (from 4k tokens in GPT-3.5 to
32k tokens in GPT-4), analyzing complete projects or documents
using GPT is not viable, making David et al.’s approach unsuitable

https://metatrust.io/metascan
https://sites.google.com/view/gptscan

GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis ICSE 2024, April 2024, Lisbon, Portugal

1 function deposit(uint256 _amount) external returns (uint256) {

2 uint256 _pool = balance ();

3 uint256 _before = token.balanceOf(address(this));

4 token.safeTransferFrom(msg.sender , address(this), _amount);

5 uint256 _after = token.balanceOf(address(this));

6 _amount = _after.sub(_before); // Additional check for

deflationary tokens

7 uint256 _shares = 0;

8 if (totalSupply () == 0) {

9 _shares = _amount;

10 } else {

11 _shares = (_amount.mul(totalSupply ())).div(_pool);

12 }

13 _mint(msg.sender , _shares);

14 }

Figure 1: The Risky First Deposit (line 8-9) vulnerability.

1 function transfer(address account , uint256 amount) external

override notPaused returns (bool) {

2 require(msg.sender != account , Error.

SELF_TRANSFER_NOT_ALLOWED);

3 require(balances[msg.sender] >= amount , Error.

INSUFFICIENT_BALANCE);

4 // Initialize the ILiquidityPool pool variable

5 pool.handleLpTokenTransfer(msg.sender , account , amount);

6 balances[msg.sender] -= amount;

7 balances[account] += amount;

8 address lpGauge = currentAddresses[_LP_GAUGE];

9 if (lpGauge != address (0)) {

10 ILpGauge(lpGauge).userCheckpoint(msg.sender);

11 ILpGauge(lpGauge).userCheckpoint(account);

12 }

13 emit Transfer(msg.sender , account , amount);

14 return true;

15 }

Figure 2: TheWrong Checkpoint Order (line 6-7 & line 10-11).

for large projects. Moreover, as GPT has limited logical reasoning
capabilities, its results may not always be accurate, necessitating
verification using other methods to reduce the false positive rate.

3 MOTIVATING EXAMPLES
In this section, we use two real-world smart contract examples
to motivate why both GPT and static analysis are needed in the
process of detecting logic vulnerabilities.

Example 1: RequiringGPT to recognize variables and static
analysis to confirm the variable dependency. The first example
in Figure 1 is from the Code4rena [10] project 2021-11-yaxis [2]. The
vulnerability occurs when the LP (Liquidity Pool [45]) token’s entire
share is minted to the first depositor (line 9) while the current LP
token supply is zero (line 8). Consequently, the first depositor can
arbitrarily inflate the price per LP share (e.g., from a small _amount
to an extremely large value; see the detail of an exploit in GitHub
issue[15]), leading to future token deposits from victim users to be
indirectly “occupied” by the first depositor. While static analysis
may use hard-coded patterns to detect the totalSupply() logic
in line 8, GPT is necessary to intelligently recognize the variables
responsible for holding the deposit amount (_amount) and the total
share of the pool (_shares) to avoid false positives. Nevertheless,
precisely validating the vulnerable logic from line 8 to 9 falls outside
the scope of GPT, making static analysis essential for this task.

Example 2: Requiring GPT to recognize statements and
static analysis to confirm the statement order. The second ex-
ample in Figure 2 is from the Code4Rena project 2022-04-backd [16],

where the executing order of some statements is incorrect. The cor-
rect order should be to first perform user checkpoints (line 10-11)
and then update the balances of the sender and receiver for the
transfer (lines 6-7). Due to this mistake, a user can steal all rewards
because the checkpoint is executed after reward transfer [17]. To
detect this vulnerability, GPT is required to understand the seman-
tic of statements and recognize those that perform user checkpoints
and those that change user balances. However, we found that GPT
struggles to comprehend the concept of “before,” and as a result,
relying solely on GPT could report a patched version [18] of the
transfer function as vulnerable. Static analysis is thus necessary.

Based on the above examples, we find that static analysis cannot
understand high-level semantic information, and GPTmay overlook
some low-level information, potentially leading to low recall and
high false positives, respectively. Combining these two techniques
can complement each other and enhance detection performance.

4 GPTSCAN
In this section, we present GPTScan’s overall design and its three
core components from §4.1 to §4.4, followed by a summary of some
key implementation details in §4.5.

4.1 Overview and Challenges
Figure 3 illustrates GPTScan’s high-level workflow, with blue blocks
denoting GPT tasks and green blocks representing static analysis.
Given a smart contract project, which could be a standalone Solid-
ity file or a framework-based contract project containing multiple
Solidity files, GPTScan first performs contract parsing, call graph
analysis to determine function reachability, and comprehensive
filtering to extract candidate functions and their corresponding con-
text functions. GPTScan then utilizes GPT to match the candidate
functions with pre-abstracted scenarios and properties of relevant
vulnerability types. For the matched functions, GPTScan further
recognizes their key variables and statements via GPT, which are
subsequently passed to specialized static analysis modules for vul-
nerability confirmation.

During this three-step process, we need to address the following
three challenges:
C1: A smart contract project may contain tens of Solidity files1,
making it infeasible or costly to directly feed all of them to GPT.
Moreover, the presence of non-vulnerable functions may affect
GPT’s recognition of vulnerable ones. Therefore, how to effectively
narrow down the candidate functions for GPT matching becomes
essential.
C2: Existing GPT-based vulnerability detection works [14, 34, 35]
typically feed GPT with high-level vulnerability descriptions for
vulnerability matching, which either demands advanced reasoning
capabilities from GPT or relies on the pre-trained vulnerability
knowledge of GPT models. Hence, can we break down vulnerabil-
ity types in a manner that allows GPT, as a generic and intelligent
code understanding tool, to recognize them directly from code-level
semantics?

1According to our evaluation in §5, a Code4rena project has 36 Solidity files on average.
In contrast to a recent study [34], which claimed to feed entire contracts to the GPT-4
model with 32k tokens, we cannot feed the entire project into the model for analysis.

ICSE 2024, April 2024, Lisbon, Portugal Sun et al.

Multi-
dimensional

filtering

Candidate
function

pairs

Scenario-
based GPT
matching

Property-
based GPT
matching

Recognizing
key var/stmts

via GPT

§4.2: GPT-based Scenario
and Property Matching

Smart
Contract
Project

Vuln types +
Key variables
& statements

Static
Reachability

Analysis

Supplied to
static analysis

for confirmation

§4.4: From GPT Recognition
to Static Confirmation

Result of
Logic
Vulns

§4.3: Filtering for
Candidate Functions

Figure 3: A high-level overview of GPTScan, with blue blocks denoting GPT tasks and green blocks representing static analysis.
Table 1: Breaking down ten common logic vulnerability types into scenarios and properties.

Vulnerability Type Scenario and Property Filtering Type Static Check

Approval Not
Cleared

Scenario: add or check approval via require/if statements before the token transfer
Property: and there is no clear/reset of the approval when the transfer
finishes its main branch or encounters exceptions

FNI, FCCE VC

Risky First
Deposit

Scenario: deposit/mint/add the liquidity pool/amount/share
Property: and set the total share to the number of first deposit when
the supply/liquidity is 0

FCCE DF, VC

Price Manipulation
by AMM

Scenario: have code statements that get or calculate LP token’s value/price
Property: based on the market reserves/AMMprice/exchangeRate OR the
custom token balanceOf/totalSupply/amount/liquidity calculation

FNK, FCCE DF

Price Manipulation
by Buying Tokens

Scenario: buy some tokens
Property: using Uniswap/PancakeSwap APIs FNK, FCE FA

Vote Manipulation
by Flashloan

Scenario: calculate vote amount/number
Property: and this vote amount/number is from a vote weight that might
be manipulated by flashloan

FCCE DF

Front Running

Scenario: mint or vest or collect token/liquidity/earning and assign them to
the address recipient or to variable
Property: and this operation could be front run to benefit the account/address
that can be controlled by the parameter and has no sender check in the function code

FNK, FPNC, FPT, FCNE, FNM FA

Wrong Interest
Rate Order

Scenario: have inside code statements that update/accrue interest/exchange rate
Property: and have inside code statements that calculate/assign/distribute the
balance/share/stake/fee/loan/reward

FCE, CEN OC

Wrong
Checkpoint Order

Scenario: have inside code statements that invoke user checkpoint
Property: and have inside code statements that calculate/assign/distribute the
balance/share/stake/fee/loan/reward

FCE, CEN OC

Slippage

Scenario: involve calculating swap/liquidity or adding liquidity, and there is
asset exchanges or price queries
Property: but this operation could be attacked by Slippage/Sandwich Attack due to no
slip limit/minimum value check

FCCE, FCNCE VC

Unauthorized
Transfer

Scenario: involve transfering token from an address different from message sender
Property: and there is no check of allowance/approval from the address owner FNK, FCNE, FCE, FCNCE, FPNC VC

C3: Considering that GPT may produce unreliable answers or fail
to recognize differences in similar functions, further confirming the
matched potential vulnerabilities becomes critical.

Since challenge C1 and C3 are both related to challenge C2, we
first present how we tackle C2 in §4.2, followed by our solutions to
C1 and C3 in §4.3 and §4.4, respectively.

4.2 GPT-based Scenario and Property Matching
Existing GPT-based vulnerability detection works [14, 34, 35] iden-
tify vulnerabilities by simply feeding GPT with high-level vulner-
ability descriptions, such as the one provided for the Front Run-
ning vulnerability: “An attack where an attacker observes pending
transactions and creates a new transaction with a higher gas price,
enabling it to be processed before the observed transaction. This is
often done to gain an unfair advantage in decentralized exchanges or
other time-sensitive operations.” [34]. However, these descriptions
are condensed from root causes rather than code properties, making
it challenging for GPT to directly interpret code-level semantics.

Breaking down vulnerabilities into scenarios and prop-
erties. GPTScan adopts a different approach by breaking down

vulnerability types into code-level scenarios and properties. Specif-
ically, we use scenarios to describe the code functionality under
which a logic vulnerability could occur and properties to explain the
vulnerable code attributes or operations. Table 1 showcases how
we break down ten common logic vulnerability types into scenar-
ios and properties. These vulnerability types were selected from
a recent study [65] on smart contract vulnerabilities that require
high-level semantic oracles [8]. The study summarizes six cate-
gories of logic vulnerabilities from S1 to S6 (see §2), and we chose
ten representative cases from these categories. For instance, the Ap-
proval Not Cleared vulnerability is from S3, which involves missing
state update, and the two wrong order vulnerabilities are from S6,
relating to incorrect calculating order. Note that in this paper, we
manually broke down ten vulnerability types to precisely describe
their code-level attributes. To support more logic vulnerability types
in future work, we have figured out a GPT-based approach. This
approach employs GPT-4 to automatically extract initial scenario
and property sentences from past vulnerability reports, validate
them using the original vulnerable code, and iteratively regener-
ate new sentences until a scenario and property sentence pass the
original vulnerability validation. However, while the generation

GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis ICSE 2024, April 2024, Lisbon, Portugal

Prompt Template

System: You are a smart contract auditor. Youwill be asked
questions related to code properties. You can mimic an-
swering them in the background five times and provide me
with the most frequently appearing answer. Furthermore,
please strictly adhere to the output format specified in the
question; there is no need to explain your answer.

Scenario Matching
Given the following smart contract code, answer the ques-
tions below and organize the result in a json format like
{"1": "Yes" or "No", "2": "Yes" or "No"}.
"1": [%SCENARIO_1%]?
"2": [%SCENARIO_2%]?
[%CODE%]

Property Matching
Does the following smart contract code "[%SCENARIO,
PROPERTY%]"? Answer only "Yes" or "No".
[%CODE%]

Figure 4: Prompt for scenario and property matching.

of scenario and property sentences can be automated, the prompt
used for GPT recognition, which we will explain in §4.4, must be
manually crafted for different types of vulnerabilities.

Each scenario and property can be divided into two parts. The
first part includes a description of the function’s functionality,
which helps GPTScan perform an initial screening of candidate
functions to reduce unnecessary subsequent scanning. Using Front
Running as an example, functions affected by this vulnerability type
must involve actions like minting, vesting, or transferring tokens
of other users. The approval for such actions is granted in a previ-
ous transaction, allowing attackers to front-run the function and
gain an unfair advantage. The second part includes a description
of the function’s behavior, which is related to the root cause of the
vulnerabilities, such as the lack of security checks and incorrect
accounting order. If a function meets the properties of the first part,
i.e., scenarios, GPTScan will send the function to GPT again to
check if it satisfies both the scenarios and properties. If both parts
are satisfied, GPTScan considers the function likely to contain a
specific type of vulnerability and will confirm it in the later steps.

Yes-or-No scenario and property matching. With the ab-
stracted scenarios and properties, we utilize them to match can-
didate functions using GPT. Figure 4 shows the prompt template
employed by GPTScan for scenario and property matching, which
is designed with three considerations. Firstly, property matching
is performed only for functions that pass our scenario matching.
This separation of scenario and property enables us to query all
scenarios in a single prompt, thus saving on GPT costs. Secondly,
during property matching, we double-confirm the scenario with
GPT by querying the combination of scenario and property rather
than property alone. Indeed, the scenarios and properties from

Table 1 are designed to form a complete sentence. Thirdly, consid-
ering that GPT models sometimes provide ambiguous answers or
hard-to-parse text, scenario and property matching are designed
with yes or no questions only, aiming to minimize the impact of
unstructured GPT responses. Moreover, we instruct GPT to learn
the output JSON format for the multiple-choice scenario matching,
leveraging GPT’s instruction learning capability [50].

Minimizing the impact of GPT output randomness. Al-
though we use yes-or-no questions to restrict the format of GPT
responses, it does not eliminate the inherent randomness of GPT
model output. Consequently, GPT may not provide the same an-
swer for the same question. To address this, one approach is to set
the temperature parameter of GPT models to 0, making the model
tend to be deterministic. To further enhance the reliability of the
answer and minimize the influence of GPT output randomness,
we propose a trick called “mimic-in-the-background” prompting,
which is inspired by the successful usage of “Let’s think step by step.”
in the zero-shot chain-of-thought prompting [44] – evaluating such
prompting is beyond the scope of this paper. As shown in Figure 4,
we use a GPT system prompt to instruct the model to mimic an-
swering questions in the background five times and provide the
most frequently appearing answer to ensure greater consistency.

4.3 Multi-dimensional Function Filtering
As mentioned in §4.1, we need to filter the candidate functions be-
fore GPT matching. Here, we propose a multi-dimensional filtering
to systematically select candidate functions for different vulnera-
bility types. Moreover, we conduct reachability analysis to retain
only the functions that could be accessed by potential attackers.

Project-wide file filtering. Our multi-dimensional filtering
begins with project-wide file filtering, which involves excluding
non-Solidity files e..g, those under the “node_modules” directory,
test files (e.g., those found in various “test” directories), and third-
party library files (e.g., those from well-known libraries such as
“openzeppelin”, “uniswap”, and “pancakeswap”). Once these files
are filtered out, GPTScan can concentrate on the project’s Solidity
files themselves.

Filtering out OpenZeppelin functions. OpenZeppelin [26]
provides a set of libraries to build secure smart contracts on Ethereum,
widely used in the smart contract community. While we have fil-
tered out OpenZeppelin contracts imported as libraries, we found
that OpenZeppelin functions are often directly copied into many
developers’ contract code, making our project-wide file filtering
ineffective. To address this, we first perform an offline analysis of
OpenZeppelin’s source code to extract all its API function signa-
tures as a whitelist. Each function signature in the whitelist includes
the access control modifier, the class name (sub-contract name),
function name, return value types, and parameter types. For exam-
ple, the signature of the transfer function in the ERC20 contract
is public ERC20.transfer(address,uint256). Next, GPTScan
generates the signature of all candidate functions in the same format
and compares them with the signatures in the whitelist. Note that
the signature of the candidate function is generated with both the
class name and the name of the inherited class because developers
may implement the inherited class. By conducting this comparison,
GPTScan excludes functions with the same signature as those in

ICSE 2024, April 2024, Lisbon, Portugal Sun et al.

the whitelist, which we consider secure in this paper. In the future,
we will add clone-based filtering that covers function bodies.

Vulnerability-specific function filtering. After project-wide
file and OpenZeppelin filtering, GPTScan conducts function-level
filtering for different vulnerability types, which constitutes the ma-
jor part of GPTScan’s multi-dimensional filtering. To accommodate
various filtering requirements, we have designed a YAML-based [3]
filtering rule specification to support the following filtering rules:
FNK: The Function Name should contain at least one Keyword.
FCE: The Function Content should contain at least one Expression.
FCNE: The Function Content should Not contain any Expression.
FCCE: The Function Content should contain at least one Combina-
tion of given Expressions.
FCNCE: The Function Content should Not contain any Combina-
tion of given Expressions.
FPT: The Function Parameters should match the given Types.
FPNC: The Function should be Public, and we will Not analyze it
with its Caller.
FNM: The Function should Not contain Modifiers that with access
control (e.g., onlyOwner).
CFN: The Callers of this Function will Not be analyzed.

These filtering rules encompass the basic function name (FNK),
the detailed function content (FCE, FCNE, FCCE, and FCNCE), the
function parameters (FPT), and the function’s caller relation (FPNC,
FNM, CFN). Different vulnerabilities will utilize their specific fil-
tering rules. The selection of filters is mainly based on the domain
knowledge of the vulnerability types. For example, the Risky First
Deposit vulnerability shown in Figure 1 uses only the FCCE rule
type to select any combination of “total,” “supply,” and “liquidity,”
either separately or together, to ensure that the deposit is related to
the calculation of total supply or liquidity of the token. On the other
hand, Price Manipulation by AMM is related to the calculation of
token prices. In this rule, we used the FNK rule to select functions
related to price calculation, and the FCE rule to select functions
that contain the keywords “price,” “value,” and “liquidity.”

Reachability analysis. After filtering, we perform call graph
analysis to determine the reachability of candidate functions. We
utilize ANTLR [21], a lexer and parser generator, to parse the source
code of the smart contract project and generate an abstract syn-
tax tree (AST). Using the AST, we build a call graph for the en-
tire project. In Solidity, there are four types of access control an-
notations: public, external, internal and private. Functions
marked as public and external can be called by anyone, making
them directly reachable for potential attackers. Functions marked
as internal and private might be called by other reachable func-
tions, so we analyze their reachability and include them if they
are reachable. Moreover, Solidity allows developers to use custom
modifiers to perform permission checks before function calls. For ex-
ample, functions annotated with onlyOwner are only allowed to be
called by the owner, which we consider as unreachable. Functions
that are deemed unreachable are excluded from the subsequent
GPT-based matching in §4.2.

An Example Prompt for GPT Recognition

System: (same as in Figure 4, omitted here for brevity.)

In this function, which variable or function holds the total
supply/liquidity AND is used by the conditional branch to
determine the supply/liquidity is 0? Please answer in a
section starts with "VariableB:".
In this function, which variable or function holds the
value of the deposit/mint/add amount? Please answer in a
section starts with "VariableC:".
Please answer in the following json format:
{"VariableA":{"Variable name":"Description"}, "Vari-
ableB":{"Variable name":"Description"}, "Vari-
ableC":{"Variable name":"Description"}}
[%CODE%]

Figure 5: A prompt for finding related variables/statements.

4.4 From GPT Recognition to Static
Confirmation

Although the candidate functions pass the initial filtering and GPT
matching on function properties, GPT does not always pay atten-
tion to syntactic details, such as conditional statements, require
statements, assert statements, revert statements, etc. A more fine-
grained static analysis is necessary to identify potentially vulnera-
ble functions at this stage. Static analysis tools typically focus on
specific variables or statements, while our current inputs are still
functions. This is where we need the assistance of GPT to extract
the variables and statements related to the specific business logic
described in the prompt. With these variables and statements, we
can use static analysis to confirm whether the vulnerability exists
or not. An example of the prompt sent to GPT to ask for related
variables or expressions for Risky First Deposit is shown in Figure 5.

For each extracted variable or statement, GPTScan instructs GPT
to provide a short description. This description helps determine
whether the given variables are relevant to the problem and helps
avoid incorrect answers. If GPT provides variables or statements
that do not exist in the context of the function or if the descrip-
tion is not relevant to the question asked, GPTScan terminates the
judgment process and considers that the vulnerability does not
exist. On the other hand, if the provided variables and statements
pass validation, GPTScan feeds them into a static analysis tool to
confirm the existence of the vulnerability using methods such as
static data flow tracing and static symbolic execution. Specifically,
we have designed the following four major types of static analysis
to validate the common logic vulnerabilities listed in Table 1:
Static Data FlowTracing (DF):Thismethod traces the data flow of
variables in the program, where static analysis determines whether
the two variables or expressions provided by GPT have data de-
pendencies. For example, Figure 1 shows that data flow analysis is
needed to determine whether the share is calculated directly with
the deposit amount in the Risky First Deposit vulnerability.
Value Comparison Check (VC): This method checks whether
two variables or expressions are compared in condition statements,

GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis ICSE 2024, April 2024, Lisbon, Portugal

such as require, assert, and if. It is used to ensure that variables
or expressions are properly checked before usage. In Risky First
Deposit, VC is used to check whether the share is compared with
the deposit amount. Likewise, in Unauthorized Transfer, VC is used
to verify whether the sender has been checked before the transfer.
Order Check (OC): This method checks the execution order of
two statements, where static analysis determines the order of two
statements provided by GPT. For example, Figure 2 shows that OC
is used to verify the execution order of performing a transfer and
updating the checkpoint in Wrong Checkpoint Order.
FunctionCall ArgumentCheck (FA):Thismethod checkswhether
an argument of a function call can be controlled by the user or meets
specific requirements. Specifically, GPT provides a function call and
the index of an argument, and static analysis determines whether
the argument can be controlled by the user or meets the require-
ments described in the rules. In Price Manipulation by Buying Tokens,
the function calls need to be checked with FA, as some sensitive
variables may be used as parameters and cause price manipulation.

4.5 Implementation
GPTScan is implemented with 3,640 lines of code (LOC) in Python
and 154 LOC in Java/Kotlin. In this section, we provide a summary
of some key implementation details as follows.

GPT model and its parameters. During the development and
testing of GPTScan, we utilized OpenAI’s GPT-3.5-turbo model [27].
Thanks to themulti-dimensional filtering introduced in §4.3, GPTScan
could use the default 4k context token size instead of 16k, which
resulted in a more cost-effective solution. The parameters were
mainly kept at their default values, including TopP set to 1, Fre-
quency Penalty set to 0, and Presence Penalty set to 0. As discussed
in §4.2, we adjusted the temperature parameter from the default
value of 1 to 0 to minimize the impact of GPT output randomness.
During each GPT query, the question is sent with an empty session
to ensure that the previous questions and answers do not influence
the current question.

Static analysis tool support. As mentioned in §4.3, we utilized
ANTLR [21] to parse the Solidity source code and generate an
abstract syntax tree (AST). ANTLR allows for source code analysis
without the need for compilation, making it more effective for
source code with limited dependencies and build scripts compared
to tools relying on compilation, such as Slither [37]. Furthermore, to
determine data dependencies between two variables or expressions
in §4.4, we employed a static analysis tool [23] based on the output
of crytic-compiler [7], a Solidity compiler capable of producing
a standard AST for static analysis. With this approach, we can
construct both a control flow graph and a data dependence graph.

5 EVALUATION
In this section, we conduct experiments to evaluate GPTScan’s accu-
racy, performance, financial overhead, the effectiveness of its static
confirmation, and its capability to discover new vulnerabilities.

Datasets. As shown in Table 2, the experiments were conducted
on three datasets collected from real-world smart contracts. These
datasets consist of around 400 contract projects, 3K Solidity files,
472K lines of code, and include 62 ground-truth logic vulnerabilities.

Table 2: Three diverse datasets for GPTScan’s evaluation.
Dataset Name Projects P Files F F/P LoC Vuls
Top200 303 555 1.83 134,322 0
Web3Bugs 72 2,573 35.74 319,878 48
DefiHacks 13 29 2.23 17,824 14
Sum 388 3,157 8.14 472,024 62

The first dataset, called Top200, comprises smart contracts with a
top 200 market capitalization. It includes 303 open-source contract
projects from six mainstream Ethereum-compatible chains [62].
Since these projects are well-audited and widely used, it is rea-
sonable to assume that they do not contain notable vulnerabilities.
This dataset is primarily used to stress-test the false-positive rate of
GPTScan in audited contracts. The second dataset, calledWeb3Bugs,,
was collected from the recent Web3Bugs dataset [8, 65], which com-
prises 100 Code4rena-audited projects. Among the 100 projects, we
included 72 projects that can be directly compiled. The remaining
projects either miss library dependencies or configuration files in
their original Web3Bugs repository [8]. The third dataset, called De-
fiHacks, come from the well-known DeFi Hacks dataset [9], which
consists of vulnerable token contracts that have incurred past at-
tack incidents. We included 13 vulnerable projects that certainly
cover the vulnerabilities in our ten types. The ground-truth vulner-
abilities in these datasets include those already reported and those
newly detected by GPTScan and confirmed by the community.

All these projects are compiled with crytic-compiler [7] us-
ing the default configuration. Note that 17 projects in the Top200
dataset cannot be compiled with crytic-compiler. For these projects,
GPTScan’s static confirmation cannot be applied, and any influ-
enced types of vulnerabilities will be marked as not detected.

ResearchQuestions.With the datasets above, we aim to answer
the following five research questions (RQs):

RQ1: What is the false positive rate of GPTScan when analyz-
ing a dataset of non-vulnerable top contracts?

RQ2: Howaccurate is GPTScan in analyzing real-word datasets
with logic vulnerabilities, and how effective is it compared
to existing tools?

RQ3: How effective is GPTScan’s static confirmation in im-
proving the accuracy of GPTScan?

RQ4: What are the running performance and financial costs
of GPTScan?

RQ5: Can GPTScan discover new vulnerabilities that were
previously missed by human auditors?

5.1 RQ1: Measuring False Positives in the
Non-vulnerable Top Contracts

In RQ1, we aim to measure GPTScan’s false alarm rate in analyzing
non-vulnerable contracts. This is important because when using
GPTScan for massive scanning of on-chain token contracts, we
want to minimize the false alarms that require manual checking.

For this purpose, we have collected the Top200 dataset, which
consists of 303 contract projects that are deemed non-vulnerable.
We present GPTScan’s analysis result of Top200 in Table 3. Along
with the results of Web3Bugs and DefiHacks, we calculate the accu-
racy metrics at the function level for each tested vulnerability type.
For example, if a project has been tested with five vulnerability

ICSE 2024, April 2024, Lisbon, Portugal Sun et al.

Table 3: Overall results of GPTScan’s accuracy evaluation.
Dataset Name TP TN FP FN Sum
Top200 0 283 13 0 296
Web3Bugs 40 154 30 8 232
DefiHacks 10 19 1 4 34

types, the sum of all true positives, false positives, true negatives,
and false negatives for this project should be 5. More specifically,
TP is the number of true positives. One true positive is counted
when GPTScan successfully detects a ground-truth vulnerable func-
tion for the tested vulnerability type.
TN is the number of true negatives. One true negative is counted
when GPTScan correctly does not report any vulnerable function
for the tested vulnerability type.
FP is the number of false positives. One false positive is counted
whenGPTScan incorrectly reports one ormore vulnerable functions
for the tested vulnerability type that has no corresponding ground-
truth vulnerabilities in the tested project.
FN is the number of false negatives. One false negative is counted
when GPTScan fails to detect the ground-truth vulnerable function
for the tested vulnerability type.

Based on the calculation of thesemetrics, GPTScan reports 13 FPs
and 283 TNs for the Top200 dataset, as shown in Table 3. As a result,
the false positive rate of GPTScan in analyzing non-vulnerable top
contracts like Top200 is 4.39%. Moreover, we find that GPTScan has
a similar precision when analyzing Top200 and DefiHacks, both of
which are token contracts with around 2 Solidity files per project
(see Table 2). When analyzing large projects like those inWeb3Bugs,
the precision drops from around 90% (90.91% for DefiHacks) to
60% (57.14% for Web3Bugs). The drop in precision is likely because
the smart contract code in Web3Bugs is more diverse, given that
Web3Bugs contains an average of 36 Solidity files per project (see
Table 2). In contrast, smart contracts inDefiHacks and Top200mainly
implement common token functionalities using an average of 2
Solidity files per project, potentially triggering only a limited set of
false positives in GPTScan. In §5.2, we will further discuss the root
causes of GPTScan’s false positives.

Answer for RQ1: GPTScan achieves a low false positive rate of
4.39% when analyzing non-vulnerable top contracts like Top200.
It also demonstrates similar performance in analyzing DefiHacks,
with a precision of 90.91%. These results indicate that GPTScan
is suitable for massive scanning of on-chain token contracts.
Moreover, when analyzing large contract projects inWeb3Bugs,
GPTScan still achieves an acceptable precision of 57.14%.

5.2 RQ2: Efficacy for Detecting Vulnerable
Contracts

In RQ2, we assess the effectiveness of GPTScan in analyzing vul-
nerable contracts in the Web3Bugs and DefiHacks datasets, and
compare its effectiveness with existing tools.

As shown in Table 2, the Web3Bugs dataset contains 48 ground-
truth logic vulnerabilities, while the DefiHacks dataset has 14. Ta-
ble 3 presents the scanning results of these two datasets using
GPTScan. In the case ofWeb3Bugs, GPTScan analyzed a total of 232
vulnerability types across 72 projects, detecting 40 TPs and missing
8 FNs, while incurring 30 FPs. Consequently, GPTScan achieved a

recall of 83.33% and an F1 score of 67.8% on this dataset. For Defi-
Hacks, GPTScan analyzed a total of 34 vulnerability types across
13 projects, detecting 10 TPs and missing 4 FNs, while incurring 1
FP. On this dataset, GPTScan’s recall is 71.43% and the F1 score is
80%. These results demonstrate that GPTScan effectively detects
vulnerable contracts for the covered logic vulnerability types. Fol-
lowing the initial precision analysis in §5.1, we now analyze the
root causes of GPTScan’s false negatives and false positives.

In the 12 false negative cases, 4 of them are Price Manipulation
by AMM and 3 of them are Risky First Deposit. The main reason
for these two kinds of false negatives is that GPTScan does not
implement an alias analysis in the static check, causing failure
during static dataflow tracing. Additionally, there are 2 cases of
Front Running, where the scenarios or properties are not accurately
matched by GPT. Furthermore, there are 2 cases of Slippage and 1
case ofUnauthorized Transfer. Similar to the false positive cases, The
main reason for the false negative Slippage cases is the existence of
numerous variants of slippage checks, making them challenging to
detect using GPT and static analysis. In the case of Unauthorized
Transfer, the main reason for this false negative is that GPT failed
to distinguish the inconsistency between the comment and code.

GPTScan achieves effective vulnerability detection above at an
acceptable false alarm rate. Among the 44 false positive cases from
the three datasets, 15 (34.09%) were related to Price Manipulation
by AMM, followed by 11 (25.00%) cases of Unauthorized Transfer.
For these two types, the main reason for the false alarms is that
these vulnerabilities require specific triggering conditions involving
other related logic, which may not be contained within a single
function and its callers or callees. For example, in Unauthorized
Transfer, the checks for the allowance/approval from the address
owner can occur at various positions in the logic chain and may
involve multiple functions. Similarly, the function that calculates
the price with AMM for Price Manipulation may not be used by
other functions responsible for swapping or buying tokens, leading
to the vulnerabilities not being triggered in those circumstances.

Additionally, there were 5 cases of Risky First Deposit and 5 cases
of Slippage. For Risky First Deposit, the false alarms occurred be-
cause there were many statements related to checking the supply
and setting the share, making it challenging for GPT to understand
lengthy code segments accurately. Regarding Slippage, the false
alarms were mainly due to two factors. First, similar to Unautho-
rized Transfer, the check for slippage can happen at any position in
the logic chain, and second, slippage checks can take many differ-
ent forms and variants, making them difficult to detect with GPT
and static analysis. For this vulnerability type, our focus was on
achieving a higher recall at the cost of slightly sacrificing preci-
sion. There were also 4 cases ofWrong Interest Rate Order, 3 cases
of Approval Not Cleared, and 1 case of Wrong Checkpoint Order.
ForWrong Interest Rate Order andWrong Checkpoint Order, these
vulnerabilities are intricately related to the business logic of the
project itself, making it challenging to reduce false alarms without
comprehensive knowledge of the project’s design. As for Approval
Not Cleared, the false alarms were primarily because the function
may not always be used to transfer tokens, causing GPTScan to
detect it erroneously.

Comparison with existing tools.While there are many spe-
cific static analysis tools (e.g., [28, 29, 47, 56]), they almost do not

GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis ICSE 2024, April 2024, Lisbon, Portugal

cover any of the logic vulnerabilities targeted in this paper. We
thus selected two comprehensive vulnerability detection tools, one
open-source tool, Slither [37], and MetaScan’s online static scan-
ning service [19, 23], referred to as MScan. Both tools have over
a hundred vulnerability detection rules, but the rules related to
GPTScan are unchecked-transfer, arbitrary-send-eth, and arbitrary-
send-erc20 for Slither (corresponding to Unauthorized Transfer in
GPTScan), and two Price Manipulation vulnerabilities for MScan.

We ran Slither on all three datasets and found a total of 13,144
warnings. Among these, only 101 of unchecked-transfer, 23 of arbitrary-
send-eth, and 22 of arbitrary-send-erc20 are related to the Unautho-
rized Transfer vulnerability in GPTScan. Unfortunately, all of them
were false positives after careful manual checking. There are mainly
two reasons for this. Firstly, Slither does not correlate call chain in-
formation. Many false positive cases involve internal or private
functions that have already been checked for unauthorized transfer
when they are called. In GPTScan, we analyze the current function
and its caller together, effectively addressing the issue of missing
contextual semantics. Secondly, Slither is unable to correctly detect
variants of transfer behavior in Unauthorized Transfer, such as burn-
ing tokens, leading to its inability to detect vulnerabilities in the
dataset. GPTScan relies on GPT to gain the ability to analyze code
semantics, which, when combined with code context and calling
relationships, can more accurately address these problems.

We also ran MScan on the DefiHacks dataset, as 12 of the total
14 vulnerabilities in this dataset are related to Price Manipulation.
Among these 12 true Price Manipulation vulnerabilities, MScan
detected 7, achieving a recall of 58.33% and a precision of 100% for
Price Manipulation. However, MScan failed to detect any other type
of logic vulnerabilities. MScan achieved high precision because
it used some attack incidents in the DefiHacks dataset to derive
hard-coded patterns for Price Manipulation, including the matching
of specific function and variable names. However, in cases where
hard-coded patterns are not applicable, MScan cannot generalize
to detect variants of Price Manipulation vulnerabilities.

For GPT-based tools, the only available study at the time of our
submission was conducted by David et al. [34]. Unfortunately, they
did not release their tool, and there was insufficient information for
us to reproduce it. Therefore, we rely on the statistics provided in
their paper for comparison. According to the paper, their pure GPT-
based approach achieved a precision of 4.14%, a recall of 43.84%,
and an F1 score of 7.57% with the GPT-4-32k model, and a pre-
cision of 4.30%, a recall of 35.62%, and an F1 score of 7.68% with
the Claude-v1.3-100k model, respectively. The false positives are
significantly higher than those of GPTScan, mainly because their
tool did not validate the GPT output as GPTScan does in §4.4, and
thus could be more easily affected by GPT’s inherent problems like
hallucination [64], bias in training data, and ambiguity in questions.
Indeed, RQ3 in §5.3 suggests a similar finding by measuring the
GPT-only result in GPTScan (see details in Table 4).

Answer for RQ2: GPTScan shows its efficacy in detecting
ground-truth logic vulnerabilities in the Web3Bugs and Defi-
Hacks datasets, with a recall of 83.33% and an F1 score of 67.8%
forWeb3Bugs, and a recall of 71.43% and an F1 score of 80% for
DefiHacks, better than existing static and GPT-based tools.

Table 4: Raw functions before and after static confirmation.
Vulnerability Type Before After
Approval Not Cleared 34 12
Risky First Deposit 100 21
Price Manipulation by AMM 187 114
Price Manipulation by Buying Tokens 8 8
Vote Manipulation by Flashloan 2 0
Front Running 6 4
Wrong Interest Rate Order 150 11
Wrong Checkpoint Order 49 1
Slippage 99 42
Unauthorized Transfer 12 8
Total 647 221

5.3 RQ3: Effectiveness of Static Confirmation
In RQ3, we conduct a further analysis of GPTScan’s intermediate
results onWeb3Bugs to examine how static confirmation reduces
false positives generated by pure GPT-based matching.

Table 4 shows the raw functions reported by GPTScan before
and after static confirmation. Note that one vulnerability type may
have multiple functions (the final result counts either TP or FP once,
according to the calculation in §5.1), and these functions are not
merged yet (i.e., a function A and the combination of function A
and all its callers would be counted multiple times) that will be done
in the final result. Hence, so the number of “after” cases shown here
is much larger than the final TP+FP in Table 3. From the result, we
observe that static confirmation effectively filters out most false
positive cases for the vulnerability types:Wrong Interest Rate Order,
Wrong Checkpoint Order and Risky First Deposit. The reason is that
the description of scenarios and properties for these three types
is coarse-grained, leading to many candidate functions passing
the GPT-based matching step. In static confirmation, GPTScan can
further instruct GPT to identify related statements and variables,
filtering out those that do not satisfy the vulnerability types. Overall,
after static confirmation, only 221 raw functions remain out of
the original 647 functions. This indicates that static confirmation
successfully filters out two-thirds of the false positives.

We further analyze the negative impact of static confirmation.
Among the 426 cases filtered out, only 3 ground-truth cases were
initially matched by GPT but later excluded by static analysis, re-
sulting in 3 false negatives. Another false negative was related to
compilation problems. The remaining four did not pass the GPT-
based scenario and property matching step. This indicates that
static confirmation has only a minor impact on the false negatives.

Answer for RQ3: Static confirmation effectively filtered out
65.84% of the false positive cases in the Web3Bugs dataset, while
having only a minor impact on the false negative cases.

5.4 RQ4: Performance and Financial Overhead
In RQ4, we evaluate the running time and financial costs of GPTScan
when using OpenAI’s GPT-3.5-turbo API. We considered only the
costs associated with interacting with GPT and conducting static
analysis. We measured the time and financial cost of GPTScan on
all three datasets, and the results are shown in Table 5. In this
experiment, we used tiktoken [20], a tokenization tool published by
OpenAI and used for GPT models, to estimate the number of tokens

ICSE 2024, April 2024, Lisbon, Portugal Sun et al.

Table 5: Running time and financial costs of GPTScan.
Dataset KL∗ T∗∗ C∗∗∗ T/KL C/KL
Top200 134.32 1,437.37 0.7507 10.70 0.005589
Web3Bugs 319.88 4,980.57 3.9682 15.57 0.018658
DefiHacks 17.82 375.41 0.2727 21.06 0.015303
Overall 472.02 6,793.35 4.9984 14.39 0.010589

∗ KL for KLoC; ∗∗ T for Time; ∗∗∗ C for Financial Cost.
sent and received by GPTScan. With the number of tokens sent
and received, we can estimate the financial cost of GPTScan. The
total number of lines of code is 472K, and it took 6,793.35 seconds
and 4.9984 USD to complete the scan. On average, it takes 14.39
seconds and 0.010589 USD to scan per thousand lines of code.

On Top200, the scan cost per thousand lines of code is the cheap-
est, and the scan speed per thousand lines of code is the fastest. This
is because most candidate functions are filtered out in GPTScan’s
first two steps, without the need for finding related variables and ex-
pressions for static check. OnWeb3Bugs andDefiHacks, the scan cost
per thousand lines of code is the most expensive and the scan speed
per thousand lines of code is the slowest, respectively. Projects in
Web3Bugs and DefiHacks are more complex than Top200, and there
are more complex candidate functions to be scanned. These com-
plex functions could not be filtered by static filtering and scenario
matching, which causes more time and financial cost.

Answer for RQ4: GPTScan is fast and cost-effective, taking an
average of only 14.39 seconds and 0.01 USD to scan per thousand
lines of Solidity code in the tested datasets. The relatively higher
cost and slower speed for Web3Bugs and DefiHacks can be attrib-
uted to the presence of more complex functions that cannot be
filtered out by static filtering and scenario matching.

5.5 RQ5: Newly Discovered Vulnerabilities
In RQ5, we perform a thorough analysis of GPTScan’s results on the
Web3Bugs dataset to see if it could identify new vulnerabilities that
were previously missed by human auditors. Interestingly, GPTScan
successfully discovered 9 vulnerabilities from 3 different types,
which did not appear in the audit reports of Code4rena. Among
these 9 newly discovered vulnerabilities, 5 are Risky First Deposit,
3 are Price Manipulation by AMM, and 1 is Front Running. In the
following paragraphs, we present one example of each type of
newly discovered vulnerability for further discussion.

Risky First Deposit. Among the newly discovered vulnerabil-
ities, 56% of them are Risky First Deposit. In the example shown
in Figure 6, on line 11, when the variable _pool is 0, indicating
an empty liquidity pool, the depositor can obtain all the shares
from the pool. The presence of both _totalSupply and _pool vari-
ables to represent the liquidity amount in the pool may confuse
human auditors. Although lines 5 to 8 properly handle the case
when _totalSupply is 0, this specific condition involving _pool
on line 11 creates a vulnerability that could be missed.

Price Manipulation by AMM. Another 33% of the newly dis-
covered vulnerabilities are Price Manipulation by AMM. In the ex-
ample shown in Figure 7, the pendingRewards function is used to
calculate the rewards that can be claimed by the user. On line 9,
when the pool is not empty, the amount of rewards that can be
redeemed by the user is calculated based on the total supply in the

1 function deposit(uint _amount) external {

2 ...

3 uint _pool = balance ();

4 uint _totalSupply = totalSupply ();

5 if (_totalSupply == 0 && _pool > 0) { // trading fee

accumulated while there were no IF LPs

6 vusd.safeTransfer(governance , _pool);

7 _pool = 0;

8 }

9 uint shares = 0;

10 if (_pool == 0) {

11 shares = _amount;

12 } else {

13 shares = _amount * _totalSupply / _pool;

14 }

15 ...

16 }

Figure 6: Risky First Deposit in 2022-02-hubble.

1 function pendingRewards(uint256 _pid , address _user) external

view returns (uint256) {

2 PoolInfo storage pool = poolInfo[_pid];

3 UserInfo storage user = userInfo[_pid][_user];

4 uint256 accRewardsPerShare = pool.accRewardsPerShare;

5 uint256 lpSupply = pool.lpToken.balanceOf(address(this));

6 if (block.number > pool.lastRewardBlock && lpSupply != 0) {

7 uint256 multiplier = getMultiplier(pool.lastRewardBlock

, block.number);

8 uint256 rewardsAccum = multiplier.mul(rewardsPerBlock).

mul(pool.allocPoint).div(totalAllocPoint);

9 accRewardsPerShare = accRewardsPerShare.add(

rewardsAccum.mul(1e12).div(lpSupply));

10 }

11 return user.amount.mul(accRewardsPerShare).div(1e12).sub(

user.rewardDebt);

12 }

Figure 7: Price Manipulation by AMM in 2021-09-sushimiso.

1 /// @notice The lp tokens that the user contributes need to

have been transferred previously , using a batchable

router.

2 function mint(address to)

3 public

4 beforeMaturity

5 returns (uint256 minted)

6 {

7 uint256 deposit = pool.balanceOf(address(this)) - cached;

8 minted = _totalSupply * deposit / cached;

9 cached += deposit;

10 _mint(to, minted);

11 }

Figure 8: Front Running in 2021-08-yield.

pool. However, the total supply can be controlled by users, allowing
them to manipulate the redeemed amount and exploit the contracts.

Front Running. There is one case of Front Running shown in
Figure 8, in which the token to be minted should be previously
transferred (line 1). However, anyone can call the mint function to
mint tokens that are transferred but not minted, as there is only
a check with the cached amount of the contract (line 7), but not
the cached amount of a specific user. This vulnerability allows
an attacker to front run the minting process. When a user has
transferred a token but not minted it, the attacker could front run
the mint function to mint the token before the legitimate user.

Answer for RQ5: GPTScan identified 9 new vulnerabilities not
present in the audit reports of Code4rena. This highlights the
value of GPTScan as a useful supplement to human auditors.

GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis ICSE 2024, April 2024, Lisbon, Portugal

6 DISCUSSION
In this section, we discuss the current limitations in GPTScan and
the potential use of employing other GPT models.

Current limitations in design and implementation. In §4.3,
the modifiers filtering part only utilized a whitelist to filter the mod-
ifiers with access control. However, this filtering method can lead to
false positives or negatives of vulnerabilities. To enhance accuracy,
a more precise approach is required, which involves retrieving the
definition of modifiers and conducting a detailed semantic analysis
on them. For the static analysis part in §4.4, a simple method was
used to analyze the control flow graph and data dependence graph.
This analysis is not path-sensitive, meaning that some path-related
issues, such as the reachability of certain execution paths under
specific conditions, might be overlooked. It could be improved by
introducing symbolic execution engines to the static analysis part.

The use of other GPT models and parameters. As men-
tioned in §4.5, GPTScan employs the widely used GPT-3.5-turbo
model [27] as its GPT model. We also conducted a preliminary test
using GPT-4, but we did not observe a notable improvement, while
the cost increased 20 times. This finding suggests that GPTScan
does not necessarily require more powerful GPT models. As the
temperature parameter is set to zero, the answers of the GPT model
tend to be deterministic. A higher temperature might lead to more
creative answers, but it could also result in more false positives
or false negatives. However, reproducing results becomes more
challenging with a higher temperature. In the future, we plan to
conduct a systematic test of various GPT models within the context
of GPTScan, including Google Bard, Claude (when we have API
access to them), and the self-trained LLaMA model, as well as the
influence of different parameters on GPTScan.

7 RELATEDWORK
In this section, we discuss some related work. Various research and
tools have focused on vulnerability detection in smart contracts.
Traditional static analysis tools, such as Slither [37], Vandal [30],
Ethainter [29], Zues [43], and Securify [56], are used to analyze the
source code and detect vulnerabilities. Symbolic execution tools
like Manticore [47] and Mythril [13] can perform bound checks and
detect vulnerabilities in bytecode and source code. These analysis
tools have been applied to detect vulnerabilities in smart contracts,
such as re-entrancy [52, 61], arithmetic overflow [54], state incon-
sistency problems [28], and access control problems [36, 39, 46].
Dynamic analysis tools, such as fuzz testing [40, 41, 59, 63], auto-
matically generate test cases or inputs for smart contracts to find
abnormal behaviors during runtime. Formal verification techniques
like Verx [51] and VeriSmart [53] can be used to check user-provided
specifications. Nevertheless, Zhang et al. [65] suggested that more
than 80% of exploitable bugs are machine undetectable.

Before the advent of ChatGPT (GPT-3.5) [49], most NLP-based
vulnerability detection methods [32, 33, 48, 55, 58] involved feed-
ing code into binary or multi-classification models. Now, with the
development of instructing GPT [57] and other research providing
few-shot learning capabilities [31], interactive solutions can be used
for tasks like code repair [42, 60] and vulnerability detection [34].
However, according to the research by David et al. [34], the GPT-
4 model itself cannot accurately detect vulnerabilities. Chen et

al. [38] fine-tuned the GPT-3 model for improved performance in
GUI graphical interface testing tasks and utilized it for automated
testing of Android applications. Additionally, PentestGPT [24] and
ChatRepair [60] utilized feedback from the execution results to
enhance the performance of the GPT model during interactions.

8 CONCLUSION
In this paper, we proposed GPTScan, the first tool combining GPT
with static analysis for smart contract logic vulnerability detection.
GPTScan utilized GPT to match candidate vulnerable functions
based on code-level scenarios and properties, and further instructed
GPT to intelligently recognize key variables and statements, which
were then validated by static confirmation. Our evaluation on three
diverse datasets with around 400 contract projects and 3K Solidity
files showed that GPTScan achieves high precision (over 90%) for to-
ken contracts and acceptable precision (57.14%) for large projects, as
well as a recall of over 70% for detecting ground-truth logic vulner-
abilities. GPTScan is fast, cost-effective, and capable of discovering
new vulnerabilities missed by human auditors. In future work, we
will expand GPTScan’s support for more logic vulnerability types.

ACKNOWLEDGEMENTS
We thank Dawei Zhou, Zhe Wang, Guorui Fan, Liwei Tan, Hao
Zhang, and other colleagues at MetaTrust Labs for their help with
GPTScan, as well as anonymous reviewers for their constructive
feedback. This research/project is supported by the National Re-
search Foundation Singapore and DSO National Laboratories under
the AI Singapore Programme (AISG Award No: AISG2-RP-2020-
019), the National Research Foundation, Singapore, and the Cyber
Security Agency under its National Cybersecurity R&D Programme
(NCRP25-P04-TAICeN). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore and Cyber Security Agency of Singapore.

REFERENCES
[1] 2016. https://www.coindesk.com/learn/understanding-the-dao-attack/
[2] 2021. https://github.com/code-423n4/2021-11-yaxis
[3] 2022. https://www.freecodecamp.org/news/what-is-yaml-the-yml-file-format/
[4] 2023. https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-

405a8c12e8f7
[5] 2023. https://openai.com/chatgpt
[6] 2023. https://openai.com/pricing
[7] 2023. https://github.com/crytic/crytic-compile
[8] 2023. https://github.com/ZhangZhuoSJTU/Web3Bugs
[9] 2023. https://wooded-meter-1d8.notion.site/

0e85e02c5ed34df3855ea9f3ca40f53b?v=22e5e2c506ef4caeb40b4f78e23517ee
[10] 2023. https://code4rena.com/
[11] 2023. https://soliditylang.org/
[12] 2023. https://docs.soliditylang.org/en/latest/smtchecker.html
[13] 2023. https://github.com/Consensys/mythril
[14] 2023. https://blog.trailofbits.com/2023/03/22/codex-and-gpt4-cant-beat-

humans-on-smart-contract-audits/
[15] 2023. https://github.com/code-423n4/2022-04-jpegd-findings/issues/12
[16] 2023. https://github.com/code-423n4/2022-04-backd
[17] 2023. https://github.com/code-423n4/2022-04-backd-findings/issues/36
[18] 2023. https://github.com/code-423n4/2022-05-backd/blob/

2a5664d35cde5b036074edef3c1369b984d10010/protocol/contracts/StakerVault.
sol

[19] 2023. https://app.metatrust.io/
[20] 2023. https://github.com/openai/tiktoken
[21] 2023. ANTLR. https://www.antlr.org/

https://www.coindesk.com/learn/understanding-the-dao-attack/
https://github.com/code-423n4/2021-11-yaxis
https://www.freecodecamp.org/news/what-is-yaml-the-yml-file-format/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://openai.com/chatgpt
https://openai.com/pricing
https://github.com/crytic/crytic-compile
https://github.com/ZhangZhuoSJTU/Web3Bugs
https://wooded-meter-1d8.notion.site/0e85e02c5ed34df3855ea9f3ca40f53b?v=22e5e2c506ef4caeb40b4f78e23517ee
https://wooded-meter-1d8.notion.site/0e85e02c5ed34df3855ea9f3ca40f53b?v=22e5e2c506ef4caeb40b4f78e23517ee
https://code4rena.com/
https://soliditylang.org/
https://docs.soliditylang.org/en/latest/smtchecker.html
https://github.com/Consensys/mythril
https://blog.trailofbits.com/2023/03/22/codex-and-gpt4-cant-beat-humans-on-smart-contract-audits/
https://blog.trailofbits.com/2023/03/22/codex-and-gpt4-cant-beat-humans-on-smart-contract-audits/
https://github.com/code-423n4/2022-04-jpegd-findings/issues/12
https://github.com/code-423n4/2022-04-backd
https://github.com/code-423n4/2022-04-backd-findings/issues/36
https://github.com/code-423n4/2022-05-backd/blob/2a5664d35cde5b036074edef3c1369b984d10010/protocol/contracts/StakerVault.sol
https://github.com/code-423n4/2022-05-backd/blob/2a5664d35cde5b036074edef3c1369b984d10010/protocol/contracts/StakerVault.sol
https://github.com/code-423n4/2022-05-backd/blob/2a5664d35cde5b036074edef3c1369b984d10010/protocol/contracts/StakerVault.sol
https://app.metatrust.io/
https://github.com/openai/tiktoken
https://www.antlr.org/

ICSE 2024, April 2024, Lisbon, Portugal Sun et al.

[22] 2023. Breaking Barriers: GPTScan’s Game-changing Role in Smart Contract Secu-
rity. https://metatrust.io/company/newsroom/post/breaking-barriers-gptscans-
gamechanging-role-in-smart-contract-security

[23] 2023. falcon-metatrust: MetaTrust fork of Slither Analyzer. https://github.com/
MetaTrustLabs/falcon-metatrust

[24] 2023. GreyDGL/PentestGPT. https://github.com/GreyDGL/PentestGPT
[25] 2023. MetaScan v1.6: Unparalleled Visibility and AI Security for Smart

Contracts. https://metatrust.io/company/newsroom/post/metascan-v16-
unparalleled-visibility-and-ai-security-for-smart-contracts

[26] 2023. OpenZeppelin. https://www.openzeppelin.com
[27] 2023. Overview - OpenAI API. https://platform.openai.com
[28] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and

Giovanni Vigna. 2022. Sailfish: Vetting smart contract state-inconsistency bugs
in seconds. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 161–178.

[29] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-
dakis. 2020. Ethainter: a smart contract security analyzer for composite vulner-
abilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 454–469.

[30] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981 (2018).

[31] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[32] Yizheng Chen, Zhoujie Ding, Xinyun Chen, and David Wagner. 2023. DiverseVul:
A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability
Detection. arXiv preprint arXiv:2304.00409 (2023).

[33] Anton Cheshkov, Pavel Zadorozhny, and Rodion Levichev. 2023. Evaluation of
ChatGPT Model for Vulnerability Detection. arXiv preprint arXiv:2304.07232
(2023).

[34] Isaac David, Liyi Zhou, Kaihua Qin, Dawn Song, Lorenzo Cavallaro, and Arthur
Gervais. 2023. Do you still need a manual smart contract audit? arXiv:2306.12338
(Jun 2023). http://arxiv.org/abs/2306.12338 arXiv:2306.12338 [cs].

[35] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, Seattle
WA USA, 423–435. https://doi.org/10.1145/3597926.3598067

[36] Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie Chen,
Yang Liu, and Lingxiao Jiang. 2023. Beyond “Protected” and “Private”: An Empir-
ical Security Analysis of Custom Function Modifiers in Smart Contracts. In Proc.
ACM ISSTA.

[37] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[38] Sidong Feng and Chunyang Chen. 2023. Prompting Is All Your Need: Automated
Android Bug Replay with Large LanguageModels. arXiv preprint arXiv:2306.01987
(2023).

[39] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2023. AChecker: Statically
Detecting Smart Contract Access Control Vulnerabilities. Proc. ACM ICSE (2023).

[40] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
557–560.

[41] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing smart
contracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering. 259–269.

[42] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code
language models on automated program repair. arXiv preprint arXiv:2302.05020
(2023).

[43] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In Proceedings 2018 Network and Distributed
System Security Symposium. Internet Society, San Diego, CA.

[44] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[45] Emi Lacapra. 2023. What are liquidity provider (LP) tokens, and how do they
work? https://cointelegraph.com/explained/what-are-liquidity-provider-lp-
tokens-and-how-do-they-work

[46] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. 2022. Finding permission bugs
in smart contracts with role mining. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis. 716–727.

[47] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Greico,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In
Proc. ACM ASE.

[48] Marwan Omar. 2023. Detecting software vulnerabilities using Language Models.
arXiv preprint arXiv:2302.11773 (2023).

[49] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Train-
ing language models to follow instructions with human feedback. https:
//doi.org/10.48550/arXiv.2203.02155 arXiv:2203.02155 [cs].

[50] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Train-
ing language models to follow instructions with human feedback. (2022).
https://doi.org/10.48550/ARXIV.2203.02155

[51] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
symposium on security and privacy (SP). IEEE, 1661–1677.

[52] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In 26th An-
nual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society.

[53] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VeriS-
mart: A highly precise safety verifier for Ethereum smart contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 1678–1694.

[54] Bryan Tan, Benjamin Mariano, Shuvendu K Lahiri, Isil Dillig, and Yu Feng. 2022.
SolType: refinement types for arithmetic overflow in solidity. In Proc. ACM POPL.

[55] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef
Pieprzyk, and Surya Nepal. 2022. Transformer-based language models for soft-
ware vulnerability detection. In Proceedings of the 38th Annual Computer Security
Applications Conference. 481–496.

[56] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. 67–82.

[57] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, andHannanehHajishirzi. 2022. Self-Instruct: Aligning LanguageModel
with Self Generated Instructions.

[58] Hongjun Wu, Zhuo Zhang, Shangwen Wang, Yan Lei, Bo Lin, Yihao Qin, Haoyu
Zhang, and XiaoguangMao. 2021. Peculiar: Smart contract vulnerability detection
based on crucial data flow graph and pre-training techniques. In 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 378–
389.

[59] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A greybox fuzzer for
smart contracts. In Proceedings of the 28th ACM JointMeeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1398–1409.

[60] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[61] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2020. Cross-Contract Static Analysis for Detecting Practical Reentrancy Vul-
nerabilities in Smart Contracts. In 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020. IEEE, 1029–1040.

[62] Xiao Yi, Yuzhou Fang, Daoyuan Wu, and Lingxiao Jiang. 2023. BlockScope:
Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain
Projects. In Proc. ISOC NDSS.

[63] William Zhang, Sebastian Banescu, Leonardo Pasos, Steven Stewart, and Vijay
Ganesh. 2019. Mpro: Combining static and symbolic analysis for scalable test-
ing of smart contract. In 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 456–462.

[64] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting
Huang, Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s Song in the AI Ocean: A Survey on
Hallucination in Large Language Models. arXiv:2309.01219 [cs.CL]

[65] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. 2023. Demystifying
Exploitable Bugs in Smart Contracts. In 2023 IEEE/ACM 37th IEEE International
Conference on Software Engineering.

[66] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.
SoK: Decentralized Finance (DeFi) Attacks. In IEEE Symposium on Security and
Privacy (SP). IEEE.

https://metatrust.io/company/newsroom/post/breaking-barriers-gptscans-gamechanging-role-in-smart-contract-security
https://metatrust.io/company/newsroom/post/breaking-barriers-gptscans-gamechanging-role-in-smart-contract-security
https://github.com/MetaTrustLabs/falcon-metatrust
https://github.com/MetaTrustLabs/falcon-metatrust
https://github.com/GreyDGL/PentestGPT
https://metatrust.io/company/newsroom/post/metascan-v16-unparalleled-visibility-and-ai-security-for-smart-contracts
https://metatrust.io/company/newsroom/post/metascan-v16-unparalleled-visibility-and-ai-security-for-smart-contracts
https://www.openzeppelin.com
https://platform.openai.com
http://arxiv.org/abs/2306.12338
https://doi.org/10.1145/3597926.3598067
https://cointelegraph.com/explained/what-are-liquidity-provider-lp-tokens-and-how-do-they-work
https://cointelegraph.com/explained/what-are-liquidity-provider-lp-tokens-and-how-do-they-work
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/ARXIV.2203.02155
https://arxiv.org/abs/2309.01219

	Abstract
	1 Introduction
	2 Background
	3 Motivating Examples
	4 GPTScan
	4.1 Overview and Challenges
	4.2 GPT-based Scenario and Property Matching
	4.3 Multi-dimensional Function Filtering
	4.4 From GPT Recognition to Static Confirmation
	4.5 Implementation

	5 Evaluation
	5.1 RQ1: Measuring False Positives in the Non-vulnerable Top Contracts
	5.2 RQ2: Efficacy for Detecting Vulnerable Contracts
	5.3 RQ3: Effectiveness of Static Confirmation
	5.4 RQ4: Performance and Financial Overhead
	5.5 RQ5: Newly Discovered Vulnerabilities

	6 Discussion
	7 Related Work
	8 Conclusion
	References

