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ABSTRACT
Recent advances in large language models (LLMs) significantly
boost their usage in software engineering. However, training a
well-performing LLM demands a substantial workforce for data
collection and annotation. Moreover, training datasets may be pro-
prietary or partially open, and the process often requires a costly
GPU cluster. The intellectual property value of commercial LLMs
makes them attractive targets for imitation attacks, but creating an
imitation model with comparable parameters still incurs high costs.
This motivates us to explore a practical and novel direction: slicing
commercial black-box LLMs using medium-sized backbone models.

In this paper, we explore the feasibility of launching imitation
attacks on LLMs to extract their specialized code abilities, such as
“code synthesis” and “code translation.” We systematically investi-
gate the effectiveness of launching code ability extraction attacks
under different code-related tasks with multiple query schemes,
including zero-shot, in-context, and Chain-of-Thought. We also
design response checks to refine the outputs, leading to an effective
imitation training process. Our results show promising outcomes,
demonstrating that with a reasonable number of queries, attackers
can train a medium-sized backbone model to replicate specialized
code behaviors similar to the target LLMs. We summarize our find-
ings and insights to help researchers better understand the threats
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posed by imitation attacks, including revealing a practical attack
surface for generating adversarial code examples against LLMs.

CCS CONCEPTS
• Security and privacy; • Theory of computation → Machine
learning theory;

KEYWORDS
Large Language Models, Imitation Attacks

ACM Reference Format:
Zongjie Li, Chaozheng Wang, Pingchuan Ma, Chaowei Liu, Shuai Wang,
Daoyuan Wu, Cuiyun Gao, and Yang Liu. 2024. On Extracting Specialized
Code Abilities from Large Language Models: A Feasibility Study. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639091

1 INTRODUCTION
Recent advancements in the development of large language models
(LLMs) have led to a significant increase in their usage in software
engineering [79]. Major enterprises, such as OpenAI [12], have
already deployed their LLM APIs to assist humans in writing code
and documents more accurately and efficiently [90]. A large-scale
code corpus with related natural language comments is used to
build the models that improve the productivity of computer pro-
gramming. The advanced LLMs are advocated to play a role as an
“AI programming assist” that can handle various code-related tasks.
These tasks include both interactive tasks, such as helping develop-
ers write automated scripts [19] or providing reviews [18, 55, 65],
and complex tasks that require reasoning skills, such as finding
vulnerabilities [88] and clone detection [47]. Moreover, some LLMs
like ChatGPT [5] are designed with more interactive ability, which
means they can learn from their interactions with humans and
improve their performance over conversational turns, making them
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more effective at finding and fixing bugs that are difficult to reach
with traditional tools [15, 80].

Despite the growing popularity of LLM APIs, it is widely ac-
knowledged that training awell-performing LLM requires a plethora
of workforce for data collection and annotation, as well as massive
GPU resources [21, 26]. As a result, although some model architec-
tures are publicly available, the model weights and training data
are viewed as intellectual property (IP) that model owners own and
have rights over. The IP behind a model is quite valuable, as model
providers offer their services to a large number of users. Recently, it
has been validated that computer vision (CV) and natural language
processing (NLP) models are vulnerable to imitation attacks (or
model extraction attacks) [35, 36, 67, 81, 82], in which adversaries
send carefully-designed queries to the victim model and collect its
responses to train a local model (often referred to as an imitation
model) that mostly “imitate” the target remote model’s behavior.

At first glance, conducting an imitation attack on commercial
LLMs may seem impractical, as adversaries would need to prepare
an imitation model with comparable parameters, resulting in high
costs. However, in contrast to the broad capabilities of LLMs, devel-
opers typically require only specialized subsets of these abilities, as
they concentrate on particular tasks such as code translation and
summarization. This inspires us to explore a practical and novel
direction: slicing commercial, black-box LLMs using medium-sized
backbone models. In other words, we aim to demonstrate the high
possibility of extracting specialized code abilities of LLMs using
medium-sized backbone models. For instance, attackers may be par-
ticularly interested in extracting the ability of “code translation”
from an LLM, which is a specialized code ability that allows the
LLM to translate source code from one programming language to
another. This ability is highly valuable in the software development
industry and has been widely used in commercial products [62, 87].
The imitation attack also has the benefit of allowing users to avoid
sharing their code snippets with third-party providers. This is pos-
sible by locally deploying the specialized imitation model extracted
from LLMs via medium-sized backbone models.

Extracting specialized code abilities poses unique technical chal-
lenges. Depending on the specific code tasks, LLMs may process
natural language (NL) or programming language (PL) inputs and
emit NL/PL outputs accordingly. Moreover, modern LLMs can of-
ten be elicited by various in-context [77] or Chain-of-Thought
prompts [78], making it difficult to determine the attack surface of
LLMs for code abilities. Furthermore, it is unclear how to use the
target LLM outputs to improve the performance of an imitation
model, given the complexity of code-related tasks and potential
ambiguity in the outputs.

Overall, this work is the first to conduct a systematic and practi-
cal study on the effectiveness of extracting specialized code abilities
from LLMs using common medium-sized models. To address the
above technical challenges, we design and conduct comprehensive
imitation attacks on LLMs, including all three code-related tasks
and different query schemes (Sec. 4.1). Additionally, we develop
several methods to refine the received outputs of LLMs (Sec. 4.2),
which make the polished outputs more effective in training the
imitation model using two popular backbone models, CodeT5 [74]

and CodeBERT [29] (Sec. 4.3). Finally, we demonstrate that the imi-
tation model can boost critical downstream tasks, e.g., adversarial
example generation (Sec. 4.4).

Based on the experimental results, we show that imitation attacks
are effective for LLMs on code-related tasks, and the performance
of the imitation models surpasses that of the target LLMs (with an
average improvement of 10.33%). Moreover, we find substantial vari-
ance (from 4.94% to 62.83%) in the impact of different query schemes
across tasks. Queries providing adequate context generally improve
performance on all tasks, while the Chain-of-Thought scheme only
benefits code synthesis noticeably. These findings underscore the
importance of selecting an appropriate query scheme.

We also explore the influence of different hyperparameters. We
find that while 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝑡𝑜𝑝𝑝 have an observable (yet not
significant) impact, the number of queries and in-context examples
significantly affect the performance (from 41.97% to 115.43%). We
recommend using three in-context examples for code-related tasks
to balance the effectiveness and cost. Additionally, we demonstrate
that the imitation model can assist in generating adversarial exam-
ples, discovering up to 9.5% more adversarial examples than the
existing state-of-the-art models [40, 48, 70]. Finally, we show the
generalizability of our method on different LLM APIs, with the
imitation models trained on gpt-3.5-turbo achieving approximately
92.84% of the performance of those trained on text-davinci-003.

In summary, our contributions are as follows:
• We have conducted the first systematic study on the effectiveness
of imitation attacks on a code knowledge slice of LLMs.

• Our study includes three representative query schemes and dif-
ferent code-related tasks. We have also designed several methods
to refine the LLM outputs and enhance the training effectiveness
of imitation models.

• We have formulated five research questions (RQs) to comprehen-
sively evaluate the effectiveness of imitation attacks on LLMs
for code abilities and their potential downstream applications,
such as adversarial example generation. We have aggregated the
results and observations to deduce empirical findings.

2 BACKGROUND AND RELATEDWORK
2.1 Large Language Models for Code
With a substantial amount of training resources (e.g., webtext cor-
pora [31]) and model parameters (up to hundreds of billions [21]),
LLMs have manifested highly impressive performance on various
tasks. Typically, input training data is segmented into sentences
and then into tokens, where each token consists of a sequence of
characters before being fed to LLMs. Previous works follow the clas-
sic “pre-train and fine-tune” paradigm [51], where a large number
of datasets are used to train a general model as the public backbone,
and users can fine-tune it with their private dataset and special-
ized task definition. Following this paradigm, CodeBERT [29] and
CodeT5 [74] are two representative frameworks for code-related
tasks.

Moreover, for models scaled to 7B+ parameters1, users can often
guide them to generate appropriate answers with texts referred to as
prompts. Thus, a new paradigm called “pre-train and prompt” [50]

1We refer to the models with 7B+ parameters as large-sized models, 0.1B to 7B as
medium-sized models, and the rest are small-sized models.
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Table 1: Benchmarking prior knowledge for imitation attacks. The symbols!, 3,% denote require, partially require, and not
require the corresponding knowledge when launching the model extraction, respectively.

Data Distribution Model Architecture Output Probability Object Task Victim model Size
Chandrasekaran [23] ! ! ! - classification - -
Jagielski [39] 3 ! ! image classification academic 25.6M
Orekondy [58] 3 ! ! image classification academic 21.8M
Yu et al. [85] 3 % % image classification commercial 200M
He et al. [34] % % 3 text generation academic 340M
Wallace [67] % % % text generation commercial -
Ours % % % code generation commercial 175B

has emerged. This paradigm has been a huge success due to its
powerful performance and high flexibility. For example, OpenAI’s
ChatGPT [5] allows people to ask it to complete different works
with impressive accuracy and coherence given appropriate prompts.
Due to the drastic improvement caused by prompts, an increasing
number of commercial tools (e.g., Copilot [7]) are setting their back-
bones to LLMs that follow the “pre-train and prompt” paradigm.

Note that not all LLMs possess capabilities for various code-
related tasks, despite having substantial model parameters. The
effectiveness of a model is related to the datasets and methods
used during training. For example, the compile rate [28], a popular
metric assessing the compilation correctness of LLCG outputs, for
LaMDA’s (137B) on DeepFIX is only 4.3%, whereas Codex (12B)
gains 81.1%. Therefore, this work only considers LLMs that have
demonstrated reasonable success on code-related tasks.

With the surge ofMachine-Learning-as-a-Service (MLaaS), model
owners often provide their services via API or mature interface,
and billing for queries can be broadly categorized as either monthly
or “pay-as-you-go.” For example, GitHub Copilot charges 10 USD
per month [3]. In the latter charging mode, users pay according
to the number of queries they send or the total length of tokens
they receive from the API. For instance, j1-jumbo [2] model from
AI21 charges 0.03 USD per 1K tokens and 0.0003 USD per query.
All these models only share generated content with their users, and
thus the owners can maintain the confidentiality of the underlying
model architecture and training data.

2.2 In-context Learning and Chain-of-Thought
Mainstream LLMs significantly benefit from context prompts. It is
shown that simply prompted with task definitions [51] (also known
as zero-shot learning) can often achieve satisfying results, and the
performance can be further improved if more concrete in-context
examples exist [77]. Since the LLMs do not seem to share the same
understanding of prompts with humans [53, 75], a series of works
in prompt engineering have been proposed [63, 64, 72, 78].

Among them, one particular prompt strategy called Chain-of-
Thought (CoT) has been shown to elicit strong reasoning abilities
in LLMs by asking the model to incorporate intermediate reasoning
steps (rationales) while solving a problem [44, 46, 71, 78]. Wang et
al. [72] sample from the reasoning path and vote for the majority
result. Furthermore, Wang et al. [71] identify rationale sampling
in the output space as the key component to robustly improve
performance, and thus extending CoT tomore tasks. Such reasoning
ability is not a feature only found in LLMs, and several works have

explored incorporating it in small models. Li et al. [44] use CoT-
like reasoning from LLMs to train smaller models on a joint task
of generating the solution and explaining the solution generated.
With multi-step reasoning, Fu et al. [30] concentrate small models
on a specific task and sacrifice its generalizability in exchange for
high performance. To unleash the full potential of model extraction
attacks, this work explores multiple query schemes (including CoT)
and quantifies their influence on performance.

2.3 Imitation Attack
Grey-Box Imitation Attack. The imitation attack, also known as
model extraction attack, aims to emulate the behavior of the victim
model. Successfully extracting a model, especially commercial APIs,
is quite challenging, and previous works [23, 39, 85] tend to sim-
ulate attacks in a grey-box setting, where different kinds of prior
knowledge are required. As shown in Table 1, this prior knowledge
includes the distribution of data, the model architecture, and the
output with its probability. For example, jagielski et al. [39] require
both prior knowledge like model architecture and posterior knowl-
edge such as the probability of output tokens to aid in extraction.
Moreover, since they mainly focus on the image classification task,
domain knowledge like class types can be used to boost model
extraction. For example, Yu et al. [85] ask for prior knowledge of
class types to establish a query set. He et al. [34] demonstrate the
vulnerability of powerful APIs built on fine-tuned BERT models to
model extraction attacks, which exploit the generated tokens and
corresponding posterior probabilities.
Black-Box Imitation Attack. It is evident that prior knowledge
of the target model is not always available in practice. LLM archi-
tecture (e.g., GPT-4 [10]) and training datasets are typically kept
hidden by their owners. With this regard, black-box imitation attack
is more practical as it does not require the adversaries to have any
prior knowledge about the model internals and its training data. To
launch black-box imitation attack, attackers often first prepare a
proxy dataset, which is further derived into a query set 𝑄 based on
the API documentation of the target LLM. Then, each query 𝑞 ∈ 𝑄
is sent to the remote LLM API to obtain the corresponding output
𝑜 . An imitation model can be trained with the collected dataset
{𝑞𝑖 , 𝑜𝑖 |𝑞𝑖 ∈ 𝑄,𝑜𝑖 ∈ 𝑂}.

2.4 Adversarial Examples (AEs)
Adversarial attacks are known for their ability to introduce im-
perceptible changes to input data, resulting in incorrect output
generated by a model. The inputs that induce failures are referred
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to as AEs [32]. While it is relatively easy to generate AEs for com-
mon deep neural networks, LLMs are believed to be more resilient
toward AEs [22, 70] due to the following reasons: (1) LLM often
exposes only APIs in a “black-box” setting, and (2) the model ven-
dors usually put a considerable amount of efforts into fine-tuning
the model. For instance, OpenAI has disclosed that it spent over six
months making GPT-4 safer and more aligned, assembling a team
of over a hundred domain experts specializing in model alignment
and adversarial testing before its public release [57].

Several works have been proposed to test and exploit the poten-
tial of adversarial examples in models designed for code-related
tasks. CodeAttack [40] collected logit information from CodeT5
and CodeBert, makes small adjustments to code tokens, and gen-
erates AEs accordingly. Yang et al. [83] proposed a search-based
framework named Radar to generate function names that cause
AEs. CCTest [48] mutated Python code using several semantics-
preserving transformations and detected inconsistent outputs in
Copilot over those mutated inputs.

3 ETHICS AND RESPONSIBLE DISCLOSURE
The aim of our work is to enhance the resilience of LLM APIs,
and we strongly believe that providing democratized access to
sophisticated LLM APIs benefits all of humanity. To accomplish
this goal, we conduct our experiments in a responsible manner and
endeavor to minimize any potential real-world harm.
Minimal Real-world Harm. Since we discovered adversarial ex-
amples using our imitation model, we minimized harm by (1) avoid-
ing any damage to real users and (2) reporting potential adversarial
examples to OpenAI, as well as the detailed attacking process and
methods used to find them.
Responsible Data Disclosure.As in previous work [17, 27, 66], we
collected the dataset from OpenAI and used it to train the imitation
model, which provides competitive services and aids in adversarial
attacks. Therefore, to prevent potential misuse, we only make the
scripts used for collecting the dataset publicly available and reveal
the AEs that have already been fixed. Furthermore, we adhere
strictly to the licenses of the backbone models and proxy datasets,
and no profit has been gained.

Overall, we believe that the security of LLM ecosystem is best
advanced by responsible researchers and model owners surfacing
these problems.

4 TECHNICAL PIPELINE
In this work, we aim to launch imitation attacks to extract a "slicing"
of code knowledge from LLMs using medium-sized backbone mod-
els. This task is challenging primarily due to LLMs can be queried in
various ways, making it necessary to explore various query schemes.
Their strong in-context understanding capabilities and flexibility
across different tasks add to the complexity of benchmarking their
attack surfaces. Specifically, LLMs have demonstrated strong in-
context understanding capabilities [51]. With fewer examples pro-
vided, LLMs can achieve a better understanding of downstream
tasks with higher performance [77]. Also, Chain-of-Thought rea-
soning [72, 78] elicits the complex reasoning ability in LLMs. These
novel tasks and schemes make LLMs quite flexible and versatile
under various tasks, thus making it highly challenging and costly

to systematically benchmark the attack surfaces of LLMs against
model extraction.

Fig. 1 presents an overview of our imitation attack, which con-
sists of four phases: (1) query generation, (2) response checking, (3)
imitation model training, and (4) downstream (adversarial) applica-
tions. Given one or more proxy datasets, our attack framework first
generates LLM queries according to different code tasks and query
schemes. We then employ a rule-based filter to check the correct-
ness and quality of the responses provided by LLMs. Responses that
pass the filter are considered of high-quality and used to train the
imitation model. Next, we train the imitation model by fine-tuning
medium-sized backbone models with the filtered responses. Finally,
we use the imitation model for various downstream (malicious)
applications, such as providing competitive service and boosting
the generation of AEs. We now describe each phase in detail.

4.1 Imitation Query Generation
According to our preliminary tests, query schemes and prompt qual-
ity have a significant impact on eliciting LLM outputs. Therefore,
to fully unleash the potential of this attack, we benchmark three
query schemes as detailed below. Before introducing them, we first
clarify how a query is decomposed into two parts: the question
head 𝑄ℎ𝑒𝑎𝑑 and the question body 𝑄𝑏𝑜𝑑𝑦 . Note that the former
varies from task to task, and the latter can be collected from proxy
datasets. For example, for the code summarization task, we set the
sentence “Summarize the following code in one sentence” as𝑄ℎ𝑒𝑎𝑑 .
This is beneficial because a clear and concise question can help
LLMs understand their specific role within a task, which in turn
enhances their abilities to effectively complete that task.
Zero-Shot Query (ZSQ). This scheme specifies that attackers will
iteratively use each question 𝑞𝑖 ∈ 𝑄 to query the target LLM with-
out preparing any context. Accordingly, the attackers will gather
the responses to train the imitation model. ZSQ is universal and
adopted by nearly all prior model extraction works [35, 36, 58, 85]
in both classification and generation tasks. Since the tasks we eval-
uated (see Table 2) are all generation tasks, we follow [36, 85] to
prepare the queries.
In-context Query (ICQ). Several studies [21, 42, 53, 78] have
shown that providing in-context information can significantly im-
prove LLM performance. Therefore, we also consider this query
scheme. Specifically, for each question 𝑞𝑖 , the query would provide
several examples along with the question head 𝑄ℎ𝑒𝑎𝑑 . The choice
of examples used as contexts plays a crucial role in enabling the
model to understand the task. For instance, the number of examples
can not be too few or too many because a short in-context may
not provide enough information to the victim model, while a long
one may cause the query to exceed the length limit. We study its
influence in Sec. 5.3.
Zero-Shot CoT (ZS-COT). This scheme was first proposed in [41].
Unlike [78], which heavily relies on manually crafted prompts, the
core idea behind ZS-CoT is quite simple: adding a prompt sentence
like “Let’s think it step by step.” to extract the reasoning process
hidden in the model. We follow the definition proposed by [41] and
treat ZS-CoT as a two-step prompt process. Specifically, given a
standard query sample 𝑠𝑖 ∈ 𝑆 , which contains a question 𝑞𝑖 ∈ 𝑄 ,
ZS-CoT first constructs a prompt that requires explanation (or
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Figure 1: An overview of our imitation attack framework, including query generation, response check, imitation training, and
downstream applications.

rationale) to the victim model and collects the response as 𝑟𝑖 . In the
second stage, it uses both 𝑞𝑖 and 𝑟𝑖 to ask for the final answer of
victim models. Usually, the two-stage query sequence follows this
form: “𝑄ℎ𝑒𝑎𝑑 Q: ⟨𝑞𝑖 ⟩. A: Let’s think it step by step. ⟨𝑟1

𝑖
⟩. Therefore,

the answer is ⟨𝑎2
𝑖
⟩.”2 In the experiment, we slightly changed the

answer trigger pattern to adapt to the answer format. For example,
we used “Therefore, the translated C# code is” for code translation
task and “Therefore, the summarization is” for code summarization
task. It is worth noting that even with a carefully designed filtering
system provided by [37], it is hard to guarantee the correctness of
the rationale. This is because the code-related tasks considered in
this paper are open-ended, which poses a greater challenge than
the multiple-choice questions in NLP reasoning tasks. As a result,
we assess the generated rationales for each task (see Sec. 5.2 for
details). It is worth noting that we do not consider in-context CoT
(IC-CoT) in this paper. The main reason for this exclusion is the
difficulty of constructing appropriate Chain-of-Thought reasoning
processes [78] for code-related tasks, as opposed to arithmetic or
symbolic reasoning tasks.

4.2 Response Check Scheme
As mentioned earlier, the collected responses should be refined to
achieve high effectiveness in training an imitation model. That said,
when attackers receive the response from LLMs, it is desirable to
first perform a check before adding it to the training data. This
can improve the overall quality of the dataset by helping attackers
identify and rule out poor quality content, thereby increasing the
average quality of responses. Additionally, trimming the training
data can reduce the overall training cost of imitationmodels. Specifi-
cally, given a list of LLM outputs𝑂𝐿 , we check each output 𝑜𝐿

𝑖
∈ 𝑂𝐿

based on several metrics and keep the high quality answers.
To handle LLMs that may produce both NL and PL outputs, we

have devised distinct filtering rules for each. For NL outputs, we
count the length and discard any text below or above pre-defined
thresholds. Following the setting in CodexGLUE [52], the upper
bound is set to 256, and the lower bound is set to 3.

For PL outputs, we only keep those that pass a grammar check by
a parser. For this purpose, we use treesitter [14], a parser generator
tool that can parse incomplete code fragments. Unlike language-
specific compilers or interpreters (e.g., CPython for Python), treesit-
ter supports most mainstream languages3 with a unified inter-
face, which makes it convenient to adapt to various PLs. Moreover,
treesitter provides error messages for incorrect code syntax, which

2The superscript for 𝑟𝑖 and 𝑎𝑖 indicates the stage at which they were collected. Readers
can refer to [1] for details.
3Treesitter version 0.20.7 now supports 113 different programming languages.

enables us to count the number of failures and further investigate
the reasons behind them (see Sec. 5.2).

4.3 Imitation Model Training
Similar to previous imitation attacks [34, 67], answers that pass the
response selection module are considered as high-quality answers
and used to train the imitation model. Specifically, the collected
response dataset {𝑞𝑖 , 𝑜𝑖 |𝑞𝑖 ∈ 𝑄,𝑜𝑖 ∈ 𝑂} is used to fine-tune the
public backbone model. In this subsection, we first provide details
on the target LLMs and their code-related tasks that are the focus
of our imitation attacks. We then explain the evaluation metrics
used and the process for training the imitation models.
Target LLMs. Unless otherwise specified, we use OpenAI’s text-
davinci-003 [8] as the victim LLM for all experiments, since it has
been widely used in prior research [20, 68], which supports its effi-
cacy and reliability. In our evaluation (Sec. 5.5), we further demon-
strate the generalizability of our attack by evaluating it with another
LLM API called gpt-3.5-turbo.

Table 2: The evaluated tasks and datasets. CSyn, CT, and
CSum denote code synthesis, code translation, and code sum-
marization, respectively. CSN represents the CodeSearchNet
dataset.𝐷𝑝𝑟𝑜𝑥𝑦 and𝐷𝑟𝑒 𝑓 are the proxy and reference datasets.

Category 𝐷𝑝𝑟𝑜𝑥𝑦 𝐷𝑟𝑒 𝑓 # Queries Stat. of 𝐷𝑟𝑒 𝑓

CSyn XLCOST [89] CONALA [84] 2k 2k/-/500
CT XLCOST [89] CodeXGLUE [52] 10k 10k/500/1k
CSum DualCODE [76] CSN [38] 8k 25k/14k/15k

Target LLM Tasks. Before providing details on the filtering rules,
we introduce the target LLM tasks in this research. Drawing from
the variation in input and output types, we select three representa-
tive tasks: code synthesis, code translation, and code summarization.
Importantly, our imitation attacks are not limited to these tasks.
Two datasets, 𝐷𝑝𝑟𝑜𝑥𝑦 and 𝐷𝑟𝑒 𝑓 , are used here to emulate the ex-
tracting process. Adversaries are only allowed to use the train split
of the proxy dataset 𝐷𝑝𝑟𝑜𝑥𝑦 to construct queries. The reference
dataset 𝐷𝑟𝑒 𝑓 , on the other hand, is assumed to be inaccessible to
adversaries. To establish baselines for comparison, backbone mod-
els will be trained on the two datasets to form 𝑀𝑝𝑟𝑜𝑥𝑦 and 𝑀𝑟𝑒 𝑓 ,
with details provided in Sec. 5.1.
Code Synthesis (CSyn). CSyn in this study refers to an “NL-PL” task
that aims to generate specific programs based on NL descriptions.
As shown in Table 2, we use CONALA as the proxy dataset for this
task, which contains 2,879 annotations with their corresponding
Python3 solutions manually collected from StackOverflow. We did
not use an online-judgment dataset such as CodeContests [45] due
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to the input token length limitations. Further discussion on this is
provided in Sec. 6.
Code Translation (CT). As a “PL-PL” task, CT involves migrating
legacy software from one language to another. As shown in Table 2,
we use XLCOST as the proxy dataset and CodeXGLUE as the refer-
ence one, where code snippets written in Java and C# that share
the same functionality are paired together. We select Java as the
source language and C# as the target language.
Code Summarization (CSum). As a “PL-NL” task, CSum generates
an NL comment that summarizes the functionality of a given PL
snippet. As shown in Table 2, we reuse the DualCODE dataset as
the proxy dataset. We use 𝐷𝑝𝑟𝑜𝑥𝑦 and 𝐷𝑟𝑒 𝑓 to represent the proxy
and reference dataset, respectively.

Evaluation Metrics. We explore two common similarity metrics
for measuring the quality of generated content. We categorize them
as follows:
NL Content. For CSum, whose generated content is NL text, we
follow previous works [29, 48, 74] and use the smoothed BLEU-4
score (referred to as BLEU in the rest of this paper) to evaluate
the generated NL summarization. Given the generated text and its
ground truth, BLEU examines the number of matched subsequences,
and a higher BLEU score suggests greater similarity at the token
level.
PL Content. The outputs of the CSyn and CT tasks are PL code
snippets, which cannot be directly evaluated using NL metrics.
Therefore, similar to previous works [16, 45, 52, 74], we use Code-
BLEU [61], a metric that takes into account token-level, structural-
level, and semantic-level information. Overall, CodeBLEU consists
of four components: n-gram matching score 𝐵𝐿𝐸𝑈 , weighted n-
gram matching score 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝐵𝐿𝐸𝑈 , syntactic AST matching
score𝐴𝑆𝑇_𝑆𝑐𝑜𝑟𝑒 , and semantic data flowmatching score𝐷𝐹_𝑆𝑐𝑜𝑟𝑒 .
Specifically,

𝐶𝑜𝑑𝑒𝐵𝐿𝐸𝑈 = 𝛼 ∗ 𝐵𝐿𝐸𝑈 + 𝛽 ∗𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝐵𝐿𝐸𝑈
+ 𝛾 ∗𝐴𝑆𝑇_𝑆𝑐𝑜𝑟𝑒 + 𝛿 ∗ 𝐷𝐹_𝑆𝑐𝑜𝑟𝑒 (1)

where 𝛼, 𝛽,𝛾, 𝛿 are the weights for each component. As suggested
in [52, 74], they are all set to 0.25. Note that both BLEU and Code-
BLEU scores range from 0 to 100, with higher scores indicating a
greater level of similarity.

Imitation Models. As noted in Sec. 2, adversaries can follow the
classic “pre-train and fine-tune” paradigm, training their imita-
tion models via fine-tuning a well-trained backbone model. In this
work, we choose two representative models for code-related tasks:
CodeBERT [29] and CodeT5 [74]. CodeT5, a variant of the text-to-
text Transformer [60] model, treats all text tasks as a sequence-to-
sequence paradigm with different task-specific prefixes, making it
suitable for both code understanding and code generation tasks. On
the other hand, CodeBERT is built on a multi-layer bidirectional
Transformer encoder and pre-trained on large-scale text-code pairs
using two tasks: masked language modeling (MLM) and replaced
token detection (RTD). In the MLM task, the model predicts the
original token in the masked positions, while in the RTD task, a
discriminator is used to distinguish the replaced tokens from the
normal ones. These two models are selected for this study due
to their widespread adoption and strong performance on various

tasks, as evidenced by prior work [56, 69]. Specifically, CodeBERT-
base employs a 125 million parameter encoder-only architecture,
whereas CodeT5-base utilizes a 220 million parameter encoder-
decoder design tailored for sequence-to-sequence tasks.
Training Setup. To ensure the reproducibility of our results, we
train the imitation model three times for each experiment and
report the median of the achieved results. In addition, we analyze
the impact of different hyperparameters in Sec. 5.4. All experiments
are performed on a machine with an Intel Xeon Patinum 8276 CPU,
256 GB of main memory, and 4 NVIDIA A100 GPUs. By using the
early stopping strategy, the training process takes an average of 5
hours and 23 minutes to complete.

4.4 AE Generation
As discussed in Sec. 2.4, AE generation has become a common
technique to improve model robustness. However, discovering AEs
effectively remains challenging for advanced models. To address
this, we demonstrate the feasibility of boosting AE generation for
code-related tasks using an imitation model. In contrast to the defi-
ciency of prior methods against modern LLMs (detailed in Table 6),
our approach using the imitation model allows for generating AEs
in an approximately white-box setting. Specifically, given the𝑀𝑖𝑚𝑖

on hand, we rely on the attention scores to locate sensitive tokens
in an input prompt, and then apply several semantically-equivalent
transformations (derived and extended from the CCTest’s code-
base [4]) to iteratively mutate those sensitive tokens until generat-
ing AEs on𝑀𝑖𝑚𝑖 . These generated AEs are then fed to the remote
victim LLM to test whether they can induce failures.

To demonstrate, we apply our approach to the code summariza-
tion (CSum) task, where a successful AE means a subtle mutation in
the code input leads to a dramatically changed, incorrect summary.
We generate potential AEs in two steps: (i) identifying the most
sensitive tokens and (ii) applying semantically-equivalent transfor-
mation passes on those tokens. To do so, we start with an input
sequence X = [𝑥1, .., 𝑥𝑖 , ..., 𝑥𝑚] and generate the output sequence
(code summary) with its original attention score 𝐴𝑡𝑡𝑜𝑟𝑖 . Next, we
iteratively replace each token 𝑥𝑖 with [𝑀𝐴𝑆𝐾] and re-generate
the summary with its corresponding attention score 𝐴𝑡𝑡𝑖 . We then
quantify the gap score by computing𝐺𝑎𝑝𝑖 = 𝐴𝑡𝑡𝑖 −𝐴𝑡𝑡𝑜𝑟𝑖 for each
token. Finally, we rank all tokens according to their gap scores in
descending order to find the most sensitive tokens. We then check
each of the top-𝑘 sensitive tokens and decide if it satisfies any of
the transformation passes offered by CCTest. If it does, we apply
the transformation to generate the potential AE.4

5 RESEARCH QUESTIONS AND RESULTS
In this section, we aim to experimentally investigate the effective-
ness of extracting specialized abilities from LLMs by answering the
following research questions (RQs).
• RQ1: How effective is the imitation attack in code-related tasks?
• RQ2: How do different query schemes impact the performance
of the imitation attack?

• RQ3: How do hyperparameters affect the performance and cost
of imitation attacks?

4Due to page limit, we provide the full documentation and tutorial on our website [1]
for this step.
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• RQ4: Towhat extent can the use of imitationmodels help generate
adversarial examples against LLM APIs?

• RQ5: How generalizable is the imitation attack across different
LLM APIs?

5.1 RQ1: Effectiveness of the Imitation Attack
To answer RQ1, we study the effectiveness of our launched imita-
tion attack on three code-related tasks: CSyn, CT, and CSum. As
noted in Sec. 4.3 and Table 2, we use the proxy dataset to launch
queries towards the target LLM and validate the performance of
the imitation model on the reference dataset.

Table 3: The main results of our imitation attack. “I/O”
stands for “Input/Output.” All results are presented as BLEU
scores or CodeBLEU scores on the test split of reference
datasets, where𝑀𝑝𝑟𝑜𝑥𝑦 and𝑀𝑟𝑒 𝑓 represent the backbonemod-
els trained on the proxy and reference datasets, respectively.
𝑀𝑖𝑚𝑖 is the imitation model trained on the collected dataset
and “API” stands for the best original LLM result under all
three query settings. 𝑀𝑝𝑢𝑟𝑒 is the backbone model without
fine-tuning.

I/O Type Model API 𝑀𝑖𝑚𝑖 𝑀𝑝𝑟𝑜𝑥𝑦 𝑀𝑟𝑒 𝑓 𝑀𝑝𝑢𝑟𝑒

CSyn NL/PL CodeT5 27.51 24.84 11.53 24.21 1.40
CodeBERT 18.61 9.41 17.09 N/A

CT PL/PL CodeT5 69.15 72.19 27.21 84.30 4.38
CodeBERT 68.58 24.82 79.05 N/A

CSum PL/NL CodeT5 12.90 17.72 17.25 18.95 3.84
CodeBERT 14.09 12.20 14.87 N/A

Table 3 presents the main results of our model extraction at-
tack. The𝑀𝑝𝑟𝑜𝑥𝑦 and𝑀𝑟𝑒 𝑓 columns show two baseline settings in
which the backbonemodels are trained directly on the proxy dataset
and the reference dataset, respectively. The𝑀𝑖𝑚𝑖 column reports
the attack accuracy, while the API column shows the LLM perfor-
mance. It is essential to note that𝑀𝑝𝑟𝑜𝑥𝑦 ,𝑀𝑟𝑒 𝑓 , and𝑀𝑖𝑚𝑖 have the
same model architecture (either CodeT5-base or CodeBERT-base),
and their training datasets are of equal size. We tested all three
models on the same test dataset and chose the best performance
from all three query schemes. The values in each cell represent the
BLEU score for natural language texts and the CodeBLEU score for
programming language contents, as mentioned earlier in Sec. 4.3.
Furthermore, since all three models (and the LLMAPIs) are assessed
using the test split of the reference dataset, it is reasonable to ob-
serve that𝑀𝑟𝑒 𝑓 (which is trained using the train split of the same
dataset) consistently achieves the best performance across all three
tasks.

From Table 3, it is evident that the imitation attacks are highly
effective. First, the performance of CSyn and CT tasks is quite
promising, as the imitation models 𝑀𝑖𝑚𝑖 outperform 𝑀𝑝𝑟𝑜𝑥𝑦 by
an average of 57.59% and 56.62% on CodeT5 and CodeBert, respec-
tively. Note that the proxy dataset comprises a set of input-output
tuples, whereas𝑀𝑖𝑚𝑖 is trained using the same inputs and their cor-
responding outputs from the LLM API. Therefore, we attribute the
superiority of𝑀𝑖𝑚𝑖 over𝑀𝑝𝑟𝑜𝑥𝑦 to the fact that LLM APIs provide
high-quality code snippets as outputs, which further enhance the
performance of the imitation model. Moreover,𝑀𝑝𝑟𝑜𝑥𝑦 consistently

performs the worst on all three tasks, indicating the high value of
the outputs provided by the LLMs.

def resource_patch(context, data_dict):
_check_access('resource_patch', context, data_dict)
show_context = {'model': context['model'], 'session': context['session’]}
resource_dict = _get_action('resource_show')(show_context)
patched = dict(resource_dict)
patched.update(data_dict)
return _update.resource_update(context, patched)

Ground truth: Patch a resource.

Code

Sum LLM: Update a resource by checking access, showing 
the context and patching the resource with updated data. 

Figure 2: An example to demonstrate why LLM APIs tend to
have low scores on the code summarization task, which is
because the ground truth for this task uses short summaries.

When models are trained using publicly available resources, they
may perform poorly when tested on different datasets, as evidenced
by the results in the𝑀𝑝𝑟𝑜𝑥𝑦 column of Table 3. This is one reason
why adversaries may resort to extracting LLMs. Encouragingly,
we find that the imitation model𝑀𝑖𝑚𝑖 , when being enhanced with
knowledge extracted from the LLMAPIs, can largely outperform the
baseline model𝑀𝑝𝑟𝑜𝑥𝑦 in both the CSyn and CT tasks, achieving
an average improvement of 140.3% and 170.8% on CodeT5 and
CodeBert, respectively. Moreover, we observe highly promising
results that 𝑀𝑖𝑚𝑖 can even outperform the LLM APIs on the CT
and CSum tasks, demonstrating the general effectiveness of our
imitation model.

Comparing𝑀𝑖𝑚𝑖 and𝑀𝑝𝑟𝑜𝑥𝑦 , we find that the improvement of
the imitation model𝑀𝑖𝑚𝑖 on the CSum task is less significant than
the improvement on the other tasks. However, we also notice a
perplexing observation that the LLM APIs perform even worse than
𝑀𝑝𝑟𝑜𝑥𝑦 on the CSum task. Upon manual inspection, we discover
that the APIs tend to return verbose contents with abundant infor-
mation if no additional context is provided, leading to a decrease
in performance. For instance, in Fig. 2, the ground truth answer for
the PL input is “patch a resource,” which is concise and straightfor-
ward. However, the answer provided by LLMs is “Update a resource
by checking access, showing the context, and patching the resource
with updated data,” which is more lengthy. This phenomenon has
been previously mentioned in [22], where GPT-4 was utilized to
address the issues with the similarity metrics. However, we find this
solution impractical because employing powerful LLM APIs such
as GPT-4 as an automatic judge would still yield biased judgment
results [86]. LLM judges tend to assign higher scores to lengthy
responses [73], even when conciseness suffices.
Impact on Pre-TrainedModels.As noted in Sec. 4.3, both CodeT5
and CodeBERT were pre-trained on large corpora that may overlap
with our chosen test sets. To mitigate this threat to validity, we
report the baseline results of the unmodified backbone models
on the test splits in Table 3, in the 𝑀𝑝𝑢𝑟𝑒 column. For CodeT5,
performance is substantially lower across all three tasks compared
to the other settings, indicating that the main capability of the
imitation model 𝑀𝑖𝑚𝑖 is not mainly inherent from pre-training.
Note that CodeBERT is an encoder-only model: benchmarking its
decoding capability requires training a task-specific decoder, and its
baseline performance is thus marked as “N/A”. Overall, the largely



ICSE 2024, April 2024, Lisbon, Portugal Zongjie Li, Chaozheng Wang, Pingchuan Ma, Chaowei Liu, Shuai Wang, Daoyuan Wu, Cuiyun Gao, and Yang Liu

improved fine-tuning performance𝑀𝑖𝑚𝑖 indicates that pre-training
alone cannot account for the models’ proficiency on three code-
related tasks.

Finding 1: Extracting specialized code abilities of LLMs through
medium-sized backbone models is effective for representative
code-related tasks. The trained imitation models achieve compa-
rable, if not better performance than the original LLMs in those
specialized code abilities.

Table 4: Attack effectiveness using different query schemes.
CBLEU denotes the CodeBLEU metric.

Task Model Metric ZSQ ICQ ZS-COT

CSyn
CodeT5 CBLEU 23.39 23.67 24.84
CodeBERT CBLEU 15.99 16.59 18.61

𝑟 𝑓 % 2.48 2.40 4.62

CT
CodeT5 CBLEU 36.31 72.19 34.64
CodeBERT CBLEU 37.13 68.58 34.68

𝑟 𝑓 % 28.61 20.72 27.02

CSum
CodeT5 BLEU 10.95 17.72 12.25
CodeBERT BLEU 9.80 14.09 11.51

𝑟 𝑓 % 0.00 0.15 0.06

5.2 RQ2: Influence of Different Query Schemes
To answer RQ2, we aim to explore the impact of different query
schemes on the data quality and the performance of imitation at-
tacks. Recall in Sec. 2, we have introduced three query schemes.
Here, we present the comparison results on three tasks in Table 4.
For each setting, we represent the performance scores and the
failure rates.
Imitation Performance. From the result listed, we can find that
the ICQ achieves better performance than the other schemes on
both CSum and CT tasks. In particular, the BLEU score on CSum for
ICQ achieves 62.83% and 36.91% improvement, compared with ZSQ
and ZS-COT, respectively. These findings suggest that incorporating
context information can greatly enhance the quality of imitation
training by providing more accurate answers. We note that this
finding is consistent with previous research [21, 42] that highlights
the importance of context in natural language processing tasks.

Moreover, ZS-COT achieves a CodeBLEU score of 24.84 on the
CSyn task for CodeT5, which outperforms ICQ by 4.94%. We further
compare four subscores in CodeBLEU (see Equ. 1) and find that the
semantic data flow matching score 𝐷𝐹_𝑆𝑐𝑜𝑟𝑒 of ZS-COT is 40.65,
24.12% higher than that of the ICQ scheme. To explore the root
cause of our findings, two authors of this paper manually checked
150 ZS-COT responses for each task. Surprisingly, only 7 (4.6%)
responses provide a meaningful rationale on CSum.5 For the re-
maining responses, the rationale 𝑟𝑖 was the same as the final answer
𝑎𝑖 , indicating that ZS-COT spends a large amount of resources but
gains a limited amount of useful information.

On the other hand, 13 (8.6%) rationales are meaningful on CSyn,
which is nearly twice as many as those in other schemes. We at-
tribute this to the fact that the PL inputs in CSum and CT lack clear
multi-step thinking in their questions, unlike the NL inputs in rea-
soning tasks. We find that reasoning problems present their thought
processes more explicitly, while implicit thoughts in code tasks are
5The Cohen’s Kappa is 0.96, indicating that the inspection results among two authors
are highly consistent.

harder for ZS-COT to capture. Therefore, it is understandable why
ZS-COT performs better on CSyn, as its context is more closely
aligned with natural language expressions found in reasoning tasks.
Failure Rates. To give a comprehensive understanding of the
influence of query schemes, we also explore the difference between
generated contents. As we have described in Sec. 4.2, we count the
number of failures among the texts and code snippets and return
the failure rate 𝑟 𝑓 %. For the CSum task, all schemes share a low
failure rate (less than 0.2%), with CoT having a slightly higher
failure rate as it may contain the extra reasoning steps in the final
content that exceeds the upper bound; it may also generate a too
concise summary that is below the lower bound. Additionally, in
comparison with ZSQ and ICQ, ZS-COT on CSyn has a notably
high failure rate of 4.62%. This implies that the Chain-of-Thought
may be less appropriate for tasks that aim to generate code snippets.
Note that all three schemes manifest high failure rates (25%) on CT,
which is due to the nature of the CT task. As described in Sec. 4, we
convert the Java programs into C# programs at the function-level,
which diminishes some key information. To empirically confirm
this, we repeat the same grammar check experiment on the test
split of the reference datasets, which turns out to have a comparably
high failure rate of 17%.
Influence of Response Check. As described in Sec. 4, we design a
response check algorithm to remove low-quality responses. At this
step, we explore its influence on the CSum task.We report that when
enabling this algorithm, our approach can lower the training time
by approximately 34.81% and 14.98% for CodeT5 and CodeBERT,
respectively. Additionally, the imitation models’ performance is
decreased by a maximum of only 4%.

Finding 2: Query schemes have a major impact on the perfor-
mance of imitation attacks. It is vital to construct query schemes
with a suitable template design. Queries with sufficient context
generally enhance the attack toward all tasks, while the CoT only
shows a noticeable boost in code synthesis.

5.3 RQ3: Impact of Hyperparameters
To answer RQ3, we need to study the impact of hyperparameters.
To do so, we explore the following three aspects: 1) victim model pa-
rameters, 2) the number of in-context examples, and 3) the number
of issued queries.
VictimModel Parameters.According to OpenAI [8], text-davinci-
003 mainly provides two parameters that control its generated out-
puts: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 , which represents the propensity for choosing
the unlikely tokens; and 𝑡𝑜𝑝𝑝 , which controls the sampling for the
set of possible tokens at each step of generation. To determine the
appropriate value for these parameters, we prompt text-davinci-003
with all 25 combinations (5 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 × 5 𝑡𝑜𝑝𝑝 ) at step incre-
ments of 0.25. We use the CSum task at this step and query those
25 sets of combinations, and the responses are then compared with
the ground truth answers to compute a BLEU score.

Fig. 3 (a) reports the evaluation results. For each setting, we issue
50 queries, collect the answers yielded by the LLM, and compare
them with the ground truth (for CSum, ground truth is natural lan-
guage snippets for code summarization). An answer deems passing
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Figure 3: The impact of hyperparameters (RQ3).

the check if its similarity score is higher than the average value and
otherwise as a failure. We count the number of passing answers and
present them in each cell. The performance clearly degrades with
edge values for both hyperparameters. Across the experiments, the
best parameters are seen as 𝑡𝑜𝑝𝑝 = 0.5 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.5.
In-context Examples Number. As noted in Sec. 2.2, the number
of in-context examples 𝐸 plays an important role in understanding
the task, and previous works [25, 50] have used a range of 𝐸 varying
from two to dozens. However, this is not practical in code-related
tasks, since the average token length of code snippets is much
longer than the natural language texts. Moreover, the victim LLM
used in this paper has a maximum token length limit (4,097) for each
query, including both inputs and outputs. Therefore, following [42],
we only use example numbers ranging from 1 to 5 on the CSum
task to avoid exceeding the request limitation.

Table 5: Attack performance under different number of in-
context examples. T5 and CB stand for CodeT5 and Code-
BERT, respectively.

# In-context examples 1 2 3 4 5

Model T5 14.20 16.51 17.05 17.72 16.96
CB 10.87 12.90 13.95 14.09 13.88

Cost 11.24 20.53 30.97 42.85 53.29

The outcomes are shown in Table 5, indicating that the perfor-
mance level escalates with an increase in #in-context examples
and reaches its peak at 𝐸 = 4. However, there exists a discrepancy
between the improvement in performance and the accompanying
cost. Although performance gradually enhances at a dropping rate
over time, sustaining optimal performance incurs linearly growing
costs. This is because every new example added demands extra
tokens associated with that example for all queries, even those that
have already accomplished satisfactory performance. Considering
this trade-off, adversaries must carefully assess their options. For
imitation, we suggest fixing the example number to three. We re-
gard this as a reasonable trade-off that adversaries are willing to
embrace during implementation.
Number of Queries. Considering that the performance of imita-
tion attacks heavily relies on the number of collected responses [58,
67], an evident trade-off exists between the number of queries and
the performance of the imitation model. Too few queries can lead
to poor performance while too many queries may cause an unaf-
fordable cost, and neither scenario is desirable for adversaries. We
now study the impact of #queries on imitation attack performance.

The evaluation results are shown in Fig. 3(b), where T5 and CB
represent CodeT5 and CodeBERT, respectively. Due to the limited
space, we report the evaluation results on the CSyn task. Other
tasks share similar findings; see [1] for the full results. In short,
when the adversary-collected dataset is equivalent in size to that of
the model owners’ training dataset, the imitation model surpasses
the model trained on the proxy dataset (“T5/CB-proxy-full”) and
attains comparable performance to the model trained on the ref-
erence dataset (“T5/CB-ref-full”). This clearly shows the value of
conducting imitation attacks, as the adversaries in real-world usu-
ally face the problem of lacking appropriate training data. We note
that for the CSyn task, the increasing number of queries could help
address the insufficient data problem and boost performance. With
only 5% queries, our imitation model𝑀𝑖𝑚𝑖 trained on the collected
data can achieve a notable improvement of 41.97% on CodeT5 as
compared to 𝑀𝑝𝑟𝑜𝑥𝑦 , and the performance keeps increasing and
reaches a peak with a 115.43% improvement.

Upon analyzing the collected dataset, we view that the internal
diversity and high quality of gathered data were the reasons behind
the improvement. For example, when given the same NL instruc-
tion “decode a hex string ‘4a4b4c’ to ‘UTF-8’”, the model trained on
the proxy dataset returns the “hex = hex_decode(hex) return hex”
that is full of repeated tokens “hex”. In contrast, 𝑀𝑖𝑚𝑖 generates
“bytes.fromhex(‘4a4b4c’).decode(‘utf-8’)”, a compilable code snippet
that uses the built-in APIs correctly. One remaining question is
whether such improvement can keep increasing to a considerably
large extent. Unfortunately, we notice that the boost from the in-
creasing number of queries gradually diminishes with its growing
size, which reflects the margin effect of #queries.

Finding 3: The output/sampling hyperparameters have an ob-
servable (yet not significant) impact on the attack performance.
In contrast, #queries and #in-context examples notably affect the
attack performance.

5.4 RQ4: Boosting AE Generation
After attackers obtain a well-performing imitation model𝑀𝑖𝑚𝑖 , this
RQ investigates the feasibility of generating AEs to further exploit
the target LLM and manipulate its outputs.

In this RQ, we study the code summarization task (CSum), where
a successful AE for this task constitutes a subtle perturbation to
the input code which results in a significantly altered, incorrect
summary from the model. We note that the same method can be
easily extended to other tasks. As discussed in Sec. 5.1, the natural
language descriptions in the CodeSearchNet dataset are highly
ambiguous, which increases the difficulty in distinguishing the real
AEs. Therefore, we use the Leetcode [11] dataset as the test dataset,
as it provides clearer explanations for the given code snippets.

As introduced in Sec. 4.4, there are two primary steps in gen-
erating the potential adversarial examples: (i) Finding the most
vulnerable tokens. (ii) Applying the semantically-equivalent trans-
formation passes on selected tokens. We illustrate the process in
Fig. 4, where the original input code aims to test whether a given
number is a palindrome. The selected tokens are “test, x, False,
ba” (in red text box). Since variable “x” satisfies the mathemati-
cal constant transformation in CCTest, we replace it with “x*x/x”,
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and it turns out to be an AE for the text-davinci-003 API. It is im-
portant to note that AE generation for NLP tasks typically takes
hours to produce a single instance [91]. In contrast, our proposed
method can generate adversarial examples in just seconds to min-
utes, depending on the input length and the choice of the imitation
backbone model. This efficiency arises from the use of an imitation
model to guide the adversarial example generation. As the imitation
model is much smaller than the target language models, inference
is considerably faster.

Before: This code tests if a given number is a palindrome.

Code

Sum After: This code tests if a given number is equal to the sum of its digits squared.

def test(x):
def mydiv(x,ba):

return x//ba,x%ba
back,ba = 0,10
b = back + x
if x < 0:

return False
while x>0:

x,div_tmp = mydiv(x,ba*ba/ba)
back = back *ba
back += div_tmp

return back == b

def test(x):
def mydiv(x,ba):

return x//ba,x%ba
back,ba = 0,10
b = back + x*x/x
if x < 0:

return False
while x>0:

x,div_tmp = mydiv(x,ba*ba/ba)
back = back *ba
back += div_tmp

return back == b

Adversarial 
Example

Figure 4: Adversarial examples generation.
Besides, we also compare our approach with several previous

works introduced in Sec. 2.4 to demonstrate its effectiveness. Over-
all, these works are considered state-of-the-art (SOTA) AE gen-
eration methods for code models under white-box or black-box
settings, and we follow their original settings to conduct the exper-
iments below.
Table 6: Comparison for different adversarial attackingmeth-
ods. Sem EQ, SAE rate, and UAE rate stand for semantically
equal, stable AE rate and unstable AE rate.

Method Type Sem EQ? SAE rate UAE rate
CodeAttack Whitebox False 1.11 % 4.44 %
Radar Blackbox True 0 % 1.47 %
CCTest Blackbox True 0 % 1.13 %
Ours 𝑀𝑖𝑚𝑖 -enabled Whitebox True 9.5 % 4.78%

We generate up to 90 potential AEs for each of the prior works
and our method, and use them to query text-davinci-003. Then, we
manually inspect the responses and report the results in Table 6.
Note that OpenAI models are non-deterministic [8], meaning that
identical inputs can yield different outputs. Setting 𝑡𝑜𝑝𝑝 = 1 and
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0 will make the outputs mostly deterministic, but
a small amount of variability may remain. Therefore, we repeat
querying each AE three times and divide them into two categories:
stable AE (SAE) and unstable AE (UAE). The former demonstrates
that this example can be triggered every time we query (more
desirable), while the latter indicates that the attack succeeds for at
least one time. Both types of AEs have practical implications, as real-
world users may query a model multiple times to gain confidence in
the result, or just once without repeating. It is thus evident that the
former users are presumably vulnerable under UAE and constantly
vulnerable under SAE, whereas the latter is constantly vulnerable
under SAE. It is worth noting that the example shown in Fig. 4
represents a stable AE, meaning it can be triggered each time we
query the text-davinci-003 API.

Table 6 reports highly encouraging results, indicating that our
method is effective in finding potential AEs in such a challenging

setting. Among methods that preserve input semantics (a generally
more desirable property), CCTest fails to trigger any incorrect con-
tent, while Radar only generates one AE which cannot be triggered
stably. In contrast, our method can find both stable and unstable
AEs. We deem that the imitation model 𝑀𝑖𝑚𝑖 provides valuable
guidance to the process of AE generation.

Additionally, we notice that CodeAttack, as a SOTA white-box at-
tack method, can also trigger some misleading content. Specifically,
it discovers stable and unstable adversarial examples at rates of 1%
and 4%, respectively. However, we find that it does not preserve the
semantic equivalence of the input, as it would aggressively replace
or delete sensitive tokens. This renders nearly one-third of the code
snippets unable to be compiled without any error [40]. Furthermore,
it is evident that a white-box attacking method is not applicable to
real-world LLMs.

Finding 4: The imitation model provides useful information,
e.g., attention score, to facilitate the generation of adversarial
examples against LLMs. With this information, we successfully
discover multiple AEs that can be stably triggered on LLM APIs.

5.5 RQ5: Generalizability
In this RQ, we investigate the generalizability of our imitation
attack. To do so, we follow an identical process to query other LLM
APIs and train our imitation model on the collected dataset. As we
introduced in Sec. 4, we conducted all experiments on text-davinci-
003 due to its great capacity. OpenAI also provides gpt-3.5-turbo,
which is highly optimized for chat. This model is also popular, due
to its relatively lower cost (1/10th of the cost) in comparison to the
davinci series of models. Notably, we exclude GPT-4 here since its
API remains publicly unavailable, and its web service has a strict
rate limit. While it is unclear about the internals of gpt-3.5-turbo,
we believe evaluating two highly popular and representative LLMs
(text-davinci-003 and gpt-3.5-turbo) is sufficient to demonstrate the
generalizability of our approach.

Table 7: Comparison for additional LLM APIs. TD-003 and
GPT-35 stand for “text-davinci-003” and “gpt-3.5-turbo”.

API IMI
TD-003 GPT-35 TD-003 GPT-35

CSyn 27.51 24.11 24.84 22.85
CT 69.15 65.33 72.19 67.40
CSum 12.90 12.2 17.72 16.51

Table 7 presents consistently promising results when attack-
ing gpt-3.5-turbo. Similar to RQ1, we report the best result among
all query strategies (𝑀𝑖𝑚𝑖 performance is in the “IMI” column).
The values in each cell represent the BLEU score for NL texts
and the CodeBLEU score for PL contents. Notably, gpt-3.5-turbo
achieves competitive performance on all three tasks compared to
text-davinci-003 (in the “API” column), with an average decrease of
7.78%. Overall, we find that the imitation models trained on data
collected from gpt-3.5-turbo achieve approximately 92.84% of the
performance of those trained on text-davinci-003, demonstrating
the high generalizability of our imitation attack method. As an
implication, attackers in reality may prefer to launch imitation at-
tacks toward gpt-3.5-turbo, which is more cost-effective and offers
comparable imitation model performance.
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Finding 5: Our imitation attack method exhibits encouraging
generalizability and can adapt to different LLMAPIswithout extra
adaptiveness. This illustrates potentially more severe threats in
reality, as attackers in reality may smoothly transfer the attack
to other LLM APIs with lower cost.

6 DISCUSSION
Threats to Validity. The findings of this work face certain threats
to validity that merit acknowledgment. First, the generalizability
of the results may be limited given the specific LLMs and backbone
models evaluated. While text-davinci-003 and gpt-3.5-turbo are
selected as representative LLMs, more advanced models such as
GPT-4 [10] and Claude2 [6] are not assessed. Additionally, we con-
sider only two backbone models (CodeT5 and CodeBERT); recently
proposed alternatives such as Starcoder [43] and WizardCoder [54]
are not tested. It remains unclear how effective the proposed imita-
tion attacks would be against these alternative LLMs and backbones.
Second, the performance measurements obtained may depend heav-
ily on the specific tasks selected for analysis. While we choose three
representative code tasks, outcomes could vary substantially on
different tasks such as code completion. Overall, more analysis on
diverse models and tasks would strengthen conclusions.
Dataset Choice. As mentioned in Sec. 4, we do not choose those
common online-judgement datasets such as CodeContests [45]
for imitation attacks. This is because the average length of its NL
description is over hundreds of tokens (not including the corre-
sponding explanation). Our preliminary study shows that this is
often too lengthy for medium-sized models to learn. Additionally,
recall that we explored the in-context query scheme for each task,
which requires the length to be several times larger than the origi-
nal question. Hence, lengthy queries would exceed the max token
length limit frequently, thereby failing the query process.
Semantically Equal Measurement. In this research, we use the
CodeBLEU score to assess the caliber of the produced code snippets.
However, these methods are imperfect since they are built on the
token level and the AST level rather than the semantic level, and
this leads to the scenario that two semantically equal code snippets
may have a relatively low CodeBLEU score. Some methods like
dynamic testing [33] or symbolic execution [24, 59] have been
proposed for semantics-level comparison; however, such methods
are either too heavy to be practical or even impractical for code
snippet which does not have a clear input and output. In recent
studies, pass@k has been proposed as a metric for evaluating the
quality of generated code [26]. This metric measures the percentage
of generated code snippets that pass all given test cases. However,
the strict requirements of the test cases pose a challenge to its
application in our research context. In sum, we clarify that it is
common to use CodeBLEU scores as a metric for assessing the
quality of generated code and to demonstrate that the model is
capable of producing better code [16, 45, 52, 74], and we leave
exploring other metrics for future work.
Mitigation with Watermarking. Watermarking is a common
technique for protecting intellectual property (IP). In the context
of neural networks, watermarking methods may involve subtly
modifying the text/code (e.g., distributions of certain synonyms) to
embed IP information [35, 36, 49]. Model owners can then verify

their IP using statistical tests, such as Student’s t-test. LLM vendors
may have embedded working prototypes of watermarks in their
APIs [13], though the details are unclear. However, we envision
that attackers may consider its potential enforcement, and pursuing
attacks imprudently would be improper, especially when imitation
models are later used for commercial purposes. For instance, Google
has been accused of training its AI chatbot Bard on data from Ope-
nAI’s ChatGPT without authorization [9]. Therefore, it is possible
that extracting LLM’s specialized code abilities may not be as con-
cerning as our paper suggests. Looking ahead, we advocate better
use of watermark and other relevant techniques to mitigate model
extraction attacks.
Reflection of Our Findings. The present study demonstrates the
feasibility of extracting specialized code abilities of LLMs through
imitation attacks. By employing various query schemes, we show
that the imitation models can achieve comparable performance to
the original LLMs in three code tasks and can also enhance down-
stream applications such as adversarial example generation. Our
findings hold significant implications for the research community.
First, the ability to extract LLMs’ specialized code abilities poses a
serious threat to the LLM vendors who must safeguard their intel-
lectual property. Second, the effectiveness of the imitation attacks
is heavily influenced by the query schemes employed, highlight-
ing the need for a balanced approach that optimizes both cost and
performance. Third, the imitation models can positively impact
downstream applications such as adversarial example generation,
which can further enhance the robustness of LLMs. Given the sig-
nificance of these findings, further research is warranted in this
area, and we hope that our study will inspire future investigations.

7 CONCLUSION
In this paper, we experimentally investigated the effectiveness of
extracting specialized code abilities from LLMs using common
medium-sized models. To do that, we designed an imitation at-
tack framework that comprises query generation, response check,
imitation training, and downstream malicious applications. Our
evaluation showed that the generated imitation models can achieve
comparable performance to or even outperform the target LLM
APIs, as well as provide useful information to facilitate the gener-
ation of adversarial examples against LLMs. We summarized our
findings and insights to help researchers better understand the
threats posed by imitation attacks.
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