
1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

1

Toward Accurate Network Delay Measurement
on Android Phones

Weichao Li∗, Member, IEEE, Daoyuan Wu†, Student Member, IEEE, Rocky K. C. Chang‡, Member, IEEE,

Ricky K. P. Mok§, Member, IEEE

Abstract—Measuring and understanding the performance of mobile networks is becoming very important for end users and operators.

Despite the availability of many measurement apps, their measurement accuracy has not received sufficient scrutiny. In this paper, we

appraise the accuracy of smartphone-based network performance measurement using the Android platform and the network round-trip

time (RTT) as the metric. We show that two of the most popular measurement apps—Ookla Speedtest and MobiPerf—have their RTT

measurements inflated. We build three test apps for three common measurement methods and evaluate them in a testbed. We

overcome the main challenge of obtaining a complete trace of packets and their timestamps using multiple sniffers and frame-based

synchronization. Our multi-layer analysis reveals that the delay inflation can be introduced both in the user space and kernel space.

The long path of subfunction invocations accounts for the majority of the delay overhead in the Android runtime (both Dalvik VM and

ART), and the sleeping functions in the drivers are the major source of the delay overhead between the kernel and physical layer. We

propose and implement a native measurement app to mitigate the delay overhead in the Android runtime, and the resulted delay

inflation in the user space can be kept under 1.5ms for almost all cases.

Index Terms—Network measurement, mobile phone, Android, accuracy.

✦

1 INTRODUCTION

M Obile devices, notably smartphones and tablets, have al-

ready become essential parts of our daily lives because of

their mobility and rich functionalities. The popularity of mobile

devices and mobile applications have changed the way users

access and utilize the network. According to [1], 84% of apps

require permission of Internet access from a pool of 55K Android

apps randomly picked from the official Android app market. An

ITU (International Telecommunication Union) report also shows

that the penetration rate of mobile-broadband networks (3G or

above) reaches 84% of the global population [2]. Therefore,

understanding mobile network performance is crucial for pro-

viding good quality of experience to users. For example, some

recent performance studies characterize the performance of LTE

networks [3] and optimize mobile application performance [4].

The data collected by Speedtest.net are used for comparing

the performance between cellular and WiFi networks [5].

The importance of monitoring mobile network quality moti-

vates a number of studies on network performance measurement.

These measurement works are conducted on mobile devices using

measurement apps in Android [6], [7], [8], [9], iOS [10], [11],

and Windows Phone [12], [13]. In particular, the Ookla Speedtest

app [9] has recorded over 50 million downloads in the Android

app market. These measurement apps can measure network round-

trip time (RTT) and upload/download throughput. Some of them

can even perform traceroute, measure DNS performance, and

characterize HTTP caching behavior [7].

Despite the availability of many measurement apps, their

measurement accuracy has not received sufficient scrutiny. Since

these measurement apps are implemented in the user space, they

• ∗ Huawei Future Network Theory Lab, Hong Kong

• † School of Information Systems, Singapore Management University

• ‡ Department of Computing, The Hong Kong Polytechnic University

• § University of California, San Diego/CAIDA

usually measure user-level performance. While they are useful

for characterizing the user experience, they cannot reliably infer

the network-level performance. Accurate measurement of the

network condition is an important first step towards diagnosing

and optimizing network performance. Measurement results with

too much user-level noise can lead to wrong conclusions about the

network conditions. A typical example is that when a measurement

app reports a large network delay, users usually assume it is the

network problem, and this is obviously not always true. Moreover,

the network delay today is getting smaller. For example, FCC

reported in 2016 that the median latency of broadband service

for each monitored ISP in the US ranges from only 12 ms to

58 ms [14]. Another data source from Ookla shows that the

mean RTT for the US in January 2015 is only 38ms [15]. Our

own crowdsourcing measurement also confirms that the network

delays experienced by the current apps are usually small (cf. §2.2).

Considering the trend of continuous improvement in the network

latency, the additional delay incurred in the phone is going to have

more impact on the network latency measurement.

In this paper, we appraise the accuracy of smartphone-based

network performance measurement. We focus on the RTT mea-

surement, because it is the most fundamental metric, from which

many other performance metrics can be derived, such as de-

lay variation, capacity, and available bandwidth. Moreover, we

consider only Android smartphones, because the source code of

the measurement apps is available to us. In particular, we have

evaluated the accuracy of Ookla Speedtest app and MobiPerf for

measuring network RTT and discover that the RTT measurements

are all inflated from a few milliseconds to tens of milliseconds.

For the purpose of evaluation, we develop three test apps, each of

which implements a specific measurement method: Native ping

(using ping commands external to Java to send ICMP Echo

requests), Inet ping (using network-related classes in Java/Android

to send TCP SYNs), and HTTP ping (using HTTP-based Java

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

2

classes to send HTTP GET requests). These three methods are

adopted by the existing measurement apps.

Our multi-layer analysis method collects the timing informa-

tion at the user space, kernel space, and the wireless network

link when a packet is sent out and received by a test app. This

multi-layer delay information therefore enables us to compute

the delay overheads introduced by different parts of the Android

phone. A major challenge in the multi-layer analysis is setting up a

reliable testbed environment to obtain accurate timestamps at those

localities. Unlike fixed network measurement, a single sniffer is

not able to capture all the packets because of frequent missing

frames. By employing multiple sniffers, we are able to merge

partial traces into an almost complete trace. The entire process

requires us to resolve synchronization issues for the smartphone

and sniffers, recover the timestamps, and investigate the impact of

clock skew between the smartphones and sniffers on the results.

We have conducted extensive testbed experiments using six

Android phones with different configurations installed with the

three test apps. Although the experiments are conducted in a

WiFi network, part of the results can also be applied to cellular

networks. Below is a summary of our findings.

1) (Highly inflated RTT measurement) The RTT measurement

obtained from the three measurement methods are all inflated.

Since the delay inflations depend on the device models and

length of network path, different smartphones can report

totally different results for the same network condition.

Furthermore, even the same smartphone can incur different

degrees of delay overheads for different network paths. Our

further analysis reveals that the delay inflations occur in both

user space and kernel space. We also discover that the delay

inflations introduced in the user space is asymmetric in the

outgoing and incoming direction.

2) (Root-cause analysis) The overhead in Android runtime con-

tributes to the majority of the delay overhead in the user

space, and it is due to the inefficient long path of subfunction

invocations. Moreover, the migration of runtime from DVM

(Dalvik VM) to ART (Android Runtime) cannot help too

much on alleviating the overhead. On the other hand, the

sleeping function of the wireless network interface card

(WNIC) driver is the major source of the delay overhead

in the kernel.

3) (Mitigating the delay inflation) Our approach to mitigating

the user-space delay inflation is to eliminate the runtime

overhead. We implement the core measurement logic into

a native C program and invoke it through an external sys-

tem call. Experiment results show that the user-space delay

inflation can be kept under 1.5ms for most cases. For the

kernel-space delay inflation, both sending packets in small

interval and injecting warm-up and background traffic can

keep the WNIC in the active states and consequently remove

the delay overhead.

The remainder of the paper is organized as follows. In §2, we

summarize the implementation details of the existing measurement

apps and introduce our approach to measuring the accuracy of

three main methods in a testbed. In §3, we detail the different

aspects of our testbed setup, including the use of multiple sniffers

to obtain a complete trace for acquiring timestamp information.

§4 and §5 report evaluation results obtained from the Internet

experiments for Ookla Speedtest and MobiPerf, and the controlled

testbed, respectively. Meanwhile, the root-cause analysis is also

included in §5. In §6, we then propose a measurement method to

mitigate the delay inflation and discuss how to apply our study

to other scenarios. After highlighting the related works in §7, we

conclude this paper in §8.

2 BACKGROUND

2.1 Measurement apps in Android

Android provides several interfaces or APIs for sending packets

and recording timestamps, which can be utilized for implement-

ing a network measurement app without rooting the devices.

We have studied the RTT measurement methods employed by

a number of Android apps by inspecting their code and the

packets exchanged between the Android phone and servers. Ta-

ble 1 documents the implementation details for some popular

measurement apps in Android. We summarize the supported

probe packet types, core methods to send and receive packets,

functions to record timestamps, number of sampling probes,

and the reported results (min/mean/max). Although most apps

prefer to use the class provided by Java or Android, such as

java.net.URLConnection, for handling HTTP request and

response messages, directly executing the external binary (e.g.,

the built-in ping program located at /system/bin by default)

is also allowed to perform network measurements. Moreover,

each measurement app supports one or more probe packet types,

including ICMP, UDP, and TCP (both control messages and data

packets). When timestamping the packet sending and receiving

events, the apps also employ different timing functions, whose

resolutions vary from nanosecond to millisecond. Even for the

result reporting, different apps may have their own choices. They

can output mean, min, or both.

2.2 Importance of accurate delay measurement

Minimizing mobile network latency is very important to many

time-sensitive network services, notably instant communication,

video steaming, and mobile gaming. Active network measurement

is often used for detecting performance degradation, performance

troubleshooting, and server deployment. All of them assume

reliable and accurate network measurement, such as network

RTT. The user-perceived latency comprises the latency in the

phone (e.g., individual app performance), network RTT, and

server latency. While the server latency can be monitored by the

app/content provider, the other two cannot be easily segregated. It

is because the latency reported by a user-level measurement app

includes both latency components. The main contribution of this

work is to obtain the network delay as accurately as possible from

a user-level network measurement app.

In this paper, we find that it is not uncommon to have the

network delay being inflated by 10ms or more using the three

typical measurement methods. In some cases, they could even

be close to 30ms. To understand whether this scale of delay

inflation will have an impact on the measurement of typical mobile

network latency, we have analyzed the latency dataset obtained by

MopEye [18], a measurement app to obtain network delay for

each active app in a smartphone. The MopEye app was so far

downloaded to more than 4,000 smartphones across 126 countries.

From May 2016 to January 2017, we have collected over 5 million

delay measurements for more than 6,000 apps in both WiFi and

cellular networks. The measurement results show that the median

delay experienced by all apps is 65ms. The median RTTs for

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

3

TABLE 1: Implementation details of the existing network measurement apps in Android.

App Supported probe type Core method Timing function # of samples Results

Ookla
Speedtest [9]

HTTP GET
java.net.

URLConnection

SystemClock.

uptimeMillis()
6 Min

MobiPerf [6]

ICMP Executing ping program N/A 10 Min/Mean/Max

TCP SYN/RST

java.net.

InetAddress.

isReachable()

System.

currentTimeMillis()
10 Min/Mean/Max

TCP SYN/ACK**
java.net.

HttpURLConnection

System.

currentTimeMillis()
10 Min/Mean/Max

Netalyzr [7] UDP
java.net.

DatagramPacket
Date().getTime() 200 Mean

Speedchecker [8] TCP SYN/ACK**
java.net.

HttpURLConnection
Date().getTime() 1 N/A

V-SPEED Internet
Speed Test [16]

TCP SYN/ACK**
java.net.

HttpURLConnection

System.

currentTimeMillis()
50/30/20* Mean

FCC Speed Test [17] UDP
java.net.

DatagramPacket
System.nanoTime() 60 Min/Mean/Max

Note *: It depends on the network status.
**: Although the HTTP-related class is used, the app only establishes a TCP connection without sending out any HTTP request messages and
then closes the connection.

popular apps are even smaller. For example, the median RTTs for

Facebook, YouTube, and WeChat are only 42ms, 32ms, and 36ms,

respectively. With a delay inflation of 10ms, the error of estimating

the network latency using a user-level measurement could be off

by over 30% (i.e., 10ms inflation for an actual RTT of 32ms).

Accurate network latency measurement is essential for making

accurate inferences from network measurement data. A classic

example is analytical TCP throughput modelling with RTT, packet

loss rate and TCP parameters as inputs [19], [20]. With negligible

packet loss, the throughput is known to be inversely proportional

to the RTT. Therefore, the actual throughput will be underesti-

mated as a result of the inflated delay by the same amount (e.g.,

30% throughput underestimation for 30% delay inflation). This

inaccurate inference could result in selecting a suboptimal initial

video bitrate in [21] which uses a decision tree to determine

the best bitrate. Moreover, recently a growing number of works

apply various machine learning techniques to build models based

on network measurement data for network operational problems.

The delay measurement inaccuracy could similarly affect their

inference accuracy. To just name a few of these works, Liao et

al. [22] employ machine learning techniques to infer and predict

the network performance of unmeasured network based on the

known network performance. In [23], Ahmed et al. build models

based on measurement results and use it to detect and localize the

network performance degradation problems in cellular networks.

Another example of illustrating the importance of accurate

delay measurement tool can be found in [24]. This work proposes

a framework for measuring and characterizing WiFi latency for

a large campus WiFi network. A critical component in this

framework is using ping2 to obtain accurate delay measurement.

Instead of sending one ICMP echo request packet, ping2 sends

two consecutive packets, with the first one to wake up the

measured devices which may be in the energy saving mode and

the second to obtain the delay measurement. In their evaluation,

they found that the regular ping is unusable in practice, because

the measurement is inflated by energy-saving schemes in various

degrees. Ping2, on the other hand, gives consistently lower

and more accurate delay measurement. However, they did not

investigate and characterize the delay inflation as we do in this

paper.

2.3 Measuring the delay overhead

To evaluate the accuracy of Android measurement apps, we use the

delay overhead defined in [25], which is the difference between

the measured and the actual network delay. Given a simple probe-

response scenario in Fig. 1, a measurement app sends out a probe

packet at time tou to a web server (or other types of target). The

probe packet elicits a response packet from the server, arriving

at the measurement app at time tiu. The measurement app thus

records du (= tiu − tou) as the network RTT. Obviously, this

measured RTT is generally larger than the actual RTT dn (=

tin− ton), where ton (tin) is the time for the probe (response) packet

to leave (arrive at) the smartphone. The delay overhead is therefore

defined as

∆d = du − dn = (tiu − tou)− (tin − ton). (1)

tu
o

tk
o

tn
o

tn
i

tk
i

tu
i

dn

dk

du

ts
i

ts
o

Fig. 1: Measurement flow for Android apps.

There are three possible factors contributing to the delay over-

head: (i) the timestamping accuracy of the outgoing and receiving

packets, (ii) the delay for Android to propagate the probes to

the kernel and network stack, and the delay for delivering the

responses to the app, and (iii) the delay for the hardware (wireless

network adaptor) to send and receive packets.

For factor (i), Android provides several timing

functions, such as System.nanoTime() and

System.currentTimeMillis(). Although these two

functions have different resolutions (ns vs. ms) and map

to different POSIX functions clock_gettime() and

gettimeofday(), they share the same back-end function

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

4

clock_gettime() through vsyscall according to POSIX.1-

2008 [26]. Giucastro tested the granularity and performance of

these two functions on some Android phone, and found that the

average cost for executing the timing function is about 1µs [27].

Considering that the network delay is usually at ms level, the

overhead of calling the timing functions is negligible.

We will therefore focus on the other two factors. To further

quantify them, we also include two other timestamps tik and tok
which are obtained when the packets are at the kernel. While we

could obtain the kernel timestamps using tcpdump, it is much

more challenging to obtain the two network timestamps ton and tin.

In wired network, these two timestamps can be easily obtained by

placing an external packet sniffer to capture the packets diverted

from a network tap. However, it is not reliable to capture all the

packets in the air using a single wireless sniffer. We will explain

how we tackle the issue in §3.

2.4 Multi-layer analysis

To locate where the overheads are introduced, we perform multi-

layer analysis by dissecting the delay overheads into several

components. Back to the packet sending and receiving processes in

Fig. 1, a packet needs to be delivered to the Linux kernel before it

reaches the network (for the outgoing direction) or the app (for the

incoming direction). Supposing that the outgoing and incoming

packets arrive at the kernel at times tok and tik, respectively, we

calculate the kernel-phy delay overhead ∆dk occurred between

the kernel and PHY (WNIC) as

∆dk = dk − dn = (tik − tok)− (tin − ton). (2)

Similarly, the user-kernel delay overhead ∆du that takes place

between the app and kernel can be computed as

∆du = du − dk = (tiu − tou)− (tik − tok). (3)

dk

du

Fig. 2: The user-kernel delay overhead and kernel-phy delay

overhead.

By analyzing these two types of delay overheads, we can

identify the place where the delay overheads are introduced. Note

that the two overhead components are independent. As shown in

Fig. 2, since tcpdump timestamps a packet in the Berkeley Packet

Filter (BPF), which is on top of the WNIC driver, ∆dk depends

on the performance of the WNIC’s hardware and driver, whereas

∆du on the performance of the user space and part of the kernel

space. Although our evaluation in this paper is based on IEEE

802.11g network, the analysis of ∆du is still valid for cellular

networks, such as HSPA and LTE.

2.5 Runtime environment in Android

Although built on Linux, Android differs from other Linux distri-

butions by employing Java as the official programming language.

Java achieves the platform-independency by compiling the appli-

cation code into bytecode and executing the bytecode through the

runtime environment, Java Virtual Machine (JVM).

In Android, Dalvik VM (DVM) used to be the original run-

time. But in Android 4.4, a new runtime called Android Runtime

(ART) is introduced, and it finally replaces DVM since Android

5.0. The major difference between DVM and ART is the bytecode

compilation methodology. DVM employs just-in-time (JIT) com-

pilation technique, which dynamically translates the frequently

executed part of bytecode into native machine code each time the

app runs. On the other hand, ART utilizes ahead-of-time (AOT)

compilation, compiling the entire application into native machine

code during installation. With the help of AOT, ART improves

the overall execution efficiency for the apps, in terms of better

memory allocation and garbage collection mechanisms [28], [29].

In this paper, we also take into account the performance

differences between DVM and ART, because a faster Android

runtime could lead to shorter ∆du according to Fig. 2. Moreover,

a recent report shows that Android 4, 5, and 6 still coexist

at the time of this writing (i.e., March 2016), whose market

shares account for 58.9%, 36.1%, and 2.3%, respectively [30].

Therefore, our experiment design (see §5) covers the smartphones

with different Android version ranging from 4 to 6 and provides

comprehensive understanding of the effect of Android runtime on

network measurement.

3 A MULTIPLE-SNIFFER TESTBED

To evaluate the accuracy of measurement apps, we build a

multiple-sniffer testbed in Fig. 3. The testbed consists of a mea-

surement server (for local measurement only), which is equipped

with a 1.86GHz Intel Core 2 Duo processor (E6320) and 2GB

memory, and Netgear WNDR3800, an IEEE 802.11g wireless

AP. The data rate of the WLAN is configured to 54Mbps. The

smartphone under test has been rooted, so that they can run the

cross-compiled version of tcpdump through adb (Android De-

bug Bridge) and scripts. During the experiment, tcpdump is run

in the background on the phone to obtain the kernel timestamps tik
and tok. The impact of running tcpdump is negligible, because the

traffic volume in each experiment is very small. The three external

packet sniffers are run on IBM T43 laptops running Ubuntu 12.04.

We also wire-connect the sniffers to the AP, so that they can be

controlled through SSH.

Request

Response

Measurement

server

Mobile

phone

Switch

AP

Sniffer A

Sniffer B

Sniffer C

Fig. 3: The testbed setup where the packet sniffers, mobile phone,

and wireless AP are placed within a distance of 0.5m.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

5

3.1 Wireless packet capturing

A simple way to passively monitor the wireless network traffic

is to listen to the WNIC of the AP [31], [32]. However, it is

difficult to extract the exact time that a packet is transmitted over

the air medium, because a variable delay could be introduced

after the driver passes the packet to the firmware due to the

queuing, carrier sensing/back-off, and retry [32]. It is costly to

solve the problem through, for example, employing APs that

support WNIC hardware timestamp, modifying the driver, and

rebuilding kernel. We therefore use the packet capturing method

described in [33] for its easy deployment and low cost. We enable

the monitor mode and promiscuous mode in the wireless network

adaptors of the sniffers to capture the wireless frames (including

the IEEE 802.11 header, physical layer header, and higher-layer

protocols’ information) using tcpdump. To simplify the decoding

of wireless frames, we also disable the security options, such

as WPA. We have not performed clock synchronization among

the sniffers, because hardware timestamping is not supported and

software timestamping cannot meet our requirement. Instead, we

use the method to be described in §3.2 to evade the clock drift

offline.

We employ three sniffers, because a single sniffer will miss

many packets [33], [34]. Although we put the AP, mobile phone,

and the sniffers very close to one another (within a distance of

0.5m and on the same level), we still find random frame losses and

duplications in the captured traces. Such frame losses, which are

unpredictable and independent across sniffers, can be successfully

transmitted between the AP and smartphone but missed by the

sniffers. To ensure the completeness of a packet trace, Serrano

et al. propose to use multiple sniffers to merge the individual

traces [34], because the unseen packets by one sniffer could be

captured by the other sniffers. In our case, the average frame loss

rate for a single sniffer is 7.3%. After merging the packet traces

from the three sniffers, the trace completeness can reach to more

than 99%.

3.2 Trace merging and clock skew handling

The basic idea of trace merging is to identify the missing frames

and copy them to the incomplete trace. We first randomly assign

a data trace as the main trace and others as reference traces.

The missing data frames in the main trace can be identified after

comparing all traces. Finally, we insert the missing frames to the

correct locations in the main trace and adjust their timestamps, so

that they are coherent to the local frames.

Due to the existence of clock skew between two sniffers, the

most challenging part in this procedure is to accurately recover

the timestamps of the missing frames. A most straightforward

approach is to synchronize the sniffers [35], which usually re-

quires timestamping in the PHY for higher time synchronization

accuracy. However, our sniffers do not support the feature. We

therefore use reference frames (e.g., beacon frames) for “frame-

level synchronization.”

Fig. 4 illustrates the procedure of recovering the timestamp of

a missing frame. Suppose that we want to recover a lost frame

pkt2 in the main trace A from the reference trace B. Let CA(t)
and CB(t) be the times reported by sniffers A and B at time

t. We denote the clock skew of A relative to B at time t by

δ{A,B}(t) = C′
A(t) − C′

B(t), where C′
A(t) ≡ dCA(t)/dt and

C′
B(t) ≡ dCB(t)/dt, ∀t ≥ 0. In fact, since the clock skew

between two sniffers is observed stable in our experiments for

pkt 1

pkt 1 pkt 2

pkt 2 pkt n

CB
()t1 CB

()t2

pkt n

CA
()t1 CA

()t2

Time

A

B

Fig. 4: Procedure of trace merging and time recovery.

a short period (e.g., 180s), we can treat it as a constant value

denoted by δ{A,B}. In our case, the clock skew is ∼15 ppm (parts

per million) between sniffer B and A, and ∼9 ppm between sniffer

B and C. To recover the timestamp CA(t2), we make use of the

reference frame pkt1 in Fig. 4 in both traces:

CA(t2) = CA(t1) + (CB(t2)− CB(t1)) +

∫ t2

t1

δ{A,B}(t)dt.

(4)

We employ the closest beacon frame before the lost frame

as the reference frame for two reasons: i) beacon frames are

seldom missing in our traces; and ii) beacon frames are observed

with the smallest fluctuations when a sniffer reports the capturing

time. Accordingly, every lost frame can be bounded within a

specific beacon interval (102.4ms by default). Given such short

period of time and the very small clock skew, the clock offset

between two sniffers can be ignored (smaller than 1.5µs in our

case). Moreover, t2 and t1 can be further replaced by CB(t2) and

CB(t1). Therefore, we can recover CA(t2) by

CA(t2) ≈ CA(t1) + (CB(t2)− CB(t1)). (5)

External sniffers and phones are also running different clocks.

As tos and tis are measured from outside, we would like to know

whether the RTTs estimated by the sniffers are comparable to

the phones’. Let Cp(t) and Cs(t) be the times reported by the

phone and sniffer at time t, respectively, and δ{p,s} the clock skew

between the phone and the sniffer. For a time interval (t1,t2), the

difference of the measured duration ∆D{p,s} is

∆D{p,s} = (Cp(t2)− Cp(t1))− (Cs(t2)− Cs(t1)). (6)

We have tested several Android phones and wireless sniffers.

The clock skews among them are all within the range of ±100

ppm. For an end-to-end network path, the RTT is usually tens

to hundreds milliseconds [36]. Taking 100ms as an example, the

measured RTT difference could be smaller than 10µs, which is

small enough to ignore. Therefore, the delay overhead can be

approximated by

∆d ≈ (tiu − tou)− (tis − tos). (7)

4 OOKLA SPEEDTEST AND MOBIPERF

In this section, we conduct Internet experiments for two popular

apps, Ookla Speedtest and MobiPerf, as well as perform multi-

layer analysis to study whether they can measure the network

delay accurately. We choose Speedtest and MobiPerf, because

Speedtest is the most popular network measurement app in Google

Play (>50M installs) and MobiPerf is used for a number of

research works [37], [38], [39], [40]. Moreover, these two apps

cover nearly all the probe types supported by the existing apps:

ICMP, TCP control packet, and TCP data packet (HTTP message).

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

6

When measuring network paths, Speedtest sends out

6 HTTP GET requests one after the other to fetch a

small text file (latency.txt) from a web server

through class java.net.URLConnection. By recording

the packet sending and receiving times with function

SystemClock.uptimeMillis(), Speedtest outputs

the smallest RTT sample (min(du)) in integer as

the final result. On the other hand, MobiPerf supports

three probe types: ICMP via executing the ping

program, TCP SYN/RST packets (on port 7) through

function java.net.InetAddress.isReachable(),

and TCP SYN/SYN ACK packets by class

java.net.HttpURLConnection. Different from Speedtest,

MobiPerf summarizes the minimal/mean/maximal RTTs from ten

trials, so that users can have a more comprehensive understanding

of the network quality.

4.1 Experiment setup

We conduct our experiments in the testbed described in §3,

except that the measurement target is not a local machine but

a remote Web server. We randomly pick three servers, which

are hosted in Hong Kong (IP: 202.45.189.9, HK in short), Tai-

wan (IP: 60.199.206.251, TW in short), and the Philippines (IP:

112.198.111.43, PH in short), from the Ookla server list. The

actual network RTTs from our phone to these servers range from

a few milliseconds to tens of milliseconds. We run the two apps

one by one on Google Nexus 5, whose hardware configuration

and OS version are shown in Table 4. Each type of measurement

is repeated for 50 times. Although MobiPerf supports three probe

types, we can only utilize one each time. MobiPerf performs ICMP

ping measurement by default and turns to TCP SYN/RST when

ICMP ping is not successful. If failing again, it will change to

TCP SYN/ACK. In our experiments, we remove the ping binary

after the ICMP experiments are finished, forcing MobiPerf to

adopt the rest two methods. Among the three servers, the TW

and PH server always refuse the TCP connection attempt on

port 7 by responding RST packets, therefore MobiPerf performs

only TCP SYN/RST measurements for these two servers. As for

the HK server, MobiPerf employs TCP SYN/ACK packets for

measurement.

4.2 Evaluation

4.2.1 Ookla Speedtest

Capturing packets both internally (through tcpdump) and exter-

nally (through sniffers) allows us to compare the RTTs measured

by the apps (du), in the kernel (dk) and in the air (dn). As shown

in Table 2, although Ookla Speedtest reports the smallest value

as the final RTT for each measurement (min(du)), this value

can be around 3−7ms larger than the actual network RTT. Even

compared to dk measured by tcpdump, it still overestimates the

delays by 1−3ms.

TABLE 2: RTTs measured by Ookla Speedtest (min(du)), in

the kernel (dk) and in the air (dn) (mean with 95% confidence

interval, in ms). Here dk and dn are calculated with all samples.

Target Server min(du) dk dn

HK 8.3 ±0.147 5.426 ±0.524 3.710 ±0.459
TW 30.654 ±0.169 29.471 ±1.926 27.426 ±1.381
PH 66.564 ±0.354 64.495 ±0.605 59.526 ±0.432

To better understand how Speedtest inflates the network RTTs,

we plot cumulative distribution functions (CDF) of delay over-

heads in Fig. 5. We consider two cases: i) comparing all 6 samples

of dk and dn with the reported RTT for each measurement, and ii)

using the minimum dk and dn for a fairer comparison. For case (i)

(as shown in Fig. 5(a)), although Speedtest has already returned

the smallest sample as the final result, it still inflates the actual

network RTTs for most of the cases. For example, ∆d for server

PH can be as large as ∼14ms. Due to the network fluctuation

during the measurement, it is still possible that the smallest du
is smaller than dk and dn of other samples. Therefore, RTT

underestimation events can be found for this case, even though

they account for only a small portion.

For case (ii), since smaller dn usually corresponds to smaller

dk and du, they are not affected by the performance fluctuation

during the measurement. Fig. 5(b) shows two delay overhead

patterns: the inflations mainly occur between the app and kernel

for servers HK and TW, because the gap between ∆du and ∆d
is small and relatively constant. But for server PH, the large gap

indicates that the driver and WNIC play an important role in the

overall delay overheads. However, although server PH with larger

network RTTs also has larger delay overheads, we cannot conclude

that larger network RTT will result in larger delay overhead,

because servers HK and TW have similar overhead characteristic

but have distinct RTTs.

Delay Overhead (ms)

-20 -10 0 10

C
D

F

0

0.2

0.4

0.6

0.8

1
∆d

u
 (HK)

∆d (HK)

∆d
u
 (TW)

∆d (TW)

∆d
u
 (PH)

∆d (PH)

(a) With all samples.

Delay Overhead (ms)

5 10 15

C
D

F

0

0.2

0.4

0.6

0.8

1

∆d
u
 (HK)

∆d (HK)

∆d
u
 (TW)

∆d (TW)

∆d
u
 (PH)

∆d (PH)

(b) With the smallest dk and dn.

Fig. 5: CDF plots of ∆d and ∆du for Ookla Speedtest.

4.2.2 MobiPerf

Table 3 presents the statistics of du, dk and dn for MobiPerf.

Since MobiPerf reports the min/mean/max values of its ten trials

in each measurement, we also include the means of the reported

minimum and maximum du in the table. In general, the mean

RTTs measured by MobiPerf are inflated for all three measure-

ment methods. Specifically, the ICMP ping method adds around

7−11ms additional delay, whereas the TCP SYN/ACK method

up to 17ms. Even for the TCP SYN/RST method with the best

performance, the overhead can be larger than 4ms. But if we use

the minimum du as the final result, just like Ookla Speedtest,

there are chances for ICMP ping method to underestimate the

network RTT. A further analysis on the user-kernel delay overhead

(∆du) indicates that the overheads for the ICMP ping method

and TCP SYN/RST method mainly take place between the kernel

and hardware, as the disparity between their du and dk is very

small (<1ms). Moreover, the TCP SYN/ACK method has a very

large ∆du (up to ∼17ms).

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

7

TABLE 3: RTTs measured by the app (du), in the kernel (dk) and

in the air (dn) for MobiPerf (mean with 95% confidence interval,

in ms).

Probe Target du
dk dnType Server min mean max

HK
2.833 10.585 20.621 10.468 3.388
±0.117 ±0.130 ±0.703 ±0.639 ±0.268

ICMP
TW

60.634 73.184 103.993 73.136 62.960
ping ±0.238 ±1.814 ±16.276 ±5.560 ±5.557

PH
59.719 69.388 79.665 69.310 59.009
±0.285 ±0.249 ±0.755 ±0.802 ±0.399

TCP
HK

9.646 21.658 58.167 5.636 3.934
S/A ±0.207 ±0.368 ±1.670 ±0.441 ±0.361

TW
59.480 65.338 76.083 64.661 60.738

TCP ±0.144 ±0.144 ±0.653 ±0.660 ±0.559
S/R

PH
58.625 63.563 72.0 62.766 58.898
±0.154 ±0.193 ±0.627 ±0.672 ±0.424

5 TESTBED EVALUATION

Running experiments in a fully controlled environment allows us

to study the behavior of different measurement methods system-

atically. We use six Android phones to conduct the experiments.

Their detailed hardware configurations and OS versions are listed

in Table 4. We choose these phones for their diverse hardware

capability which may produce different results. The OS versions

cover 4, 5, and 6. Note that all three Android 4 phones run on

DVM, whereas the other three Android 5 and 6 phones are based

on ART. We run three test apps (see §5.1) one by one on each

phone. These apps send probes to the measurement server to elicit

response packets and record the timestamps. We introduce an

additional delay on the server side to simulate four different RTTs:

20ms, 50ms, 85ms, and 135ms. To avoid the RTT being affected

by packet retransmission, we ensure no probe losses during the

measurement. The experiment for each configuration set (phone,

app, and network delay) is repeated for 100 times.

TABLE 4: The mobile phones used in the experiment.

Models
OS
Ver.

Hardware spec. WNIC

Sony
Xperia J

4.0.4
Qualcomm MSM7227A

CPU (1GHz), 512M
RAM

Broadcom
BCM4330

HTC
One

802W

4.2.2
Qualcomm APQ8064T

CPU (quad-core
1.7GHz), 2GB RAM

Qualcomm
WCN3680

Google
Nexus 5

4.4.2
Qualcomm MSM8974

CPU (quad-core
2.26GHz), 2GB RAM

Broadcom
BCM4339

Huawei
G7 Plus

5.1

Qualcomm MSM8939
CPU (quad-core

1.5GHz + quad-core
1.2GHz), 2GB RAM

Qualcomm
WCN3660

Huawei
Honor 7

5.0.1

HiSilicon Kirin935
CPU (quad-core

2.2GHz + quad-core
1.5GHz), 3GB RAM

Broadcom
BCM4339

Huawei
Mate 8

6.0

HiSilicon Kirin950
CPU (quad-core

2.3GHz + quad-core
1.8GHz), 3GB RAM

Broadcom
BCM43455

5.1 Building test measurement apps

Employing existing apps for systematic evaluation is difficult,

because we cannot easily switch the measurement target to our

measurement server and control the actual network path delay.

Moreover, their complicated GUI designs also prevent us from

executing the measurements and recording results automatically.

We therefore implement three test apps, each of which implements

one of the three methodologies (i.e., ICMP, TCP, and HTTP

GET) presented in Table 1. The apps follow the original design

of MobiPerf and Speedtest, and the implementation details are

described below:

Native ping. This app executes external shell commands through

a Java Runtime class. It directly invokes the ping program,

which is located at a default location /system/bin, to per-

form ICMP-based RTT measurements1. The ping program

sends and receives the ICMP Echo messages on behalf of

the measurement app and returns the measurement results.

Although the ping program can only provide the resolution

of 1ms or 0.1ms, it is the only way to handle ICMP packets

without modifying the Android framework.

Inet ping. This app employs the method isReachable of class

java.net.InetAddress to send TCP SYN packets on

port 7 (Echo) to a remote host2, eliciting TCP SYN ACKs

(when the port is open) or TCP RST packets (when the port

is closed).

HTTP ping. The class java.net.HttpURLConnection is

employed to implement this app. Here the outgoing and

incoming packets are complete HTTP GET request and

response messages. We limit the size of the HTTP request and

response messages to no larger than 300 bytes, so that each

message can be sent in a single TCP packet. Moreover, we

record the sending time after the completion of TCP three-

way handshake to avoid including the delay of connection

establishment into the measurement.

To minimize the workload of the test apps on the phone,

we compute all RTT estimates offline. For Native ping, the test

app only parses and saves the output from the ping program

without any further computation. Inet ping and HTTP ping simply

log the timestamps of packet sending and receiving events with

the system time function System.currentTimeMillis()

or System.nanoTime().

5.2 Overview

Table 5 presents the means and 95% confidence intervals of the

delay overheads (∆d) measured for the three test apps (methods)

and four emulated RTTs on the six test phones. Compared with

the RTTs observed by the external sniffers, the RTTs measured

by the apps are inflated significantly for all six phones. The

delay overheads can range from a few milliseconds to tens of

milliseconds, and the 95% confidence interval can be as high as

2.9ms. Moreover, the overheads are device and network length

dependent, which means that they cannot be easily modeled and

calibrated through statistical methods.

Generally speaking, HTTP ping exhibits comparatively

smaller delay overheads for most of the cases (except phone S).

For example, the mean delay overheads for phone W1 (<2.6ms)

are much smaller than its Native ping (>7.8ms) and Inet ping

(>13ms) cases. Inet ping has relatively larger ∆ds, with mean

values usually larger than 10ms. For some extreme cases, the

1. Other than ping program, we find that executing any pre-compiled C
program packaged with the app is also feasible.

2. Although the official documentation
(http://developer.android.com/reference/java/net/InetAddress.html) states
that the method first tries ICMP and falls back to TCP when it fails, we find
that the ICMP option has not been implemented.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

8

TABLE 5: Delay overheads measured when

System.currentTimeMillis() is used (mean with

95% confidence interval, in ms).

Phone*
Emulated RTT (ms)

20 50 85 135

N
at

iv
e

p
in

g

G
7.700 6.028 14.078 13.963
±2.331 ±0.811 ±0.684 ±0.691

H
6.02 5.355 4.880 4.216

±0.352 ±0.517 ±0.549 ±0.553

S
6.779 7.840 9.999 8.387
±1.129 ±0.932 ±1.039 ±1.191

W1
9.623 9.328 8.842 7.868
±0.514 ±0.615 ±0.722 ±0.861

W2
8.447 11.031 12.165 11.825
±0.478 ±2.335 ±0.607 ±0.648

W3
10.169 9.857 10.785 13.221
±2.812 ±2.789 ±0.713 ±2.923

In
et

p
in

g

G
11.931 12.514 16.211 15.874
±1.063 ±0.779 ±0.833 ±0.787

H
7.243 7.470 8.551 7.060
±1.907 ±0.815 ±2.413 ±0.821

S
13.822 12.223 12.814 12.511
±1.327 ±1.142 ±1.146 ±1.055

W1
13.460 13.044 13.576 14.561
±0.613 ±0.968 ±0.591 ±0.608

W2
14.576 15.157 18.448 19.433
±0.676 ±0.606 ±0.720 ±0.656

W3
12.209 12.917 16.792 17.447
±0.569 ±0.634 ±0.759 ±0.821

H
T

T
P

p
in

g

G
6.481 7.651 9.156 10.790
±0.855 ±0.963 ±0.703 ±0.911

H
5.861 5.541 6.002 5.945
±0.307 ±0.218 ±0.813 ±0.709

S
11.206 11.153 11.805 12.987
±0.947 ±0.855 ±0.987 ±1.312

W1
2.269 2.517 2.450 2.478
±0.257 ±0.308 ±0.266 ±0.262

W2
6.557 7.211 10.575 10.780
±0.360 ±0.510 ±0.557 ±0.769

W3
4.826 5.526 10.187 9.942
±0.510 ±0.488 ±0.529 ±0.662

Note *: G for Google Nexus 5, H for HTC One, S for Sony Xperia J,
W1 for Huawei G7 Plus, W2 for Huawei Honor 7, and W3 for
Huawei Mate 8.

overheads can be close to 20ms. Another observation is that ART

cannot help much on reducing the delay overhead, though the

three smartphones run on Android 5 and 6 (W1, W2, and W3)

have more powerful computation capabilities. Compared to the

three Android 4 phones, their mean delay overheads are close to

or even larger for all three measurement methods.

Two different delay inflation behaviors can also be observed.

For the phones equipped with Qualcomm WNIC chipsets (H and

W1), their delay overheads can be considered RTT-independent

due to the small variations when the emulated RTTs increase.

However, for the other four phones powered by Broadcom (G,

S, W2, and W3), there are significant delay overhead increments

when the emulated RTTs are long. A typical example is phone

G. When the emulated RTTs are 20ms and 50ms (short RTTs),

its mean ∆ds are ∼7ms, ∼12ms, and ∼7ms for Native ping, Inet

ping, and HTTP ping, respectively. But when the RTT increases to

85ms and 135ms (long RTTs), the mean ∆ds increase to ∼14ms,

∼16ms, and ∼10ms, with additional values of 3-7ms.

5.3 Effect of timing functions

The results presented in Table 5 are measured when

System.currentTimeMillis() is used. Since it is reported

that this function could have coarse granularity (such as ∼15ms)

in some OS [25], we also implement the test apps with the

more precise System.nanoTime() for the purpose of com-

parison. We perform experiments with the same setting described

in §3 and link the results together with the ones obtained by

System.currentTimeMillis(). To better visualize the ef-

fect of the two timing functions, we use box plots to present the

data in Fig. 6. In each box-and-whisker plot, the top and bottom

of the box are given by the 75th and 25th percentile, and the

mark inside is the median. The upper and lower whiskers are the

maximum and minimum, respectively, after excluding the outliers.

The outliers above the upper whiskers are those exceeding 1.5 of

the upper quartile, and those below the minimum are less than 1.5

of the lower quartile.

0

10

20

30

2
0

m
s
 (

m
)

2
0

m
s
 (

n
)

5
0

m
s
 (

m
)

5
0

m
s
 (

n
)

8
5

m
s
 (

m
)

8
5

m
s
 (

n
)

1
3

5
m

s
 (

m
)

1
3

5
m

s
 (

n
)

D
e

la
y
 O

v
e

rh
e

a
d

 (
m

s
)

(a) Inet ping.

0

10

20

30

2
0

m
s
 (

m
)

2
0

m
s
 (

n
)

5
0

m
s
 (

m
)

5
0

m
s
 (

n
)

8
5

m
s
 (

m
)

8
5

m
s
 (

n
)

1
3

5
m

s
 (

m
)

1
3

5
m

s
 (

n
)

(b) HTTP ping.

Fig. 6: Delay overhead comparison in box plot for phone G

(red/m for System.currentTimeMillis(), and cyan/n for

System.nanoTime()).

We only present the data of phone G in detail, since the other

two phones have similar results. The figures show that the delay

overheads measured by System.nanoTime() are similar to

those by System.currentTimeMillis(). Considering the

relatively large delay inflation, the overhead of executing a timing

function is therefore not a key factor to consider for measurement

accuracy.

5.4 Effect of runtime

Android 4.4.2 allows us to switch runtime between DVM and

ART in the developer options. Therefore, we run Inet ping and

HTTP ping on phone G with the same experiment settings to

examine their delay overheads in ART. We link the results with

those obtained in DVM on the same phone (described in §5.2) in

box plots, as shown in Fig. 7. Here we do not consider Native

ping, because the ping program is not executed in the runtime

but runs as a native Linux program.

Fig. 7(b) clearly shows that for HTTP ping, both the in-

terquartile range and the total range of delay overheads have been

narrowed down significantly when ART is applied. Although the

median ∆d in ART may be higher than those in DVM, we can

conclude that ART can make the delay overheads more stable for

HTTP ping. However, as depicted in Fig. 7(a), Inet ping has higher

∆d with ART. This observation can also be confirmed by Table 5,

where the delay overheads measured by W1-W3 are usually higher

than the other three phones. We will discuss the reasons in §5.8.

5.5 User-space and kernel-space overheads

As described in §2.3, during our previous experiments, we also run

tcpdump in the background on those three test phones to obtain

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

9

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Native ping (phone G).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Inet ping (phone G).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) HTTP ping (phone G).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Native ping (phone H).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Inet ping (phone H).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) HTTP ping (phone H).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(g) Native ping (phone S).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(h) Inet ping (phone S).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(i) HTTP ping (phone S).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(j) Native ping (phone W1).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(k) Inet ping (phone W1).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(l) HTTP ping (phone W1).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(m) Native ping (phone W2).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(n) Inet ping (phone W2).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(o) HTTP ping (phone W2).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(p) Native ping (phone W3).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(q) Inet ping (phone W3).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(r) HTTP ping (phone W3).

Fig. 8: Box plots for the user-kernel delay overheads (∆du, red) and kernel-phy delay overheads (∆dk, cyan).

tok and tik in the kernel space, which allows us to perform multi-

layer analysis. We calculate and plot ∆du and ∆dk in box plot in

Fig. 8. Although we use median ∆du and ∆dk for comparison in

the following, the delay overheads are in fact within a wide range.

For example, ∆dk of Inet ping introduced by phone S can range

from ∼2ms to ∼26ms (as shown in Fig. 8(h)).

We first focus on ∆du experienced by the three test apps.

In general, ∆du can be considered as RTT-independent, because

each test app experiences very close ∆du in the same phone no

matter what the emulated network RTT is. Fig. 8(a), 8(d), 8(g),

8(j), 8(m), and 8(p) for Native ping clearly show that ∆du for

all six phones is very close to 0, suggesting that the packets are

mainly delayed between the kernel and physical link. Native ping

shows two different types of patterns. For the phones running

DVM (G, H, and S), ∆dk contributes the majority of the total

delay overheads, as shown in Fig. 8(b), 8(e), and 8(h), which is

similar to Native ping except that the layer above the kernel space

adds 2-4ms extra delay. But for the rest of the phones, Inet ping

encounters much larger ∆du (see Fig. 8(k), 8(n), and 8(q)). For

W2 and W3 in particular, ∆du can be around 6-7ms. As for HTTP

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

10

0

5

10

15

D
V

M
 (

2
0

m
s
)

A
R

T
 (

2
0

m
s
)

D
V

M
 (

5
0

m
s
)

A
R

T
 (

5
0

m
s
)

D
V

M
 (

8
5

m
s
)

A
R

T
 (

8
5

m
s
)

D
V

M
 (

1
3

5
m

s
)

A
R

T
 (

1
3

5
m

s
)

D
e

la
y
 O

v
e

rh
e

a
d

 (
m

s
)

(a) Inet ping.

0

5

10

15

D
V

M
 (

2
0

m
s
)

A
R

T
 (

2
0

m
s
)

D
V

M
 (

5
0

m
s
)

A
R

T
 (

5
0

m
s
)

D
V

M
 (

8
5

m
s
)

A
R

T
 (

8
5

m
s
)

D
V

M
 (

1
3

5
m

s
)

A
R

T
 (

1
3

5
m

s
)

(b) HTTP ping.

Fig. 7: Delay overhead comparison in box plot for phone G when

different runtimes are adopted (red for DVM, and cyan for ART).

ping, the phones with DVM (phone G3, H, and S) experience much

larger ∆du (usually larger than 5ms) compared to the other three

ART phones (∼2-4ms).

To sum up, our analysis shows that Native ping introduces

nearly no overhead between the app and kernel, but Inet ping

and HTTP ping will. Note that the major difference between

Native ping and the others is the measurement execution manner:

external system call vs. in app. In the external system call, the

external ping runs as a native Linux program, whereas the app in

the in-app approach is implemented in Java APIs and runs as an

instance of the runtime virtual machine. In fact, invoking a Java

API usually involves several more function calls (see §5.8). For

each additional call, the runtime needs to consume more bytecode

instructions (e.g., pushing parameters into virtual registers). More-

over, network-related Java APIs are finally mapped to the bionic

C library, which is equivalent to the BSD’s standard C library,

through Java Native Interface (JNI). Due to the extra translation,

JNI could also lower the performance. Therefore, performing

network measurement within an app could result in more delay

than a native Linux program.

Different from ∆du, ∆dk shows two different behaviors. For

phone H and W1, which employ the Qualcomm WNIC chipsets,

their ∆dk can be also considered as RTT-independent. But for

the rest equipped with Broadcom WNIC chipsets, ∆dk increases

significantly when the RTT is long (85ms and 135ms). The

inconsistency of ∆dk is the main reason why we observe the

obvious increment of the overall delay overheads in §5.2.

5.6 Delay overhead asymmetry

Running tcpdump also allows us to analyze the (a)symmetry

of the delay overheads occurring in the app. Since Android

uses the same clock source of the underlying Linux system, the

timestamps recorded by the measurement apps and tcpdump are

comparable. Therefore, we can measure the outgoing user-kernel

delay overhead ∆dou = tok − tou, and the incoming delay overhead

∆diu = tiu − tik. We plot the distributions of the overheads per

direction in Fig. 9 for Inet ping and in Fig. 10 for HTTP ping. Note

that we cannot analyze Native ping, because the external ping

program does not provide the packet send and receive times.

Both Fig. 9 and Fig. 10 show significant delay asymmetry. For

example, for Inet ping, establishing a TCP connection costs more

3. Although phone G has a relatively small median ∆du when the emulated
RTT is 20ms, its 75th percentile and maximum values are close to or even
larger than 10ms. Therefore we still classify phone G in the same group for
phone H and S.

time in the outgoing direction. For phone W1, W2, and W3 in

particular, the disparity can be larger than 3ms. On the other hand,

the majority part of the user-kernel delay overhead occurs when

receiving and processing HTTP messages for HTTP ping. The

only exception is phone W1, which spends more time on sending

HTTP messages. Moreover, phone W1, W2, and W3 experience

much smaller incoming delay overheads than phone G, H, and S.

Our further analysis in §5.8 shows that the performance difference

between Android 4 and 5/6 is due to the change in the Java I/O

library.

5.7 Other WiFi networks and issues

Our evaluations in both Internet and testbed so far are conducted

under 802.11g network. To investigate whether the network delay

is also inflated in other types of WiFi networks, we conduct

similar experiments in the same testbed under 802.11n network

on 5GHz band. Since our sniffers cannot capture any data packets

with the network speed higher than 130Mbps, our experiments are

performed with 54Mbps and 130Mbps. Fig. 11 shows the ∆du and

∆dk for phone W3 (Huawei Mate 8) in 802.11n network when

the transmission speed is set to 130Mbps. Compared to 802.11g

network (Fig. 8(p), 8(q), and 8(r)), the delay overheads encoun-

tered in 802.11n network follow nearly the same distribution for

all three test apps. In detail, Native ping still introduces nearly no

overhead between the app and kernel, whereas Inet ping and HTTP

ping do. When the emulated RTT increases to 85ms and 135ms,

the ∆dks also increase from ∼2ms to ∼7ms for HTTP ping and

from ∼7ms to ∼11ms for Native ping and Inet ping. We also plot

the distributions of ∆diu and ∆dou for Inet ping and HTTP ping

in Fig. 12(a) and Fig. 12(b), respectively. Again, no significant

difference can be observed between 802.11g and 802.11n. The

other phones have similar results, therefore not shown here.

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Inet ping.

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) HTTP ping.

Fig. 12: Box plots of the delay overhead asymmetry for HTTP

ping and Inet ping (for phone W3).

Another source of delay overhead is due to the frame ag-

gregation which has been available since 802.11n. The frame

aggregation is designed to increase the throughput by sending

multiple frames in a single transmission or a superframe. On the

down side, frame aggregation can increase the packet delay in

two ways. The first is the delay of forming a superframe. Instead

of sending a frame immediately, it may have to wait for other

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

11

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Phone G (Google Nexus 5).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Phone H (HTC One).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Phone S (Sony Xperia J).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Phone W1 (Huawei G7 Plus).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Phone W2 (Huawei Honor 7).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Phone W3 (Huawei Mate 8).

Fig. 9: Box plots of the delay overhead asymmetry for Inet ping.

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Phone G (Google Nexus 5).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Phone H (HTC One).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Phone S (Sony Xperia J).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Phone W1 (Huawei G7 Plus).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Phone W2 (Huawei Honor 7).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Phone W3 (Huawei Mate 8).

Fig. 10: Box plots of the delay overhead asymmetry for HTTP ping.

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Native ping.

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Inet ping.

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) HTTP ping.

Fig. 11: Box plots for the user-kernel delay overheads (∆du, red) and kernel-phy delay overheads (∆dk , cyan) for phone W3 in

802.11n network.

frames for aggregation. The second is longer delay of transmitting

a superframe. Unlike a single-frame transmission, a superframe

is more prone to frame collision or corruption due to its length.

Therefore, it could take a superframe a longer time to transmit

successfully when the channel is congested or noisy.

There are some limitations for our testbed to capture the delay

overhead caused by frame aggregation. As seen from §3, our

testbed is noise free and hosts only one smartphone, therefore

observing almost no retransmission events. Moreover, since our

sniffers cannot capture any data packets with network speed higher

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

12

than 130Mbps, we cannot test higher data rate to facilitate frame

aggregation. However, we maintain that our testbed can still obtain

accurate measurement for the delay overhead should the frame

aggregation be present, because our results will not be affected by

the two aforementioned delays associated with frame aggregation.

For the delay of forming a superframe, frame aggregation will

be performed only when the total size of the waiting packets

reaches the size threshold (3,839/7,935 bytes for A-MSDU, 65,535

bytes for 802.11n A-MPDU, and 4,692,480 bytes for 802.11ac

A-MPDU) or the age of the oldest packet reaches a pre-defined

packet holding time. A-MSDU and A-MPDU are the two frame

aggregation schemes for IEEE802.11. Therefore, a measurement

probe could be delayed by at most the packet holding time if there

are not enough packets to induce a frame aggregation upon its

arrival. In lack of a standard, the choice of the packet holding time

is vendor dependent. For example, according to [41], there is no

waiting/holding time to form an A-MPDU, and the maximal delay

can be set to 1s for A-MSDU. In [42], an aggregated frame is sent

immediately without waiting for more frames if the transmission

queue is empty. Our analysis of the WNIC driver source code also

shows that the holding time is not large, e.g., 5ms for A-MPDU in

Broadcom’s “bcrm80211” driver. To sum up, the delay overhead

due to forming a superframe is very minimal in practice.

For the second source of delay inflation, a longer delay over-

head may be recorded because of the frame retransmissions. Since

a sniffer can timestamp only when receiving a successfully trans-

mitted frame, the time for frame retransmissions will be counted

towards the delay overhead. However, our testbed experiments

with 802.11n are performed with good channel quality, and there

are no frame retransmissions in our dataset. Therefore, our delay

overhead evaluation will not be affected by this type of delay

overhead.

5.8 Diagnosis of delay overhead in user space

Android provides Debug class and Traceview tool to trace

and profile function executions in runtime [43]. When the

trace/method based profiling feature is enabled, the names of

the function/class/method, thread IDs, and execution times of

each action involved in a function invocation in runtime will

be recorded. We start and stop the function tracing immediately

before and after invoking the core measurement methods. As

Traceview can analyze the function behavior only in the runtime,

we further examine the source code of the Android framework

(e.g., libcore_io_Posix.cpp) and map the functions to

the native ones in the system layer. To profile the performance

of system-layer functions, we use strace [44]. Note that we

cannot enable Debug feature and strace simultaneously, be-

cause strace could introduce significant system overhead for

the Debug class to record timestamps.

We analyze three core functions, which are employed by

Inet ping, MobiPerf’s TCP SYN/ACK method, and HTTP ping.

We trace their subfunction calls on Google Nexus 5 with

DVM or ART enabled in an alternate manner. Our analysis

shows that all these functions involve a long series of sub-

function calls before they are bridged to the native network

functions defined in the bionic libc library (sys/socket.h).

The long path of subfunction invocation is very inefficient, be-

cause it introduces much unnecessary execution time. For exam-

ple, InetAddress.getByName().isReachable() has to

parse the address information and prepare a socket before send-

ing out a TCP SYN packet to the remote endpoint, which

takes a longer time in the outgoing direction than the incom-

ing direction. That is why we observe larger ∆dou in §5.6.

For HttpURLConnection.connect(), we find that both

preparing the HTTP engine and processing the received packets

(e.g., Platform.getMtu()) can introduce very large addi-

tional delay. This observation agrees with the fact that MobiPerf’s

TCP SYN/ACK method incurs very large delay inflation in

§4.2.2. Finally, our analysis shows that the subfunctions decod-

ing the HTTP response message also takes a very long time

for HttpURLConnection.getInputStream(), which ex-

plains why the HTTP ping method introduces more delay over-

heads in the incoming direction in Fig. 10.

Our function tracing further reveals that there is no significant

difference in subfunction calls between ART and DVM. Therefore,

the increment of ∆du for Inet ping could be due to the runtime

inefficiency of ART. Another notable finding is that Android 5/6

replaces the default IO functions (java.io) with a third-party

library (okio). This new IO library leads to a significant delay

degradation of HTTP ping in the incoming direction.

5.9 Diagnosis of delay overhead in kernel space

By studying the source code of Android and Linux, we can map

the functions in the system layer to the kernel space. We focus

on the kernel functions involved when the system calls the socket

functions (i.e., connect(), sendto(), and recvfrom()).

To profile the performance of those related kernel functions, we

compile a custom kernel with kprobes [45] enabled and replace

the default kernel on Nexus 5. We then build a loadable kernel

module and hook the function to be monitored. When the kernel

enters and leaves the function, the corresponding trap functions

will be triggered, thus allowing us to measure its performance.

We collect ten samples for each major kernel function and report

their mean execution times in Table 6. The execution time analysis

in both user space and kernel space show that the system socket

functions and their underlying kernel functions are not the major

sources of the user-kernel delay overhead.

TABLE 6: The execution times (in µs) of major kernel functions

for the socket functions in the system layer.

System Kernel Execution time

connect

tcp_v4_connect() 106
tcp_v4_rcv() 68
tcp_ack() 72
tcp_send_ack() 86

sendto

tcp_sendmsg() 83
tcp_transmit_skb() 85
ip_queue_xmit() 81
dev_queue_xmit() 96

recvfrom

tcp_v4_rcv() 68
ip_rcv() 86
netif_rx() 73

As it is not easy to hack the hardware parts of WNIC, we

analyze the source code of the driver to seek the root cause on

how the kernel-phy delay overhead is introduced (the details can

be found in [46]). For the Broadcom WNIC chipsets, we find that

the driver will put the SDIO bus into sleeping mode if there is

no packet sending and receiving for a pre-defined period (50ms

by default). Although the bus dormancy does reduce the energy

consumption, it introduces additional delays for the driver to bring

up the bus. Such state promotion delay can be large than 10ms.

This explains why phone G, S, W2, and W3 will have a large ∆dk

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

13

(>10ms) when the emulated RTTs are increased to 85ms and

135ms (see §5.5): the SDIO bus has entered the sleeping mode

before the response packet arrives (>50ms), and it takes more

than 10ms to wake up to process the packet. And we can also

infer that more frequent packet sending/receiving activities will

result in smaller delay overheads. For Qualcomm WNIC chipsets,

although they connect to the system via SMD interface instead

of SDIO, they share similar energy-saving mechanism but with a

shorter state demotion time.

6 DISCUSSION

6.1 A better practice

Our analysis in both user space and kernel space shows that

the long path of subfunction invocations in the Android runtime

is responsible for the user-kernel delay overhead. Therefore, to

improve the measurement accuracy, we must avoid using those

functions that will incur too many irrelevant subfunctions. Another

strategy is bypassing the effect of runtime and migrating the

timestamping and networking functions to native Linux envi-

ronment. We therefore implement a simple C socket program

which supports RTT measurements with TCP SYN/RST packets

and HTTP GET request/response messages. Similar to HTTP

ping, we limit the size of the HTTP messages to no more than

300 bytes, so that each message can be transmitted in one TCP

packet. We employ clock_gettime() to record the send and

receive timestamps. After cross-compilation, the executable binary

is packed into a test app, called External ping. This app can invoke

the binary through the Java class Runtime. We test the app with

the same settings described in §3 and compute ∆du based on

Eqn. (3).

TABLE 7: A comparison of ∆du for external C socket program

(Ext) and in-DVM measurement (App) (mean with 95% confi-

dence interval, in ms).

Type
Emulated RTT (ms)

20 50 85 135

T
C

P
S

/R App
2.946 2.443 2.637 2.828
±0.695 ±0.200 ±0.251 ±0.236

Ext
0.736 0.794 0.798 0.830
±0.121 ±0.139 ±0.154 ±0.134

H
T

T
P

G
E

T

App
3.312 3.824 3.157 4.542
±0.663 ±0.721 ±0.540 ±0.834

Ext
1.095 1.246 1.289 1.365
±0.075 ±0.098 ±0.112 ±0.186

We compare ∆du measured by External ping to the other two

in-DVM apps in Table 7. We present only the results obtained by

Nexus 5, because the other two phones have similar characteris-

tics. As expected, ∆du drops after employing the external system

call, with a decrease of 1.6ms−2.2ms for the TCP SYN/RST

method and 1.9ms−3.2ms for the HTTP GET method. Besides,

the overheads are more stable with the confidence intervals

smaller than 0.2ms. We also find that the HTTP ping introduces

0.4ms−0.5ms more delay than Inet ping. The additional delay is

due to the fact that HTTP messages need to be further processed

in the user space, but handling TCP SYN/RST packets can be

completed within the kernel.

Our modification of External ping does not require root privi-

lege, thus facilitating a wide deployment of the app. By repeating

the measurements and computing the mean or median, the user-

kernel delay inflation can be kept under 1.5ms for most of the

cases. Although External ping cannot completely remove the delay

overhead, the measurement results it produces are much closer

to the real network RTTs. On the other hand, the overhead in

the driver is difficult to remove without modifying the driver

source code. A possible solution is to increase the packet sending

rate, preventing the driver from entering the sleeping mode. For

example, for those rooted phones, we can use the ping program

with a small packet sending interval4. Another is to inject warm-up

and background traffic to keep the WNIC in the active state [46].

6.2 Beyond WiFi and delay measurement

Our modification of External ping and part of the analysis on

delay overheads can be applied to cellular network, because mea-

surement apps in cellular network also have to face the problem

of inefficient runtime. Similar to WNIC, the cellular network

interface is responsible for translating between the PHY PDUs

and IEEE 802.3 Ethernet frames. Therefore, there is no difference

in the data path of the kernel and user space. Reducing the runtime

overhead can definitely mitigate the user-kernel delay overhead.

As for the energy-saving mechanisms, our testbed experiment

results for WiFi networks in [46] show that our approach of

injecting warm-up and background traffic can cap the kernel-

phy overhead to 3ms. On the other hand, cellular networks adopt

RRC (Radio Resource Control) [3], [38], [47], which is very

similar to the Power Saving Mode in WiFi networks. Therefore, a

similar approach can also mitigate the delay overhead for cellular

networks. Our another set of Internet experiment results, which are

not reported in [46], show that 85−97% of the delay measurement

obtained by our approach are less than Ookla Speedtest and

MobiPerf, especially when TCP control messages are employed

as measurement probes.

Although our study focuses on network delay measurement,

other performance metrics, such as delay variation and bottleneck

capacity, will also be affected by the runtime overhead and the

driver’s energy-saving mechanisms. For capacity measurement,

obtaining accurate network RTT is the prerequisite to packet-

pair capacity measurement via minimum delay sum or minimum

delay difference [48], [49]. Although the behavior of packet pair

or packet train could be changed by the base station due to the

proportional fair queue, Michelinakis et al. show that it is still

possible to apply these techniques to measure the link capacity

in cellular networks [50]. Besides obtaining accurate network

RTT, our delay overhead mitigation methods can also improve the

latency performance of non-measurement apps, especially delay-

sensitive apps. These apps also suffer from the latency introduced

by the inefficient Java function calls and various energy-saving

mechanisms. The delay inflation in user space can be mitigated

by implementing the network functions in native Linux program.

In fact, some apps (e.g., Noroot Firewall [51]) have already

implemented their network functions in native Linux program to

reduce the packet forwarding delay. However, this approach is too

costly for other less delay-sensitive apps. For the delay overhead

due to energy efficiency mechanisms, our approach of keeping

the WNIC awake can also improve the app’s latency performance.

Fig. 13 plots the delay overhead experienced by ping measurement

for two packet sending intervals (10ms and 1s). As shown, if the

packet sending interval is small, the delay overhead can be reduced

4. Ping requires root privilege when the packet sending interval is smaller
than 200ms.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

14

to close to 0. This inexpensive scheme can therefore benefit all

non-measurement apps.

Measurement sequence

20 40 60 80 100

D
e

la
y
 o

v
e

rh
e

a
d

 (
m

s
)

0

10

20

30

40

50
10ms

1s

Fig. 13: Delay overheads in time series when using ping with

packet sending intervals of 10ms and 1s.

7 RELATED WORKS

Our work shares similar analysis methodology in our previous

work [25], which appraised the accuracy of browser-based mea-

surement methods in fixed network. However, the methodology

in [25] cannot be applied straightly to the mobile network mea-

surement. We therefore design and build a new testbed to reliably

capture packets in the air medium. Our evaluation results based on

the three test apps developed by ourselves was previously reported

in [52]. In this paper, we make several extensions: i) we summarize

the implementation details for the existing measurement apps in

Android; ii) we include the Internet experiment results for Ookla

Speedtest and MobiPerf, showing that their RTT measurements are

all inflated; iii) we investigate the performance difference between

DVM and ART on network measurement by including three new

Android phones with ART enabled, and iv) we perform a careful

root-cause analysis in the runtime virtual machine, system layer,

kernel layers, and device driver, revealing how the delay overheads

are introduced.

The measurement studies based on smartphones users include

[3], [53], [54], [55]. In particular, a simple logger was employed

in [53] to collect the network usage information from Android and

Windows Mobile users, whereas LiveLab [55] measured wireless

networks in iOS. In [3] and [54], the performance of 4G LTE and

3G networks was evaluated using 4GTest and 3GTest. MobiPerf,

the successor of 4GTest and 3GTest, has been deployed to uncover

the RRC state dynamics in cellular networks [38], [40] and

study the network performance from end users’ perspectives [37],

[39]. Netalyzr, another measurement app in Android, is used to

characterize middlebox behavior and business relationships in

cellular networks [56]. These existing apps are designed with

more concern on privacy issues or energy consumption, but their

accuracy has not received any attention.

In the system performance area, several studies evaluated the

performance of JNI or DVM. For example, Oh et al. investigated

the performance impact of DVM on Android apps [57]. Batyuk et

al. compared the performance between native C and Java applica-

tions for identical tasks [58], and showed that native C applications

can be up to 30 times faster than running Java in DVM. But their

work drew conclusions from Android emulator and Linux x86

platform. Lee and Jeon also carried out similar study for five

algorithms [59] and found that JNI communication delays were

about 0.15ms. These works focused mainly on the performance

comparison of specific algorithms but do not study the relationship

between system delay and network delay measurement. In [60],

Xue et al. proposed a profiling system called AndroidPerf, which

supports cross-layer function call trace and performance analysis

from the DVM layer to the kernel layer. In [61], a tool based

on kprobes was utilized to intercept system events in Android.

However, these two works did not analyze the network behavior

systematically, nor the device driver.

8 CONCLUSIONS

In this paper, we appraised the accuracy of measurement apps

in Android phones. We overcame the main challenge of obtain-

ing accurate packet timestamps from the wireless medium and

setup a reliable wireless testbed. Both Internet experiments and

testbed evaluation showed that the RTTs measured by the apps

with different methods are significantly inflated. After conducting

careful investigations through multi-layer analysis, we identified

the delay overhead introduced by the runtime virtual machine

is significant and asymmetric in the send and receive directions.

Our analysis further showed that the long path of subfunction

invocations in runtime accounts for the overhead in the user space,

while the sleeping features in the driver cause the kernel-phy delay

inflation. Finally, we proposed to mitigate the delay overhead by

implementing a native measurement app, which can reduce the

user-kernel delay overhead to less than 1.5ms. In our future work,

we will investigate how to mitigate the kernel-phy delay overhead

on Android, as well as extend our work to cellular networks and

iOS.

REFERENCES

[1] A. Tongaonkar, S. Dai, A. Nucci, and D. Song, “Understanding mobile
app usage patterns using in-app advertisements,” in Proc. PAM, 2013.

[2] ITU, “ICT facts and figures 2016,” http://www.itu.int/en/ITU-D/
Statistics/Documents/facts/ICTFactsFigures2016.pdf.

[3] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A
close examination of performance and power characteristics of 4G LTE
networks,” in Proc. ACM MobiSys, 2012.

[4] Q. Xu, “Optimizing mobile application performance through network
infrastructure aware adaptation,” Ph.D. dissertation, University of Michi-
gan, 2013.

[5] J. Sommers and P. Barford, “Cell vs. WiFi: On the performance of metro
area mobile connections,” in Proc. ACM/USENIX IMC, 2012.

[6] “MobiPerf on Google Play.” https://play.google.com/store/apps/details?
id=com.mobiperf.

[7] “Netalyzr on Google Play.” https://play.google.com/store/apps/details?
id=edu.berkeley.icsi.netalyzr.android.

[8] “SpeedChecker on Google Play.” https://play.google.com/store/apps/
details?id=uk.co.broadbandspeedchecker.

[9] “Speedtest.net on Google Play.” https://play.google.com/store/apps/
details?id=org.zwanoo.android.speedtest.

[10] “Speedtest X HD WiFi & Mobile Speed Test on App Store.” https://
itunes.apple.com/us/app/speedtest-x-hd-wifi-mobile/id366593092.

[11] “Speedtest.net on App Store.” https://itunes.apple.com/us/app/speedtest.
net-mobile-speed/id300704847.

[12] “Network Speed Test on Windows Store.” http://www.
windowsphone.com/en-us/store/app/network-speed-test/
9b9ae06b-2961-41ef-987d-b09567cffe70.

[13] “Speedtest.net on Windows Store.” http://www.
windowsphone.com/en-us/store/app/speedtest-net/
4fcd4de1-050b-44dc-b123-a786808eb49b.

[14] FCC, “Measuring fixed broadband report - 2016,” https:
//www.fcc.gov/reports-research/reports/measuring-broadband-america/
measuring-fixed-broadband-report-2016, 2016.

[15] Ookla, “Speedtest intelligence from Ookla — internet performance
database,” http://www.ookla.com/speedtest-intelligence.

[16] “Internet Speed Test,” https://play.google.com/store/apps/details?id=pl.
speedtest.android.

[17] “FCC Speed Test,” https://play.google.com/store/apps/details?id=com.
samknows.fcc.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

15

[18] D. Wu, R. Chang, W. Li, E. Cheng, and D. Gao, “MopEye: Opportunistic
monitoring of per-app mobile network performance,” in Proc. USENIX

ATC, 2017.

[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc. ACM

SIGCOMM, 1998.

[20] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behav-
ior of the TCP congestion avoidance algorithm,” SIGCOMM Comput.

Commun. Rev., vol. 27, no. 3, pp. 67–82, Jul. 1997.

[21] R. Mok, W. Li, and R. Chang, “IRate: Initial video bitrate selection
system for HTTP streaming,” IEEE Journal on Selected Areas in Com-

munications, vol. 34, no. 6, pp. 1914–1928, June 2016.

[22] Y. Liao, W. Du, P. Geurts, and G. Leduc, “Decentralized prediction of
end-to-end network performance classes,” in Proc. ACM CoNEXT, 2011.

[23] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J. Wang, and H. Yan, “Detecting
and localizing end-to-end performance degradation for cellular data
services,” in Proc. IEEE INFOCOM, 2016.

[24] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and
T. Moscibroda, “Characterizing and improving WiFi latency in large-
scale operational networks,” in Proc. ACM MobiSys, 2016.

[25] W. Li, R. Mok, R. Chang, and W. Fok, “Appraising the delay accuracy
in browser-based network measurement,” in Proc. ACM/USENIX IMC,
2013.

[26] The IEEE and The Open Group, “IEEE Std 1003.1-2008,” http://pubs.
opengroup.org/onlinepubs/9699919799/.

[27] S. Giucastro, “Getting high precision timing on Android,”
http://www.gamasutra.com/view/feature/171774/getting high
precision timing on .php.

[28] “ART and Dalvik,” https://source.android.com/devices/tech/dalvik/index.
html.

[29] A. Frumusanu, “A closer look at Android RunTime
(ART) in Android L,” http://anandtech.com/show/8231/
a-closer-look-at-android-runtime-art-in-android-l/, 2014.

[30] “Platform versions, Dashboards — Android Developers,” https://source.
android.com/devices/tech/dalvik/index.html.

[31] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Mengy, M. Ma, K. Ling, and
D. Pei, “WiFi can be the weakest link of round trip network latency in
the wild,” in Proc. IEEE INFOCOM, 2016.

[32] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki, “PIE in
the sky: Online passive interference estimation for enterprise WLANs,”
in Proc. USENIX NSDI, 2011.

[33] J. Yeo, M. Youssef, and A. Agrawala, “A framework for wireless LAN
monitoring and its applications,” in Proc. ACM WiSe, 2004.

[34] P. Serrano, M. Zink, and J. Kurose, “Assessing the fidelity of COTS
802.11 sniffers,” in Proc. IEEE INFOCOM, 2009.

[35] J. Yoo, T. Huehn, and J. Kim, “Active capture of wireless traces:
Overcome the lack in protocol analysis,” in Proc. ACM WinTech, 2008.

[36] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin, “A
first look at traffic on smartphones,” in Proc. ACM/USENIX IMC, 2010.

[37] J. Huang, F. Qian, Q. Xu, Z. Qian, Z. M. Mao, and A. Rayes, “Uncov-
ering cellular network characteristics: Performance, infrastructure, and
policies,” University of Michigan and Cisco, Tech. Rep. MSU-CSE-00-
2, 2013.

[38] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau,
“Discovering fine-grained RRC state dynamics and performance impacts
in cellular networks,” in Proc. ACM MobiCom, 2014.

[39] A. Nikravesh, D. Choffnes, E. Katz-Bassett, Z. Mao, and M. Welsh,
“Mobile network performance from user devices: A longitudinal, multi-
dimensional analysis,” in Proc. PAM, 2014.

[40] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau,
“Understanding RRC state dynamics through client measurements with
mobilyzer,” in Proc. the 6th Annual Workshop on Wireless of the Students,

by the Students, for the Students (S3), 2014.

[41] D. Skordoulis, Q. Ni, H. H. Chen, A. P. Stephens, C. Liu, and A. Ja-
malipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-
generation high-throughput WLANs,” IEEE Wireless Communications,
vol. 15, no. 1, pp. 40–47, February 2008.

[42] A. Saif and M. Othman, “A reliable A-MSDU frame aggregation scheme
in 802.11n wireless networks,” Procedia Computer Science, vol. 21, pp.
191 – 198, 2013.

[43] “Profiling with Traceview and dmtracedump,” http://developer.android.
com/tools/debugging/debugging-tracing.html.

[44] “strace,” http://strace.sourceforge.net/.

[45] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu, “Kernel probes
(Kprobes),” https://www.kernel.org/doc/Documentation/kprobes.txt.

[46] W. Li, D. Wu, R. K. Chang, and R. K. Mok, “Demystifying and punctur-
ing the inflated delay in smartphone-based WiFi network measurement,”
in Proc. ACM CoNEXT, 2016.

[47] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Characterizing radio resource allocation for 3G networks,” in Proc.

ACM IMC, 2010.
[48] E. Chan, X. Luo, and R. Chang, “A minimum-delay-difference method

for mitigating cross-traffic impact on capacity measurement,” in Proc.

ACM CoNEXT, 2009.
[49] E. Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang, “TRIO:

Measuring asymmetric capacity with three minimum round-trip times,”
in Proc. ACM CoNEXT, 2011.

[50] F. Michelinakis, N. Bui, G. Fioravantti, J. Widmer, F. Kaup, and
D. Hausheer, “Lightweight capacity measurements for mobile networks,”
Computer Communications, vol. 84, pp. 73 – 83, 2016.

[51] https://play.google.com/store/apps/details?id=app.greyshirts.firewall&
hl=en.

[52] W. Li, R. Mok, D. Wu, and R. Chang, “On the accuracy of smartphone-
based mobile network measurement,” in Proc. IEEE INFOCOM, 2015.

[53] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin, “Diversity in smartphone usage,” in Proc. ACM MobiSys,
2010.

[54] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smartphones,” in
Proc. ACM MobiSys, 2010.

[55] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “Livelab:
Measuring wireless networks and smartphone users in the field,”
SIGMETRICS Perform. Eval. Rev., vol. 38, no. 3, pp. 15–20, Jan. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1925019.1925023

[56] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and
V. Paxson, “Beyond the radio: Illuminating the higher layers of mobile
networks,” in Proc. ACM MobiSys, 2015.

[57] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon, “Evaluation of
Android Dalvik virtual machine,” in Proc. JTRES, 2012.

[58] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and S. Albayrak,
“Developing and benchmarking native Linux applications on Android,”
in Proc. Mobilware, 2009.

[59] S. Lee and J. W. Jeon, “Evaluating performance of Android platform
using native C for embedded systems,” in Proc. IEEE ICCAS, 2010.

[60] L. Xue, C. Qian, and X. Luo, “Androidperf: A cross-layer profiling
system for Android applications,” in Proc. IEEE IWQoS, 2015.

[61] J.-C. Kuester and A. Bauer, “Monitoring real Android malware,” in Proc.

Runtime Verification, 2015.

Weichao Li (S’15-M’16) received his B.E and
M.E degrees from South China University of
Technology, Guangzhou, China in 2002 and
2009, respectively, and Ph.D. degree in 2017
from Department of Computing, The Hong Kong
Polytechnic University, Hong Kong, China. He is
currently a researcher at Huawei Future Network
Theory Lab, Hong Kong. His research focuses
on network measurement, especially on Internet
measurement technologies, large-scale network
performance monitoring and diagnosis, mobile

network performance monitoring. He is also interested in areas including
cloud computing, HTTP streaming system, quality of experience (QoE)
measurement, and machine learning.

Daoyuan Wu (S’15) is currently a PhD candi-
date at School of Information Systems, Singa-
pore Management University. He received his
M.Phil degree from The Hong Kong Polytechnic
University in 2015 and the B.E. degree from
Nanjing University of Posts and Telecommuni-
cations in 2011. His research interests include
smartphone security, vulnerability detection, and
mobile network measurement.

1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2737990, IEEE
Transactions on Mobile Computing

16

Rocky K. C. Chang (M’89) received the B.Sc.
degrees from Virginia Tech, Blacksburg, VA,
USA, and Vincennes University, Vincennes, IN,
USA, in 1981 and 1983, respectvely, and the
M.Sc. and Ph.D. degrees from the Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1985,
1987, and 1990, respectively. He is currently
an Associate Professor with the Department of
Computing, Hong Kong Polytechnic University
(PolyU), Hong Kong, China. Prior to that, he
received his postdoctoral training with the Com-

puter Science Department, IBM Thomas J. Watson Research Center,
Hawthorne, NY, USA. He is leading the Internet Infrastructure and Se-
curity Research Laboratory, addressing network measurement, network
security, and network operations and management problems. He also
leads a research group on Internet Services Monitoring and Diagnostics
in the Division of Smart Cities under PolyUs Research Institute for
Sustainable Urban Development.

Ricky K. P. Mok (S’11-M’14) received the
B.Eng.(Hons.) degree in computer engineering
from the Chinese University of Hong Kong, Hong
Kong, China, in 2009, and the Ph.D. degree from
the Department of Computing, Hong Kong Poly-
technic University, Hong Kong, China, in 2016.
He is currently serving as a Postdoctoral Scholar
with the CAIDA/University of California at San
Diego, San Diego, CA, USA. His research in-
terests involve the QoE of video streaming sys-
tems, such as developing reliable QoE assess-

ment methodologies, investigating the human factors influencing the
QoE, and intergrading network path quality measurement into video
streaming systems. He also conducts network measurement research,
including packet send-time accuracy in networked embedded systems
and delay measurement in mobile devices.

