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Advanced Smart Contract Vulnerability Detection
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Abstract—Blockchain’s inherent immutability, while transfor-
mative, creates critical security risks in smart contracts, where
undetected vulnerabilities can result in irreversible financial
losses. Current auditing tools and approaches often address
specific vulnerability types, yet there is a need for a compre-
hensive solution that can detect a wide range of vulnerabilities
with high accuracy. We propose LLM-SmartAudit, a novel
framework that leverages Large Language Models (LLMs) to
automate smart contract vulnerability detection and analysis.
Using a multi-agent conversational architecture with a buffer-
of-thought mechanism, LLM-SmartAudit maintains a dynamic
record of insights generated throughout the audit process. This
enables a collaborative system of specialized agents to iteratively
refine their assessments, enhancing the accuracy and depth
of vulnerability detection. To evaluate its effectiveness, LLM-
SmartAudit was tested on three datasets: a benchmark for
common vulnerabilities, a real-world project corpus, and a CVE
dataset. It outperformed existing tools with 98% accuracy on
common vulnerabilities and demonstrates higher accuracy in
real-world scenarios. Additionally, it successfully identifies 12 out
of 13 CVEs, surpassing other LLM-based methods. These results
demonstrate the effectiveness of multi-agent collaboration in
automated smart contract auditing, offering a scalable, adaptive,
and highly efficient solution for blockchain security analysis.

Index Terms—smart contract auditing, LLMs, multi-agent,
vulnerability detection

I. INTRODUCTION

ECENT advances in smart contracts have marked sig-

nificant progress in areas such as security, finance, and
governance. These are self-executing contracts with terms mu-
tually agreed upon by participants, enacted through predefined
actions. However, the immutable nature of blockchain technol-
ogy inherently makes smart contracts more severe to software
attacks. Over the past years, there have been numerous high-
profile vulnerabilities and exploits in smart contracts, such as

Manuscript received March 18, 2025.

Z. Wei is with the School of Computer Science and Technology at Beijing
Institute of Technology, Beijing, China.

J. Sun is with the School of Computer Science at University of Auckland,
Auckland, New Zealand.

Ye Liu is with the School of Computing and Information Systems at
Singapore Management University, Singapore.

Y. Sun and Yang Liu are with the College of Computing and Data Science
at Nanyang Technological University, Singapore.

D. Wu is at Lingnan University, Hong Kong, China.

M. Li is with the School of Computer Science and Information Engineering
at Hefei University of Technology, Hefei, China.

Z.Zhang, X. Zhang, and L. Zhu are with the School of Cyberspace Science
and Technology at Beijing Institute of Technology, Beijing, China. (e-mail:
zhangzijian @bit.edu.cn)

C. Li, M. Wan, J. Dong are with Beijing Academy of Blockchain and Edge
Computing, Beijing, China.

Corresponding author: Zijian Zhang, Jin Dong

the DAO attack [1]]. In 2024 alone, total losses exceeded 2.6
billion USD across 192 incidents, with a significant portion
resulting from smart contract-level vulnerabilities [2]. Conse-
quently, the development of secure smart contracts continues
to pose significant challenges.

Research in Large Language Models (LLMs) has made
significant advancements in fields such as Natural Language
Processing [3]], Computer Vision [4], Code Generation [3],
and various AI tasks [6l], [7]. A survey [8] indicates a sig-
nificant increase in LLMs adoption over the past five years,
accompanied by a rapid rise in software engineering. LLM
tools are primarily categorized into commercial products and
open-source initiatives. Advanced commercial LLMs include
GPT, Claude [9], and Gemini [10] models, while prominent
open-source projects feature Llama [11]], Mixtral [12]], and
DeepSeek [13]]. Both commercial and open-source LLMs
demonstrate significant potential in handling complex tasks.
GPT, one of the pioneering commercial LLMs, has exhibited
remarkable proficiency in natural language understanding,
context processing, and code comprehension, outperforming
numerous traditional methods [14]].

LLMs, trained on vast text data, excel at predicting likely
token sequences based on input. Unlike traditional systems
with fixed rules or vulnerability databases, LLMs generate
probabilistic outputs. While powerful, this approach can some-
times lead to inaccuracies in vulnerability identification [15]],
[L6], [17]. This paper investigate the question: Can multi-
agent conversations enhance LLMs’ capabilities in detect-
ing smart contract vulnerabilities?

We propose LLM-SmartAudit, a virtual chat-powered smart
contract audit framework leveraging a multi-agent conversa-
tion system. This multi-agent paradigm is specifically tai-
lored to address the unique complexities of smart contract
security. This approach is based on three key rationales.
First, multi-agent systems excel at iteratively solving complex
logic problems through collaborative vulnerability discovery
and refinement. For instance, agents can collaboratively trace
execution paths, discuss potential exploit scenarios based on
partial findings, and incorporate feedback to re-evaluate code
segments. Second, multi-agent systems can enable the integra-
tion of diverse, specialized knowledge crucial for comprehen-
sive auditing, as different agents can focus on distinct areas
like code-level bugs or financial exploits. Third, multi-agent
systems can mitigate the cognitive biases and ’degeneration-of-
thought’ [[18] inherent in single-LLM approaches by fostering
an environment of mutual challenge and cross-verification.
Supporting the general efficacy of such collaborative architec-
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tures, Wu et al. [19] demonstrated that multi-agent systems like

AutoGen and CAMEL [20] outperform single-agent systems

such as AutoGPT [21] across various applications. These

findings, combined with the specific needs of smart contract
auditing outlined above, underscore the strong potential of

LLM-SmartAudit.

Our approach explores two operational strategies—Targeted
Analysis (TA) and Broad Analysis (BA)—to enhance the
vulnerability detection capabilities of LLMs. Experimental re-
sults demonstrate that LLM-SmartAudit not only outperforms
traditional auditing tools but also effectively identifies both
common and complex vulnerabilities. This work makes several
key contributions to the field of smart contract security:

« Collaborative Multi-Agent Framework: We introduce a
novel multi-agent system in which specialized LLM agents,
each with tailored capabilities and roles, collaboratively
perform in-depth security audits. By assigning distinct
tasks—ranging from contract code analysis and vulnerability
identification to comprehensive report generation—these
agents emulate the workflow of professional auditing teams,
thereby achieving more accurate and holistic results.

« Dual Operational Strategies: We propose and evaluate
two complementary operational strategies: TA mode and BA
mode. TA mode leverages scenario-based, targeted analysis
to accurately detect known vulnerability types and complex
logic flaws, while BA mode offers a broader detection spec-
trum that identifies a wide range of potential vulnerabilities.
The integration of these modes significantly reduces the
variability and unpredictability of LLM outputs, enhancing
overall detection reliability.

« Robust Benchmarking and Real-World Evaluation: Our
system is rigorously evaluated using both a common vul-
nerability dataset and a Real-World dataset derived from
the Code4rena-audited, comprising 6,454 contracts across
102 projects. These evaluations demonstrate that LLM-
SmartAudit not only excels in detecting common vulnera-
bilities but also outperforms existing solutions in identifying
intricate, complex logic vulnerabilities, thereby validating its
practical utility and scalability.

o Cost-Effective and Scalable Security Analysis: LLM-
SmartAudit offers a highly efficient alternative to traditional
auditing services. With an operational cost of approximately
1 USD per contract, our automated framework significantly
reduces the financial barriers associated with smart contract
audits. This cost-effectiveness, combined with its high de-
tection accuracy, paves the way for democratizing advanced
security analysis in decentralized applications.

II. BACKGROUNDS
A. Smart Contract Security

Smart contracts, self-executing agreements encoded in soft-
ware, facilitate the management and execution of digital assets
within blockchain networks [22]]. These contracts not only de-
fine rules and penalties in a similar way to traditional contracts
but also automatically enforce these obligations. Although
Nick Szabo first proposed the concept in 1994 [23[], smart
contracts became practically implementable with Ethereum’s

launch in 2015. A recent survey [24] reveals a rapid increase in
the number of Solidity contracts over the past five years. This
growth reflects the expanding range of smart contract applica-
tions across sectors such as decentralized finance (DeFi) [25]],
insurance, and lending platforms. Notably, the DeFi sector has
experienced significant growth, with its peak total value locked
(TVL) reaching 179 billion USD on November 9, 2021. Of this
total, Ethereum accounts for 108.9 billion USD, representing
60% of the total DeFi TVL.

The substantial asset value managed by smart contracts
underscores their critical security importance. However, a
defining characteristic of Solidity smart contracts is their post-
deployment immutability on the Ethereum network, presenting
significant security management challenges. Unlike traditional
software, where patches or updates can rectify bugs or flaws,
smart contracts lack this flexibility. Consequently, vulnera-
bilities discovered post-deployment remain unfixable in the
existing contract, potentially leading to substantial financial
losses if exploited by malicious actors. According to Zhou
et al. [24], smart contracts have been the target of numerous
high-profile attacks, resulting in losses exceeding 3.24 billion
USD from April 2018 to April 2022.

B. Automated Security Analysis

With the rise in security incidents and high-profile attacks,
diverse smart contract analysis tools have been developed.
These tools are designed to systematically detect vulnerabil-
ities, enforce best practices, and identify potential security
risks inherent in smart contracts. By leveraging these tools,
developers can proactively mitigate issues before malicious
exploitation, significantly reducing security breach risks and
ensuring contract execution integrity. These tools employ
advanced techniques such as formal verification, symbolic exe-
cution, intermediate representation (IR), and machine learning
to enhance their effectiveness [26], [27].

Despite these advancements, substantial challenges persist
in smart contract security analysis. A primary concern is the
complexity and diversity of vulnerabilities, making it difficult
for any single tool to be universally effective. Each tool has
its own strengths and limitations. For instance, tools relying
on formal verification excel at ensuring contracts adhere to
specified requirements but may fall short in detecting security
flaws like reentrancy or gas limit issues. Complex logic vul-
nerabilities still necessitate human auditors [28]], introducing
additional challenges. However, the fees charged by traditional
smart contract auditing firms are prohibitively high. Basic
audits from firms like CertiK start at 500 USD, while more
reputable companies such as Trail of Bits charge between
5,000 USD to 15,000 USD as a starting poin

C. LLMs for Vulnerability Prediction

LLMs, such as GPT and Claude, are a specific type of
generative Al focused on text generation [29]. These models
are termed ‘large’ due to their vast number of parameters,
enabling them to comprehend and produce human language

Uhttps://www.ulam.io/blog/smart-contract-audit
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Fig. 1: Overview of Muliti-Agent Conversation Framework

with remarkable coherence and contextual appropriateness.
Pre-trained on diverse internet-based text sources, they can
produce text that often mirrors the quality and style of human
writing. LLMs have demonstrated the ability to grasp gram-
matical structures, word meanings, and basic logical reasoning
in human languages.

LLMs have demonstrated excellence in specific downstream
tasks, including code completion, code analysis, and vulnera-
bility detection. By leveraging their code comprehension and
generation capabilities, these models can identify vulnerabil-
ities, verify compliance, and assess logical correctness. Their
effectiveness is further enhanced through advanced prompting
techniques like chain-of-thought (CoT) or few-shot. Chen et
al. [17] have proven that LLMs (GPT-2, T5), trained with a
high-quality dataset consisting of 18,945 vulnerable C/C++
functions, outperform other machine learning methods, includ-
ing Graph Neural Networks, in vulnerability prediction. Khare
et al. [30]] found that proper prompting strategies that involve
step-by-step analysis significantly improve the performance of
LLMs (GPT, CodeLlama) in detecting security vulnerabilities
in programming languages such as Java and C/C++.

III. LLM-SMARTAUDIT SYSTEM

This section introduces LLM—SmartAudilEl, an innovative
system designed to identify potential smart contract vulnera-
bilities. LLM-SmartAudit employs a multi-agent conversation
approach, facilitating an interactive audit process. The system
conceptualizes the analysis of smart contract codes as a
specific task, autonomously executed through conversations
among specialized agents. These conversations are structured
as assistant-user cooperative scenarios, fostering a collabora-
tive approach to achieve accurate and comprehensive smart
contract audits.

A. Framework

The LLM-SmartAudit framework is founded on two core
principles: role specialization and action execution, as illus-
trated in Figure [I] Role specialization ensures that each agent

Zhttps://github.com/LLMAudit/LLMSmartAuditTool

focuses on specific tasks, maintaining an efficient conversation
flow. Action execution streamlines the agents’ collaborative
efforts, enhancing the overall efficiency and coherence of the
audit process.

1) Role Specialization: The framework adopts a role-
playing methodology to define and specialize the function of
each agent within the audit process. The idea comes from that
smart contract auditing is not a monolithic task, it requires
different viewpoints and analytical skills, from understand-
ing high-level contract logic to checking low-level code for
specific exploit patterns. By utilizing the inception prompting
technique [20]], the system enables agents to effectively assume
and fulfill their designated roles. Agents are assigned specific
capabilities and roles, either through repurposing existing
agents or extending their functionalities. These roles encom-
pass sending messages and receiving information from other
agents, facilitating the initiation and continuation of inter-agent
conversations.

The framework incorporates two distinct roles: User and
Assistant. The User functions as the task initiator and planner,
which is responsible for defining tasks, providing instructions,
and evaluating progress. The Assistant acts as the executor,
carrying out the instructions provided by the User. In our
system, a specialized agent might act as the User, generating
questions or directing focus. Another agent might temporarily
embody the ‘assistant agent’ role solving these questions or
answering what the User cares.

The system assigns specialized roles to agents, including
Project Manager (PM), Smart Contract Counselor (SCC),
Smart Contract Auditor (SCA), and Solidity Programming
Expert (SPE). The selection of these four roles was in-
formed by an analysis of typical workflows and the diverse
expertise required for comprehensive smart contract audits.
This structure establishes a well-balanced and collaborative
team capable of identifying and addressing both common
and critical vulnerabilities El Moreover, these roles closely
reflect the core organizational structure found in real-world

3https://www.jcwresourcing.com/insights/blog/understanding-audit-roles-
and-their-responsibilities
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smart contract auditing firms, enhancing both the realism and
practical relevance of our framework. The roles are designed to
be complementary, fostering a system of checks, balances, and
collaborative analysis. The PM ensures structured progression;
the SCA and SPE conduct in-depth technical analysis from
security and code perspectives, respectively; and the SCC
refines and validates the outputs. While additional specialized
roles, such as a dedicated Economic Exploit Analyst or a
Formal Verification Specialist, were considered, the current
configuration is capable of addressing a broad range of re-
quirements in general smart contract auditing.

These agents dynamically alternate between assistant and
user roles in various audit scenarios, providing flexibility and
depth to the audit process. For instance, the SCA might
initially act as an ‘assistant’ providing vulnerability analysis to
the SCC (acting as ‘user’). However, the Auditor might then
switch to a ‘user’ role, querying the SPE (now ‘assistant’)
for clarification on a complex piece of code. This dynamic
interaction allows for a more smooth conversational flow,
enabling agents to seek information as needed, rather than
being rigidly locked into a single mode of operation. This
mimics the flexible collaboration within human expert teams.

2) Action Execution Pipeline: After role specialization,
agents collaborate in an instruction-following manner to com-
plete the assigned tasks. Human users initiate the action exe-
cution by inputting contract codes into the system. The system
segments this code into a task queue, which is systematically
processed through three distinct phases: Contract Analysis,
Vulnerability Identification, and Comprehensive Report. The
Contract Analysis phase involves preliminary assessments of
the contract’s purpose and structure. During Vulnerability
Identification phase, agents collaboratively identify and de-
scribe potential security weaknesses. Finally, the Comprehren-
sive Report phase generates a comprehensive audit report.

At each decision point within these subtasks, assistant and
user agents engage in structured conversation, combining their
respective insights to make informed decisions. The system
employs a collaborative decision-making strategy, ensuring
that the unique capabilities of each agent are leveraged to their
fullest potential. This strategy transcends mere task sharing,
fostering a collaborative environment where LLM capabilities
and human expertise are integrated for optimal outcomes.

B. Audit Execution Modes and Prompting Strategies

The LLM-SmartAudit framework executes the audit process
using two primary operational modes: Broad Analysis (BA)
and Targeted Analysis (TA). Each mode is tailored for dif-
ferent audit objectives and is powered by a distinct advanced
prompting strategy to guide agent reasoning and collaborative
efforts. This dual-mode architecture aims to provide both com-
prehensive coverage and in-depth investigation capabilities.

1) Operational Modes: The framework employs two dis-
tinct operational modes to manage the audit workflow, ensur-
ing both breadth and depth in vulnerability assessment. This
dual-mode approach aims to first cast a wide net for common
or obvious vulnerabilities (BA mode) and then allow for
focused, deep-dive analysis on specific, potentially complex
or critical vulnerability types (TA mode).

a) BA Mode: The BA mode is designed for a thorough,
comprehensive initial examination of smart contracts. Its pri-
mary rationale is to leverage the LLM’s broad knowledge
base to adaptively identify a wide spectrum of potential
vulnerabilities without being rigidly confined to predefined
categories. This makes BA mode particularly effective for
initial contract screening, uncovering diverse types of security
weaknesses, and handling various vulnerability detection tasks
with flexibility.

« Practical Example: Consider auditing a new DeFi protocol
with a unique economic mechanism. A targeted scan for
common bugs might miss a subtle logical flaw in its custom
tokenomics; however, BA mode excels in such exploratory
scenarios by uncovering unforeseen logical flaws or eco-
nomic exploits that fall outside of predefined vulnerability
patterns. Its adaptive nature allows it to cast a wide net,
making it highly effective for initial contract screenings and
detecting less-documented security issues.

b) TA Mode: The TA mode employs a scenario-specific
approach for vulnerability detection. It divides the Vulner-
ability Identification phase into 40 targeted scenarios, each
focused on a specific vulnerability type. TA mode is designed
to enable deep, focused investigation into known critical or
complex vulnerabilities that often require specialized, context-
rich reasoning that might be missed or insufficiently addressed
by a general analysis.

o Practical Example: If a contract involves frequent external
calls and value transfers, the risk of a Reentrancy attack is
a primary concern. The TA mode directly addresses this by
activating its specialized reentrancy scenario to meticulously
analyze execution paths. Similarly, if the initial analysis
reveals complex code patterns, such as an upgradeable proxy
contract, this indicates a high risk for an Unsafe Delegatecall
vulnerability. In this case, selecting the corresponding TA
scenario is the ideal choice to thoroughly investigate the
specific concern with context-rich reasoning. Therefore, TA
mode should be selected when the audit goal is to check for
specific vulnerabilities or when contract complexity points
to a high risk for a particular type of flaw.

For the most comprehensive security assessment, our Hybrid
mode, which combines the outputs of both BA and TA,
is recommended. As shown in Section this approach
identified the highest number of unique vulnerability types.

2) Advanced Prompting Strategies for Operational Modes:
Effective execution of the BA and TA modes is facilitated
by specialized prompting strategies. These strategies build
upon inception prompting [20], which defines the roles, tasks,
and responsibilities of both assistant and user agents. Each
inception prompt includes three essential components: the
specified task prompt, assistant agent prompt, and user agent
prompt. Our framework incorporates two primary advanced
prompting strategies: Thought-Reasoning for BA mode and
Buffer-Reasoning for TA mode.

a) Thought-Reasoning Prompt (for BA mode): The BA
mode utilizes the Thought-Reasoning prompt. This approach
originates from the ReAct framework [31], which effectively
combines reasoning and acting in language models to handle
complex tasks with adaptive thought and action. Our approach
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(Speci-Fic Task:

"Given the user's task and the brainstorming ideas provided:",
"Task: \"{task}\".",
"Ideas: \"{ideas}\".",
"As the {assistant_role}, your chief priority is to thoroughly
inspect the given contract code and identify all potential
vulnerabilities. It's crucial to ensure the contract's security
and operability.",
"For each vulnerability identified, use the following format:",
"VULNERABILITY NAME or TYPE",
W

'
"DETAILED DESCRIPTION of the vulnerability, its potential
impact, and recommended mitigation or fix.",
W
"Note that we must concentrate exclusively on identifying,
describing, and suggesting fixes for vulnerabilities within the
contract code. Once all vulnerabilities have been addressed,
indicate the completion of your analysis by responding with:
\"<INFO> Analysis Complete.\""

Assistant Agent: User Agent:

"You are Smart Contract Auditor. Now,
we are both working at one TEAM and
share a common interest in collabora-
ting to successfully execute a market-
ing strategy for a new customer.",
"You can leverage your knowledge of
Ethereum smart contracts and security
best practices to throughly review the
provided vulnerable smart contracts
and identify potential bugs and secur-
ity vulnerablites",

"Here is a new customer's task: {task}.”

“"You are Solidity Programming Expert.
Now, we are both working at one TEAM
and share a common interest in colla-
borating to successfully execute a

marketing strategy for a new customer

"You can analyze the code structure,
logic, and implementation details of
the contracts. You have extensive
computing and coding experience in
Solidity programming language.",
"Here is a new customer's tashk:

Buffer Manager

) To detect security issue about |
| Flash Loan vulnerability, check |
following case: |
1. Lack of access control ... 1
|2+ Flash loan fee is not proper,
3.

g
| To detect seurity issue about |
| 700 vulnerability, you should |
| following case: \
1 1. When contract makes an ... |
} 2. When state changes are ...
| 3. When there no proper .. | ' |

w Thought Retrieval

~

Thought Template T1i

Specific Task:

“Given the user's task and the brainstorming ideas provided:",
"Task: \"{task}\".",

“Ideas: \"{ideas}\".",

“As the {assistant_role}, your primary objective is to perform a thorough and detailed
inspection of the provided contract code.®,

"Question: Whether the contract code is vulnerable to Transactions Order Dependence:",
“Transactions Order Dependence is a critical security concern in smart contracts. This
vulnerability occurs when a contract's behavior depends on the order of transactions,
which can lead to unintended outcomes and provide attackers with opportunities to

exploit transaction sequencing.”,

“Please conduct a thorough analysis, considering the following information:",

1. Review the contract's code logic to identify any potential areas where the order

of transaction execution might have an impact on the contract's behavior.",

2. Examine critical functions, particularly those involving fund transfers or resource
allocation, to ensure they are not susceptible to Transactions Order Dependence.",

3. Investigate scenarios in which gas prices can be manipulated to change the order of
transaction execution.”,

“If you identify Transactions Order Dependence, respond with: \"<INFO> TOD Identified.\"",
“For each vulnerability identified, use the following format:",

“VULNERABILITY NAME or TYPE",

"DETAILED DESCRIPTION of the vulnerability, AND recommended mitigation/fix.",

"If you don't find any vulnerabilities, respond with: \"<INFO> NO TOD.\""

{task}."

-

(a) Thought-Reasoning Prompt

Assistant Agent: User Agent:

(b) Buffer-Reasoning Prompt

Fig. 2: Specific Prompt Strategies for Audit Execution

builds on this foundation, extending ReAct’s synergy between
reasoning and action to ensure that the model not only
processes information sequentially but also actively interacts
with external data sources as needed. Unlike single-query to
model, which may lead to surface-level analyses, this method
continuously verifies and refines reasoning through targeted
interactions, enhancing depth and accuracy in complex tasks.

Figure[2)illustrates the Thought-Reasoning prompt template.
The specified task sets out the main goal—identifying various
vulnerabilities—defining expected outputs like vulnerability
types and descriptions, alongside constraints. The Assistant
and User prompts provide structured guidance on roles, fos-
tering collaboration. An output from the Thought-Reasoning
prompt in BA mode typically consists of a sequence of
thought, action, and observation, leading to a conclusion about
a potential vulnerability. More details are provided in our
Github repository.

b) Buffer-Reasoning Prompt (for TA Mode): The TA
mode employs the Buffer-Reasoning prompt. Derived from
the foundational Buffer of Thoughts (BoT) [32] concept,
enhances the model’s task comprehension by drawing upon
high-level, context-specific thought templates, which is partic-
ularly crucial for complex domains. While ReAct is effective
for many tasks, it often falls short in highly specialized
areas, as LLMs generally lack domain-specific knowledge
stores [11]]. Buffer-Reasoning prompt addresses this limi-
tation by retrieving relevant thought templates from prior
problem-solving processes, supporting in-context learning and
bolstering the model’s understanding. Unlike ReAct, Buffer-
Reasoning prompt inherently guides LLMs to engage in deep,
step-by-step reasoning required for specific scenarios. Build-
ing on this foundational concept, LLM-SmartAudit utilizes
an adapted Buffer-Reasoning prompt approach. This method

combines thought-augmented reasoning with adaptive instan-
tiation, prompting LLMs to integrate contextual information
to analyze the problem.

Figure [2] presents an example of the specified task prompt
for Buffer-Reasoning, tailored for a focused analysis like iden-
tifying Transactions Order Dependence (TOD) vulnerabilities.
This prompt directs agents to examine specific contract logic
related to the targeted vulnerability (e.g., fund transfers, re-
source allocation for TOD). The output of a Buffer-Reasoning
prompt in TA mode is a specific finding related to the targeted
vulnerability scenario.

C. Collaborative Decision-Making

Collaborative decision-making process is another important
component of action execution, ensuring that each step in the
audit process benefits from the combined insights of multiple
specialized agents.

1) Mechanisms of Collaboration: Each subtask within the
system relies on effective communication between two spe-
cialized agents. To facilitate meaningful progress, the system
employs a conversation-driven control flow, determining agent
engagement and response processing. This approach enables
intuitive reasoning about complex workflows, encompassing
agent actions and message exchanges.

Figure [] illustrates the conversation-driven control flow and
automated agent chat. The conversation-driven control flow
demonstrates how task processes are executed between two
agents through conversations. The process begins with the
User sending a prompt to the Assistant, which then generates a
response via the language model API. The response is relayed
back to the User, which generates a new prompt within the
multi-conversation system. This new prompt is then sent to
the Assistant, initiating the next round of analysis.
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The automated agent chat illustrates a simplified example
of the smart contract analysis procedure. In this example, the
system analyzes a contract potentially affected by an Arith-
metic vulnerability. The process begins with the PM initiating
the audit task, setting the team’s objective and initiating the
discussion about the contract under review. As the analysis
progresses, the SCA and PM contribute their expertise, sharing
insights on the contract’s purpose and structure. Finally, the
SCC summarizes the initial findings and provides a phase
report. In the next phase, the SPE provides a detailed code
analysis, which the SCC uses to identify potential Integer
overflow/underflow vulnerabilities, offering a comprehensive
description. The process concludes with the SCC compiling
a comprehensive audit report, summarizing all identified vul-
nerabilities and their potential impacts.

2) Role Exchanges: Traditional LLM can sometimes pro-
duce inaccuracies or irrelevant information, especially in com-
plex tasks like generating code insights. For example, as
illustrated in Figure [5a if the Smart Contract Auditor is
instructed to review a vulnerable contract code previously
identified with Arithmetic vulnerabilities, there’s a risk of

receiving misleading feedback. In such cases, the Auditor
might erroneously flag the contract as vulnerable to both
‘Integer Overflow/Underflow’ and ‘Reentrancy’, incorrectly
generating false positives for Reentrancy. To address this issue,
LLM-SmartAudit introduces a roles-swaping mechanism to
enhance precision in vulnerability detection.

This innovative approach involves periodic roles exchanges
between user and assistant agents. As shown in Figure [5b]
after the Auditor’s initial analysis, roles are reversed, with
the Solidity Programming Expert acting as the assistant agent.
This role reversal enables the Expert to re-evaluate the contract
from a fresh perspective, potentially identifying that what was
initially perceived as an Arithmetic issue erroneously flagged
as a Reentrancy vulnerability. The Auditor then reviews this
revised analysis, making the final determination on the vul-
nerability classification.

In the final decision-making process, the system incor-
porates a consensus mechanism to assist the two agents.
This mechanism facilitates cooperation between the user and
assistant agents through multi-turn conversations, aiming to
reach a consensus that ensures a well-informed and mutually
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agreed-upon final decision. This approach is crucial for en-
suring agreement on the final audit results and other critical
aspects, such as the contract’s purpose and structure. However,
reaching consensus may require multiple conversation rounds,
potentially leading to extended deliberations. To streamline the
process, the system limits discussions to a maximum of three
rounds (where n = 3), as shown in Figure

This section has outlined LLM-SmartAudit’s framework,
task queue, and collaborative decision-making process, estab-
lishing a comprehensive foundation for our investigation. The
subsequent evaluation will assess LLM-SmartAudit’s perfor-
mance against leading traditional contract analysis tools.

IV. EVALUATION

This section presents an evaluation of our system, compar-
ing it with other smart contract detection tools.

A. Research Questions

We start our evaluation by posing the following research
questions, focusing on the effectiveness of LLM-SmartAudit
in detecting vulnerabilities in smart contracts:

« RQ1: How does LLM-SmartAudit performs compare
with other smart contract vulnerability detection meth-
ods? This question examines the comparative effectiveness
of LLM-SmartAudit’s targeted analysis approach against
established methods, focusing on its performance improve-
ments across specific vulnerability categories.

« RQ2: How do different configurations affect LLM-
SmartAudit’s performance in detecting specific vul-
nerability types? This question examines the impact of
analytical strategies and different language models on the
efficacy of smart contract vulnerability detection.

e RQ3: How does LLM-SmartAudit perform in real-
world contract projects? This question evaluates LLM-
SmartAudit’s practical effectiveness in detecting vulnerabil-
ities within real-world smart contract scenarios.

+« RQ4: How does LLM-SmartAudit perform in vulnera-
bility detection compared to other LLM-based methods?
This question assesses the effectiveness of LLM-SmartAudit
using the CVE dataset, focusing on its ability to accurately
identify vulnerabilities and produce detailed, coherent de-
scriptions.

« RQS5: What are the respective strengths of the TA
and BA modes in vulnerability detection? This question
examines the individual capabilities of the TA and BA
modes, focusing on how each contributes to the overall
effectiveness of vulnerability detection.

« RQ6: How robust is the output stability of LLM-
SmartAudit’s vulnerability detection? This question in-
vestigates whether LLM-SmartAudit can produce consistent
and reliable results across repeated executions, despite the
inherent non-determinism of LLMs.

« RQ7: What are the computational costs and token
usage associated with using LLM-SmartAudit for smart
contract auditing? This question seeks to investigate the
resource efficiency of LLM-SmartAudit by examining how
factors such as contract complexity and audit mode affect
the system’s consumption of computational resources (e.g.,
token usage, processing time, and financial cost).

B. Experimental Settings

To rigorously evaluate the effectiveness of our solution, we
have established a transparent and reproducible experimental
setup. This includes a multifaceted benchmark dataset, evalu-
ation criteria, and hardware configuration details.

1) Benchmarking Dataset: To comprehensively measure
the system’s capabilities, we constructed two distinct datasets
grounded in the vulnerability categorization framework pro-
posed by Zhang et al. [33]. Their taxonomy distinguishes
between ‘machine-auditable’ vulnerabilities (detectable by au-
tomated tools) and ‘machine-unauditable’ vulnerabilities (re-
quiring expert human analysis). For clarity, we term these
‘common vulnerabilities” and ‘complex logic vulnerabilities’,
respectively. Both datasets are publicly available in our repos-
itory to ensure reproducibility.

o Common-Vulnerability Set: Focused exclusively on
machine-auditable flaws, this dataset includes 110 annotated
smart contracts organized into 11 sub-datasets. (1) Ten
vulnerability-specific subsets: Covering Reentrancy (RE),
Integer Overflow/Underflow (I0), Unchecked send (USE),
Unsafe Delegatecall (UD), Transaction Order Dependence
(TOD), Time Manipulation (TM), Randomness Prediction
(RP), Authorization Issue using ‘tx.origin’ (TX), Unsafe
Suicide (USU), and Gas Limitation (GL). (2) One secure
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subset: Contains contracts verified free of vulnerabilities,
serving as negative samples for robustness testing.

« Real-World Set: Designed to reflect practical deployment
scenarios, this dataset combines both specific and com-
plex logic vulnerabilities from verified exploit incidents.
Sourced from Code4rena-audit reports[33], [28], where se-
curity experts compete to identify flaws in live projects, it
comprises 102 projects and 6,454 contracts, encompassing
499 high-risk, 909 medium-risk, 1,420 low-risk, and 2,417
ground-level vulnerabilities. Our analysis prioritizes high
and medium-risk vulnerabilities to align with real-world
security priorities. The real-world dataset contains 304 com-
mon vulnerabilities and 1,104 logic vulnerabilities.

e CVE Set: This dataset comprises well-known smart con-
tract Common Vulnerabilities and Exposures (CVEs). While
there were 595 smart contract CVEs recorded as of
July 1, 2025, a large portion of these—particularly older
ones—represent similar vulnerability types. For example,
395 of the 595 CVEs are related to integer overflows, with
the remaining types distributed as shown in Table [II To
enable focused, non-redundant evaluation across diverse se-
curity threats, we adopted the curated CVE benchmark from
PropertyGPT [34]. This benchmark emphasizes the selection
of representative vulnerabilities to avoid redundancy and to
support a comprehensive evaluation of diverse attack vectors
beyond common patterns.

TABLE I: The Distribution of CVE sets

Int. Overflow

Vyper
Logic

Type
Number | 395 165

«© | OpenZeppeline
v | Access Control
v | Early EVM

—_
Nl

All datasets, along with annotation guidelines and metadata,
are publicly available in our GitHub repository to support
community validation and further development.

2) Evaluation Criteria: The vulnerability detection process
is treated as a binary classification task, where the tool aims
to accurately determine the presence or absence of specific
vulnerabilities. The classification outcomes are:

o True Positive (TP): A vulnerability is correctly identified
when present.

« False Positive (FP): A vulnerability is incorrectly identified
when absent.

« False Negative (FN): A vulnerability is missed when
present.

o True Negative (TN): Absence of a vulnerability is correctly
identified.

Tool performance is evaluated using standard metrics: Pre-
cision (P = TP / (TP + FP)), Recall (R = TP / (TP + FN)), and
Fl-score (F1 = (2 * P * R) / (P + R)), which is the harmonic
mean of Precision and Recall.

3) Implementation Details: For our experiments, LLM-
SmartAudit was deployed on an Aliyun-hosted Ubuntu 22.04
LTS machine, equipped with an Intel(R) Core(TM) i5-
13400 CPU and 32GB of RAM. This setup ensured consis-

tent testing conditions across all evaluations. The evaluation
of language models was conducted using a single-attempt
(pass@1) methodology. For comparative analysis, we selected
GPT-3.5 (gpt-3.5-turbo-0125) and GPT-4o0 (gpt-40-2024-11-
20) as the configurations for LLM-SmartAudit. Additionally,
we incorporated three advanced models (GPT, Claude, and
DeepSeek [[13]) into our evaluation pipeline. These models
were accessed via their respective public APIs, enabling a
direct performance comparison between LLM-SmartAudit and
these leading alternatives.

To ensure transparency and reproducibility, we have made
the comparison of correct answers, model outputs, and detailed
performance metrics publicly available. Furthermore, LLM-
SmartAudit is fully open source, and the codebase can be
accessed at GitHub. This approach facilitates a comprehensive
benchmark of LLM-SmartAudit against other widely used
tools in the field.

C. RQI: Comparative Evaluation with Other Vulnerability
Detection Methods

To assess LLM-SmartAudit’s effectiveness (RQ1), we con-
ducted a systematic comparison on the Common-Vulnerability
Set. Experiments were performed in Targeted Analysis (TA)
mode with two configurations: GPT-3.5 and GPT-4. The
evaluation compares against 10 tools representing five method-
ological paradigms: formal verification (Securify [35]], VeriS-
mart [36]), symbolic execution (Mythirl [37]], Oyente [1])),
fuzzing (ConFuzzius [38], sFuzz [39]), intermediate represen-
tation (IR) analysis (Slither [40]], Conkas [41]]), and machine
learning approaches (e.g., GNNSCVD [42], Eth2Vec [43]).

We also include LLM-based baselines. These are: (1)
general-purpose LLMs: GPT-3.5 and GPT-40; (2) reasoning
Models: GPT-o1 and DeepSeek-r1; (3) LLM-based tool specif-
ically designed for smart contract auditing: David et al. [9].
To ensure a fair comparison and understand the value of our
specialized framework, direct use of LLMs were implemented
with an instruction to identify and classify vulnerabilities:

Generic Prompts: Analyze the following smart contract for
vulnerabilities. For each vulnerability found, please state its
type and provide a brief description.

Table [[I| demonstrates that both configurations of LLM-
SmartAudit substantially outperform the compared other tools.
Notably, LLM-SmartAudit (T-3.5) and LLM-SmartAudit (T-
40) achieve overall accuracies of 94% and 98%, representing
improvements of +28% and +14% over the base models (GPT-
3.5 and GPT-40). Although GPT-40 (base) already outperforms
GPT-3.5 (base) (84% vs. 66%), the tailored auditing frame-
work pushes the detection accuracy even higher, achieving
near-optimal performance. In eight types, LLM-SmartAudit
could achieve 100% of accuracy.

For static analysis based tools, LLM-SmartAudit could
also outperform them in certain types where those tools
specialize. For example, LLM-SmartAudit achieved higher
accuracy, such as Unsafe Delegatecall, Time Manipulation,
and Randomness Prediction, compared to the static analysis
based solution. Moreover, unlike several traditional tools (e.g.,
Securify, VeriSmart, and Eth2Vec) that are unable to detect
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TABLE II: Evaluation of Smart Contract Vulnerability Detection Tools — A Comparative Analysis

Tool RE 10 USE UD TOD TM RP TX USU GS Opverall Accuracy
Securify 8 - 9 - 1 - 18%
VeriSmart - 9 - - - - - - - 9%
Mythril-0.24.7 9 7 9 6 - 6 8 6 3 54%
Oyente 7 9 5 - 2 - - - - 23%
ConFuzzius 9 7 9 1 2 8 2 4 - 42%
sFuzz 6 6 6 5 - 1 6 - - 3 33%
Slither-0.11.0 9 - 8 7 - 8 - 8 6 - 46%
Conkas 10 9 10 - 7 8 - - - 44%
GNNSCVD 7 - - - - - 8 15%
Eth2Vec 4 5 - - - 2 - - - 2 13%
GPT-ol (pass@1) 10 9 9 8 2 10 10 10 8 6 82%
DeepSeek-r1 (pass@1) 10 9 9 10 3 9 10 10 10 7 87%
GPT-3.5 + Generic Prompts 10 9 6 7 0 9 7 9 5 4 66%
GPT-40 + Generic Prompts 10 10 8 9 3 10 10 10 9 5 84%
David (GPT-40) 10 9 10 10 10 3 10 10 10 9 91%
LLM-SmartAudit (T-3.5) 10 10 10 9 9 10 10 10 7 9 94% (+28%)
LLM-SmartAudit (T-40) 10 10 9 10 10 10 10 10 10 9 98% (+14%)

Note: A dash (“-”) indicates that a tool is unable to detect the corresponding vulnerability type. T-3.5 denotes that the tool uses the
GPT-3.5 configuration in TA mode, while T-4 refers to the GPT-40 configuration in TA mode.

vulnerabilities in certain categories (indicated by “-”), both
configurations of LLM-SmartAudit achieve near-perfect scores
across almost all vulnerability types. This also indicates that
while classical approaches such as symbolic execution and
fuzzing yield moderate performance (with overall scores rang-
ing between 9% and 54 %), the LLM-based methods, including
GPT-o01, DeepSeek-rl and David’s work, offer an accuracy
boost (82%, 87%, and 91% respectively). It illustrates that
LLMs have better advantages over traditional methods, and
why we choose LLMs as the foundation of our framework.

Answer to RQ1: LLM-SmartAudit in TA mode (both
GPT-3.5 and GPT-40 configurations) achieves overall
accuracies of 94% and 98%, overall performance superior
in detecting 10 common vulnerability types compared to
other methods. These findings underscore the potential
of advanced LLMs in identifying vulnerabilities within
smart contracts.

D. RQ2: Performance of LLM-SmartAudit Across Different
Strategies and Configurations

The analysis presented in RQI indicated that different
model configurations yield varying performance for LLM-
SmartAudit, with GPT-40 demonstrating higher efficiency. As
discussed in Section [[II-B] we explore two distinct strategies
to leverage LLM capabilities: the BA mode and the TA mode.
Since LLMs can generate a list of potential vulnerabilities, we
also incorporate a safe contract set in our evaluation to assess
the incidence of erroneous judgments. Specifically, we count
the number of vulnerabilities identified in contracts that are
known to be secure.

Table details the performance metrics for each strategy
across ten common vulnerability types, including TPs, FNs,
FPs, TNs, and Fl-scores. The results demonstrate that both
BA and TA modes significantly enhance the detection capa-
bilities of the GPT models relative to the zero-shot prompt
baseline. Notably, the BA mode effectively reduces false pos-
itives across both models, highlighting its efficacy in refining

decision-making and mitigating uncertainties in LLM outputs.
In contrast, the TA mode exhibits superior performance over-
all—especially in detecting complex vulnerabilities such as
Timestamp Dependency and Gas Limitation. These findings
underscore the value of TA mode in directing model focus
and enhancing detection precision.

Moreover, beyond the analysis by vulnerability type, we
compared the overall performance of the two strategies using
both GPT-3.5 and GPT-4 configurations. Figure [6| summarizes
these comparative results, which reveal substantial improve-
ments when employing both the BA and TA modes relative
to the zero-shot baseline. For the GPT-3.5 configuration, the
zero-shot approach achieved an accuracy of 66%, a precision
of 85.7%, a recall of 27.6%, and an F1-score of 94.3%. When
using BA mode, overall performance improved to an accuracy
of 74%, a precision of 93.7%, a recall of 74%, and an F1-
score of 82.7%. Notably, the TA mode produced a dramatic
enhancement, reaching 94% accuracy, 94.9% precision, 94%
recall, and an F1-score of 94.5%. These improvements indicate
that while BA mode significantly reduces false positives,
TA mode not only balances but also boosts both recall and
precision, leading to superior overall performance.

A similar trend is observed with the GPT-4 configuration. In
the zero-shot setting, GPT-4 recorded an accuracy of 84%, a
precision of 91.3%, a recall of 84%, and an F1-score of 87.5%.
Under BA mode, the metrics improved to 88% accuracy,
98.9% precision, 88% recall, and a 93.1% F1-score. The most
gains were realized in TA mode, with GPT-4 achieving an
impressive 98% accuracy, 99% precision, 98% recall, and a
98.5% Fl-score.

Overall, these findings underscore the effectiveness of both
BA and TA strategies in enhancing the detection capabilities of
LLM-based vulnerability detection frameworks. In particular,
TA mode demonstrates a remarkable ability to direct model
attention, substantially mitigating errors and achieving near-
optimal performance across diverse evaluation metrics. This
strategic refinement is critical for reliable and precise vulner-
ability detection in smart contracts.
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TABLE III: Comparative Evaluation of Smart Contract Vulnerability Detection Using GPT-40 Model

Type Zero-shot LLM-SmartAudit (BA Mode) LLM-SmartAudit (TA Mode)
TP FN FP TN F1-score TP FN FpP TN F1-score TP FN FP TN F1-score

RE 10 0 4 6 83.3% 10 0 1 9 95.2% (+11.9%) 10 0 1 9 95.2% (+11.9%)
10 10 0 2 8 90.9% 10 0 0 10 100% (4+9.1%) 10 0 0 10 100% (+9.1%)
Us 8 2 0 10 88.9% 9 1 0 10 94.7% (+5.8%) 9 1 0 10 94.7% (+5.8%)
UD 9 1 1 9 90% 10 0 0 10 100% (+10%) 10 0 0 10 100% (+10%)
TOD 3 7 0 10 46.2% 3 7 0 10 46.2% 10 0 0 10 100% (+53.8%)
™ 10 0 0 10 100% 10 0 0 10 100% 10 0 0 10 100%
RP 10 0 0 10 100% 10 0 0 10 100% 10 0 0 10 100%
TX 10 0 0 10 100% 10 0 0 10 100% 10 0 0 10 100%
Usu 9 1 0 10 95% 10 0 0 10 100% (+5%) 10 0 0 10 100% (+5%)
GL 5 5 1 9 62.5% 6 4 0 10 75% (+12.5%) 9 1 0 10 94.7% (+32.2%)
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Fig. 6: Comparative Evaluation of three modes across GPT-
3.5-turbo and GPT-40 models

Answer to RQ2: The performance of LLM in vulnerabil-
ity detection could be significantly enhanced by applying
specialized strategies (BA and TA modes). Moreover, TA
mode have more significant enhancement on weak models
(e.g. GPT-3.5) than stronger ones.

E. RQ3: Performance Comparison on Real-World Set

TABLE IV: Evaluations on Practical Projects

Method | Accuracy
Claude-3.5-sonnet + Generic Prompts 10.3%
DeepSeek-v3 + Generic Prompts 11.3%
GPT-40 + Generic Prompts 10.9%
DeepSeek-r1-llama3-8b + Generic Prompts 5%
DeepSeek-r1 + Generic Prompts 13.9%
GPT-o0l + Generic Prompts 12.7%
GPT-40 + LLM-SmartAudit Prompts | 312%
LLM-SmartAudit (BA mode) 14.4%
LLM-SmartAudit (TA mode) 47.6%

To address RQ3, we evaluate the performance of LLM-
SmartAudit on the Real-World Set. While GPT-3.5’s 4,096-
token constraint restricts analysis to shorter contracts (3,000
tokens after prompt allocation), 533 contracts in our real-
world dataset surpass this threshold. To accommodate longer
contracts, we exclusively used GPT-40 (128k-token context),
enabling full-context analysis without truncation.

For comparison, we initially assessed traditional vulnera-
bility detection tools like Slither and Mythril. However, as

30.26%

Accuracy (%)
w
o

10 A

Common Type

Logic Type

Fig. 7: Deep Evaluation on Two Modes

highlighted in prior studies [33]], these tools struggled to
accurately identify vulnerabilities in the real-world dataset. In-
stead, we compared LLM-SmartAudit against other advanced
LLM (Claude-3.5-sonnet, DeepSeek-v3, GPT-4o, etc.) using a
pass@1 metric.

To investigate the impact of our advanced prompting
strategies, we introduced a new baseline: GPT-40 + LLM-
SmartAudit Prompts. For this baseline, a single GPT-40 model
was provided with the Buffer-Reasoning Prompt structure,
which forms a core component of LLM-SmartAudit’'s TA
mode. This prompt was chosen as it represents our most fixed
and specific reasoning guide, and our prior analyses (Tables [[I]
and [Tl indicate its significant influence.

Table [[V] presents the detection accuracy of various tools.
The results reveal that all the competing models, includ-
ing Claude-3.5-Sonnet, DeepSeek-V3, GPT-40, DeepSeek-rl
and its distilled variants, have poor accuracy ranging from
5% to 13.9%. GPT-40 + LLM-SmartAudit Prompts baseline
demonstrates a notable improvement, achieving an accuracy
of 31.2%. This confirms that our well-designed prompting
strategies indeed provide substantial benefits to LLMs for
vulnerability detection, even in a single-agent context.

In contrast, LLM-SmartAudit in BA mode reached 14.4%
(GPT-40 as base model), which outperform the base model
by 3.4%. Notably, LLM-SmartAudit in TA mode achieves a
higher accuracy of 47.6%, outperforming all other method,
including the GPT-40 + LLM-SmartAudit Prompts baseline.
This incremental gain underscores importance of the initial
analysis phase and the structured nature of our inception
prompts in conjunction with the multi-agent system. The
collaborative, multi-turn interactions, and specialized roles
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within LLM-SmartAudit enable a deeper, more professional
analysis that a single LLM, even with the same prompt.

To further investigate, we compared LLM-SmartAudit’s per-
formance in BA and TA modes in two vulnerability categories:
Common Type and Logic Type vulnerabilities. The detailed
comparison is presented in Figure [/| The results reveal that
TA mode achieves a significant performance boost across both
categories. Especailly, for Common Type vulnerabilities, which
include well-defined, commonly studied vulnerability patterns,
BA mode correctly gets an accuracy of 30.26%. In contrast,
TA mode significantly improves this detection rate, correctly
reaching an accuracy of 48.36%. The performance gap is even
more pronounced for Logic Type vulnerabilities, which involve
intricate contract logic and are more challenging to detect.
While BA mode gets an accuracy of only 9.96%, TA mode
demonstrates a dramatic improvement, correctly achieves an
accuracy of 47.55%.

Answer to RQ3: LLM-SmartAudit shows notable per-
formance compared to other models on real-world sce-
narios, with 672 out of 1,408 vulnerabilities detected,
yielding an overall high accuracy of 47.6%. This shows
that systematically structuring the analysis process and
leveraging targeted CoT prompts could help handle the
diverse security threats in the real world and highlight the
applicability of LLM-SmartAudit in real-world scenarios.

FE. RQ4: Performance Comparison with Other LLM-based
Auditing Methods

Several recent studies have explored the application of
LLMs for smart contract auditing. In particular, works such
as David et al. [9], PropertyGPT [34]], and GPTScan [44]
have demonstrated the potential of LLM-based vulnerability
detection. These LLM-based tools are often tailored for spe-
cific types of vulnerabilities, datasets, or scenarios, and are
not necessarily designed for the general-purpose vulnerability
detection. For instance, GPTScan [44] primarily focuses its
analysis on approximately 10 predefined, specific vulnerability
scenarios. Therefore, to ensure a relevant and fair comparison
against these specialized solutions, RQ4 utilizes the CVE Set.

In this experiment, we compared our evaluation results with
those of existing LLM-based methods and advanced reasoning
models, including GPT-ol and DeepSeek-rl, to comprehen-
sively assess the effectiveness of our proposed approach. The
results for PropertyGPT and GPTScan were obtained directly
from the PropertyGPT research paper [34], allowing for a
fair comparison using the same datasets as those employed
in the original experiments. We adopted this methodology
because PropertyGPT is primarily a research-oriented tool.
Utilizing benchmark results reported in original studies is
standard practice when evaluating against baselines that are
not publicly available for re-execution or rely on experimental
environments that are complex and difficult to reproduce.

The results demonstrate that LLM-SmartAudit exhibits su-
perior detection capabilities, correctly identifying 12 out of 13
CVEs in the dataset. In contrast, other LLM-based methods

show varying performance. For example, PropertyGPT detects
9 vulnerabilities but fails to identify CVE-2021-3004 and
CVE-2018-17111, highlighting limitations of simply relying
on limited vulnerability knowledge database and the impre-
cision of knowledge retrieval. Similarly, GPTScan, while ef-
fective in certain cases, exhibits inconsistencies in identifying
more complex vulnerabilities. Meanwhile, advanced reasoning
models such as GPT-ol and DeepSeek-rl alao achieve strong
performance, detecting 10 and 9 vulnerabilities, respectively,
demonstrating the potential of enhanced reasoning approaches.

LLM-SmartAudit fails to detect CVE-2023-26488. This
particular CVE pertains to a logic error in the OpenZeppelin
Contracts’ ERC721Consecutive implementation. The error is
not a common pattern vulnerability but a flaw in the custom
logic of a specific function, which can be harder for LLMs
to identify if they don’t map directly to more generalized
vulnerability patterns. The vulnerability is deeply tied to the
unique implementation details of ‘ERC721Consecutive’ and
its batch minting mechanism, and can be solved by a special-
ized prompt. This specialized prompt is designed to check the
unique mechanics of batch minting and balance update logic
within ERC721-like contracts, particularly focusing on edge
cases like single-item batches. The details of this specialized
prompt is available in our GitHub repository.

Answer to RQ4: LLM-SmartAudit demonstrates su-
perior performance over existing LLM-based methods,
including PropertyGPT and GPTScan, by correctly iden-
tifying 12 out of 13 CVEs. This highlights its robustness
in detecting a broader range of vulnerabilities, including
complex and diverse types.

G. RQ5: Ablation Study of TA and BA modes

In RQ3, our results show that, on real-world projects, the
standalone accuracy of the TA mode (47.6%) is significantly
higher than that of the BA mode (14.4%). At first glance,
this suggests that TA is substantially more effective than
BA in vulnerability detection. However, a closer examination
reveals that this disparity is attributed to an imbalance in
the dataset—specifically, a higher proportion of vulnerabili-
ties aligned with TA’s predefined scope, compared to those
addressed by the BA mode. To enable a fair comparison of
their detection capabilities, we conducted an ablation study
focusing on the types of vulnerabilities each model is designed
to detect. In this analysis, we evaluated the number of distinct
vulnerability types identified independently by the TA and BA.

Our hypothesis is that, while TA is optimized for a fixed set
of 40 well-defined vulnerabilities, BA is intended to generalize
across a broader range of issues, including previously un-
known or less frequently documented vulnerabilities. We argue
that, despite its lower standalone accuracy—Ilikely influenced
by the skewed distribution of vulnerability types—BA offers
complementary strengths to TA. To evaluate this hypothesis,
we introduced a Hybrid mode that integrates the outputs of
both BA and TA models.

The Hybrid mode merges the results from individual con-
tract audits (generated by both BA and TA modes) based
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TABLE V: Performance Comparison with Different LLM-based Auditing Methods for 13 CVEs

CVE ‘ Description ‘ Our work  David  PropertyGPT  GPTScan  GPT-ol Deepseek-rl
CVE-2021-34273 access control v X v v v v
CVE-2021-33403 overflow v X v X v v
CVE-2018-18425 logic error v X v X X X
CVE-2021-3004 logic error v X X X X X
CVE-2018-14085 delegatecall v v X X v v
CVE-2018-14089 logic error v v v v v X
CVE-2018-17111 access control v v X X v v
CVE-2018-17987 bad randomness v v X v v v
CVE-2019-15079 access control v X v X v v
CVE-2023-26488 logic error X X v X X X
CVE-2021-34272 access control v X v v v v
CVE-2021-34270 overflow v v v v v v
CVE-2018-14087 overflow v X v X v v

Note: v indicates a correct detection (TP), whereas X indicates an incorrect detection (FP).

on specific criteria to achieve a more comprehensive and
robust final output. This mechanism also serves as a conflict
resolution strategy, ensuring that the strengths of both modes
are leveraged while minimizing redundancy or contradictory
findings. The integration follows these rules:

1) Prioritization of TA for Overlapping Findings: If both
BA and TA report the same vulnerability at the same
location, the report and explanation from TA are prioritized
in the final output. This prioritization stems from TA
mode’s deep-dive capability, its structured scenario-based
approach, which provides a more precise assessment for
predefined vulnerability types. Our strong performance
results for TA mode on common vulnerability types (Table
support this decision.

Inclusion of BA’s Unique Findings: If a vulnerability
is reported by BA mode but not by TA mode for a
given contract, it is included in the final output with BA’s
explanation. This leverages BA mode’s ability to uncover
diverse and potentially novel security weaknesses that may
fall outside TA’s 40 predefined scenarios. This highlights
BA’s generalization capability in identifying broader issues
not explicitly targeted by TA.

Inclusion of TA’s Unique Findings: If a vulnerability
is reported by TA mode but not by BA mode for a
given contract, it is included in the final output with
TA’s explanation. This scenario often occurs when TA’s
focused analysis, perhaps with a more specific execution
path or prompt tailored to a particular vulnerability pattern,
uncovers an issue that BA’s broader sweep might overlook
due to its generality or higher potential for false positives.

2)

3)

For a deep analysis, we examined vulnerability findings
from 104 real-world project audit reports. After categorizing
the vulnerabilities based on their nature rather than their exact
labels, we identified a total of 114 distinct vulnerability types
from 5,245 vulnerability labels (additionally, there were 20
vulnerabilities classified as edge-cases). We then evaluated the
number of unique vulnerability types detected by BA mode,
TA mode, and the Hybrid Mode, alongside their detection
accuracy on this dataset.

As shown in Table [VI| the TA mode focuses on a pre-
defined set of 40 vulnerability types, achieving a coverage
rate of 35.1%. In contrast, the BA mode demonstrates broader
generalization, detecting 62 distinct types with a coverage of

TABLE VI: Evaluation of Vulnerability Type Coverage and
Accuracy for Different Configurations on Real-World Projects

Configuration \ Vulnerability Types  Coverage (%)

BA mode 62 54.4
TA mode 40 35.1
Hybrid mode 71 62.3

54.4%. Most notably, the Hybrid mode combines the strengths
of both approaches, identifying 71 unique vulnerability types
and reaching the highest overall coverage of 62.3%. These
results highlight the complementary nature of the TA and
BA modes. While TA excels in targeted detection within a
known set, BA contributes significantly to broader vulnerabil-
ity discovery. Together, they enable the Hybrid mode to deliver
enhanced detection capability across a more diverse range of
vulnerability types.

While the Hybrid mode provides the most extensive vul-
nerability coverage, this enhanced capability comes with a
computational trade-off. To generate a hybrid report, both the
TA and BA modes must be executed, and their costs are
cumulative. Based on the analysis in Section the average
cost per contract for the Hybrid mode is approximately $1.19,
which is the sum of the average costs for the TA mode ($0.98)
and the BA mode ($0.21).

Answer to RQS5: This ablation study demonstrates that
the TA mode is optimized for identifying a predefined
set of 40 well-established vulnerabilities, while the BA
mode is designed to generalize across a wider spec-
trum, including novel and rarely documented issues. By
combining the two, the hybrid approach harnesses their
complementary strengths, achieving broader coverage and
more robust vulnerability detection.

H. RQG6: Stability Analysis

A key design goal of LLM-SmartAudit is to mitigate the
inherent non-determinism often associated with LLM outputs.
To evaluate this, we conducted targeted re-runs. While re-
running both LLM-SmartAudit modes across the entire dataset
multiple times would be prohibitively expensive, we carried
out a focused validation to assess the stability of key findings.
Specifically, we randomly selected 40 smart contracts from the
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Real-World dataset, which contains contracts with a median
token size of 4,400 and a total of 170 reported vulnerabilities.

TABLE VII: Repeated Runs on a 40-Contract Subset

Run2 Run3 Run4 RunS5

194% 194% 194% 19.4%
547% 54.7% 54.77%  54.7%

Configuration | Initial

BA mode 19.4%
TA mode 54.7%

To assess stability, the results from our initial comprehensive
analysis of the 40 selected contracts were treated as the first
run (Run 1). In this run, 93 vulnerabilities were identified by
the TA mode and 33 by the BA mode. Both LLM-SmartAudit
(BA mode) and LLM-SmartAudit (TA mode) were then re-
executed four additional times on the same set of contracts
under identical conditions. Table presents the detection
accuracy of LLM-SmartAudit (BA and TA modes) across all
five runs (the initial run and four repetitions), demonstrating
consistent performance within this subset. Illustrative exam-
ples from the ablation study are available in our repository.

Answer to RQG6: The consistent results across re-
peated experiments demonstrate the stability of LLM-
SmartAudit, indicating that it effectively mitigates con-
cerns related to LLM non-determinism.

1. RQ7: Operational Cost Analysis and Token Ultilization

To answer RQ7, we provide a detailed analysis of the
costs associated with LLM-SmartAudit in both mode. All cost
estimations are based on the GPT-4o0 (version: gpt-40-2024-
11-20) pricing model as of December, 2024. Our framework’s
code provides utilities for precise token counting and cost
calculation. The cost in LLM-SmartAudit are the number of
tokens processed (both input and completion) by the LLM and
the number of conversational turns between the agents. We
examined how contract length and complexity impact token
usage, which directly translates to operation cost.

We analyzed the operational costs for all 5,063 unique
smart contracts used in our RQ3 evaluation. The results are
summarized in Table For the TA mode, the cost range
spans from 0.12 USD to 9.22 USD, indicating variability
driven by contract complexity. Contracts with greater length
and complexity logic incur higher token usage, resulting in
higher costs. These findings contrast with BA mode, which
demonstrates lower costs and token usage, with an average
cost of 0.21 USD (compared to 0.98 USD for TA mode). The
analysis highlights that while TA mode offers more in-depth
auditing for complex contracts, it comes at a higher cost.

To further analyze the relationship between contract size,
completion tokens, and input tokens. The results are in Figure
[8] We can find that a near-perfect linear correlation is observed
between contract size and input token (correlation coefficient
~ 1.00), indicating that the number of input tokens is almost
proportional to the size of the contract. In contrast, the
relationship between contract size and completion token is
moderate (correlation coefficient ~ 0.44/0.61), suggesting that
while larger contracts tend to generate longer completions,

the relationship is non-linear. Figure [8a] and Figure [8d| show
a dense cluster of points at lower contract sizes, indicating
diminishing returns as contracts grow. The reason is that
for very large contracts, completions are often shorter than
expected, possibly due to model limitations.

Answer to RQ7: While TA mode offers a more com-
prehensive audit with in-depth reasoning, it comes at
a higher computational and monetary expense. These
findings also suggest a strong, deterministic relationship
between contract size and input tokens, but a more
complex, less predictable relationship between contract
size and completion tokens.

V. RELATED WORK AND DISCUSSIONS

A. Related Work

Recent studies have demonstrated growing potential for
applying LLMs to software vulnerability analysis and code se-
curity [45]. The application of LLMs in programming is well-
established, yet their efficacy in domain-specific languages
(DSLs) like Solidity remains an emerging area of research.
Recent studies have begun to explore the potential of general-
purpose LLMs such as GPT and Llama in the domain of smart
contract security analysis.

David et al. [9] examined the efficacy of LLMs, like
GPT-4 and Claude, in auditing DeFi smart contract security.
Their study employed a binary classification approach, asking
the LLMs to determine whether a contract is vulnerable.
Although GPT-4 and Claude demonstrated high true posi-
tive rates, they also exhibited significant false positive rates.
The researchers highlighted the substantial evaluation cost,
approximately 2,000 USD, for analyzing 52 DeFi attacks.
They reported a recall rate of 39.73%, detecting 58 out of 146
vulnerabilities using a combination of Claude and GPT. Chen
et al. [46] performed a comparative analysis of GPT’s smart
contract vulnerability detection capabilities against established
tools. Their results revealed varying GPT effectiveness across
common vulnerability types, encompassing 8 types compared
to the 10 in our study. GPTScan analyzed 232 vulnerabilities
across 72 projects, correctly identifying 40 true positives. Sun
et al. [44] evaluated GPT’s function vulnerability matching
using a binary response format (’Yes’ or No’) for predefined
scenarios. They also highlighted potential false positives due
to GPT’s inherent limitations. While their study found no
significant improvements with GPT-4, our research and others
have demonstrated GPT-4’s enhanced detection capabilities.

In addition to advanced commercial products, open-source
alternatives have been considered for smart contract analysis.
Shou et al. [47] integrates Llama-2 model into the process of
fuzzing to detect vulnerabilities in smart contracts, aiming to
address inefficiencies in traditional fuzzing methods. However,
this approach’s efficacy depends on LLMs’ accurate and
nuanced understanding of smart contracts, and it confronts
challenges in complexity, cost, and dependence on static
analysis. Sun et al. [48] explored open-source tools such as
Mixtral and CodeLlama against GPT-4 for detecting smart
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TABLE VIII: Cost Analysis of LLM-SmartAudit Framewrok

Audit Mode ‘ Avg. Cost Median Cost  Cost Range

Avg. Token per Contract Avg. Execution Time

TA mode

BA mode $0.21 $0.16 [$0.05, $3.56]

$0.98 $0.59 [$0.12, $9.22]

26,549.03 84.86s
110,740.68 120.48s
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Fig. 8: Relationships between contract size, tokens, and correlation matrix.

contract vulnerabilities. They discovered that GPT-4, leverag-
ing its advanced Assistants’ functionalities to effectively utilize
enhanced knowledge and structured prompts, significantly out-
performed Mixtral and CodeLlama. However, the assessment
was limited to demonstrations from the Replicate website,
potentially not fully representing these LLMs’ capabilities.

B. Summary of Findings

o Enhanced Detection Through Collaborative Multi-
Agents: By employing specialized agents with role-specific
instructions, LLM-SmartAudit mirrors the dynamics of a
professional auditing team. Each agent contributes deep,
domain-focused analysis, resulting in a collective intelli-
gence that surpasses the performance of a singular, general-
purpose LLM. The synergistic interaction between agents
reduces the risk of oversight, as errors or uncertainties in
one area are compensated by the strengths of another.

o Superior Semantic Understanding and Scenario-Based
Analysis: Our experiments demonstrate that advanced
LLMs possess an exceptional ability to comprehend code
semantics, a critical factor in detecting code vulnerabilities.
In particular, LLM-SmartAudit leverages deep semantic un-
derstanding to interpret complex contract logic and contex-

tual nuances. Moreover, our framework refines the model’s
focus, leading to a marked improvement in both precision
and recall.

Modularity and Flexibility with Play-and-Plugin Archi-
tecture: LLM-SmartAudit’s design incorporates a flexible
Play-and-Plugin architecture, which enables seamless cus-
tomization and adaptability. Users can easily modify the
detection templates—adding new tasks or removing out-
dated ones—to keep pace with the evolving threat landscape.
Moreover, the framework supports a range of foundational
language models, including those from OpenAl, Claude,
Gemini, as well as local models.

Cost Effectiveness and Practical Impact: A critical ad-
vantage of LLM-SmartAudit lies in its cost-effectiveness
and scalability. Traditional auditing services are not only
expensive but also time-consuming, often costing several
hundred to thousands of dollars per contract. In contrast,
LLM-SmartAudit achieves an operational cost of approxi-
mately 1 USD per contract in TA mode. Our findings further
reveal that while the cost per contract varies depending on
its length and complexity, the overall framework lowers the
entry barrier for comprehensive smart contract audits.
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C. Threats of Validity

e Dependency on External APIs and Third-Party Providers:
Utilizing commercial LLM APIs ties the system’s perfor-
mance and availability to external providers. This depen-
dency poses risks related to service disruptions, evolving
pricing models, and potential data privacy concerns, which
may impact long-term sustainability and security.

o Static Analysis Limitations: LLM-SmartAudit primarily
leverages static analysis techniques, which inherently limit
its capability to detect dynamic or runtime vulnerabilities.
Some vulnerabilities only manifest during execution and
may require complementary dynamic analysis or hybrid
approaches to ensure comprehensive security assessments.

o Evolving Vulnerability Landscape: Our TA mode currently
covers 40 scenarios, effectively identifying numerous vul-
nerability types previously found by human experts. How-
ever, this approach may not be exhaustive. Complex vulner-
abilities, particularly those arising from emerging or previ-
ously unreported issues, remain challenging to detect. While
powerful, our method’s reliance on static analysis presents
inherent limitations in identifying dynamic vulnerabilities.

D. Ethical Considerations

Although LLM-SmartAudit is designed to support defen-
sive and security-enhancing applications, its capabilities could
theoretically be misused by malicious actors to identify ex-
ploitable vulnerabilities in smart contracts. In the wrong hands,
it could facilitate the discovery of issues that might otherwise
remain undetected, potentially resulting in financial loss or
system disruption. To mitigate these risks, we have reinforced
safeguards and outlined a set of ethical recommendations, as
detailed below:

« Data Sourcing and Responsible Disclosure: In cases
where LLM-SmartAudit uncovers previously undisclosed
vulnerabilities, we strictly follow responsible disclosure
principles. Specific, exploitable details or exact vulnerability
locations are never shared publicly. Full audit reports are
provided only with the explicit consent of contract owner.

o Restricted Access Deployment: LLM-SmartAudit is in-
tended for use by authorized security professionals,
smart contract developers, and organizations committed to
blockchain security. We advocate responsible deployment
practices that limit access to reputable individuals and
entities who adhere to ethical hacking standards and industry
best practices.

o Ethical Use Guidelines: LLM-SmartAudit is intended for
defensive security purposes. Users are expected to adhere
to professional ethical standards, employing the tool solely
for vulnerability identification and remediation. Any discov-
ered vulnerabilities must be reported following responsible
disclosure practices, allowing adequate time for remediation
prior to any public disclosure.

o Focus on Remediation: The core objective of LLM-
SmartAudit is to strengthen smart contract security through
accurate and timely vulnerability detection. Its reporting
tools are tailored to help developers quickly understand and
fix security flaws, ensuring a strong defensive posture.

VI. CONCLUSION

In this paper, we presented LLM-SmartAudit, a novel
framework for automated smart contract vulnerability detec-
tion. By employing a multi-agent conversational approach
with a dynamic buffer-of-thought mechanism, our system
enables specialized agents to collaboratively analyze contracts
and iteratively refine their assessments. Our extensive evalua-
tions on both common vulnerabilities and real-world datasets
demonstrate that LLM-SmartAudit significantly outperforms
traditional tools, effectively detecting both common and com-
plex vulnerabilities.

Future work will explore the integration of even more ad-
vanced language models, adaptive memory management, real-
time monitoring capabilities, and hybrid methods that combine
LLMs with formal verification techniques. These directions
promise to further enhance the robustness and reliability of
automated smart contract auditing, ultimately contributing to
safer decentralized applications.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program
of China under Grant No. 2023YFB2703700, the Beijing Ad-
vanced Innovation Center for Future Blockchain and Privacy
Computing under Grant No. GJJ-25-002, and the National
Natural Science Foundation of China (NSFC) under Grants
No. 62372149, U23A20303, and 62372173. Additional sup-
port is provided by the China Scholarship Council (CSC),
and the Key Laboratory of Knowledge Engineering with
Big Data (Ministry of Education of China) under Grant No.
BigKEOpen2025-04.

REFERENCES

[1] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust: 6th Inter-
national Conference, POST 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings 6, 2017, pp. 164-186.

[2] getfailsafe. (2025, Jan.) Failsafe web3 security report 2025. [Online].
Available: https://getfailsafe.com/failsafe- web3-security-report-2025/

[3] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P. Sen,
“A survey of the state of explainable ai for natural language processing,”
arXiv preprint arXiv:2010.00711, 2020.

[4] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[5]1 Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code generation
via chatgpt,” arXiv preprint arXiv:2304.07590, 2023.

[6] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[7]1 C. Qian, X. Cong, C. Yang, W. Chen, Y. Su, J. Xu, Z. Liu, and
M. Sun, “Communicative agents for software development,” arXiv
preprint arXiv:2307.07924, 2023.

[8] Q. Zhang, C. Fang, Y. Xie, Y. Zhang, Y. Yang, W. Sun, S. Yu, and
Z. Chen, “A survey on large language models for software engineering,”
arXiv preprint arXiv:2312.15223, 2023.

[9] 1. David, L. Zhou, K. Qin, D. Song, L. Cavallaro, and A. Gervais,

“Do you still need a manual smart contract audit?” arXiv preprint

arXiv:2306.12338, 2023.

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,

L. Sifre, M. Riviere, M. S. Kale, J. Love et al, “Gemma: Open

models based on gemini research and technology,” arXiv preprint

arXiv:2403.08295, 2024.

[10]

Authorized licensed use limited to: Lingnan University Library. Downloaded on August 17,2025 at 03:12:06 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://getfailsafe.com/failsafe-web3-security-report-2025/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2025.3597319

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar et al,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford, D. S. Chaplot, D. d. 1. Casas, E. B. Hanna, F. Bressand et al.,
“Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.

D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming—the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
2022, pp. 1-10.

R. Azamfirei, S. R. Kudchadkar, and J. Fackler, “Large language models
and the perils of their hallucinations,” Critical Care, vol. 27, no. 1, pp.
1-2, 2023.

S. Kang, J. Yoon, and S. Yoo, “Large language models are few-
shot testers: Exploring Ilm-based general bug reproduction,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 1IEEE, 2023, pp. 2312-2323.

Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “Diversevul: A
new vulnerable source code dataset for deep learning based vulnerability
detection,” in Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, 2023, pp. 654—668.

T. Liang, Z. He, W. Jiao, X. Wang, Y. Wang, R. Wang, Y. Yang, Z. Tu,
and S. Shi, “Encouraging divergent thinking in large language models
through multi-agent debate,” arXiv preprint arXiv:2305.19118, 2023.
Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li,
L. Jiang, X. Zhang, and C. Wang, “Autogen: Enabling next-gen llm
applications via multi-agent conversation framework,” arXiv preprint
arXiv:2308.08155, 2023.

G. Li, H. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem, “Camel:
Communicative agents for” mind” exploration of large language model
society,” Advances in Neural Information Processing Systems, vol. 36,
pp. 51991-52008, 2023.

H. Yang, S. Yue, and Y. He, “Auto-gpt for online decision making:
Benchmarks and additional opinions,” arXiv preprint arXiv:2306.02224,
2023.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254-269.

N. Szabo, “Smart contracts: building blocks for digital markets,” EX-
TROPY: The Journal of Transhumanist Thought,(16), 1996.

L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and Privacy
(S&P). 1IEEE, 2023, pp. 2444-2461.

J. A. Berg, R. Fritsch, L. Heimbach, and R. Wattenhofer, “An empirical
study of market inefficiencies in uniswap and sushiswap,” in Interna-
tional Conference on Financial Cryptography and Data Security (FC).
Springer, 2022, pp. 238-249.

P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart
contract formal specification and verification,” ACM Computing Surveys
(CSUR), vol. 54, no. 7, pp. 1-38, 2021.

H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1-43, 2020.

T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in Pro-
ceedings of the ACM/IEEE 42nd International conference on software
engineering (ICSE), 2020, pp. 530-541.

Z. Epstein, A. Hertzmann, 1. of Human Creativity, M. Akten, H. Farid,
J. Fjeld, M. R. Frank, M. Groh, L. Herman, N. Leach et al., “Art and the
science of generative ai,” Science, vol. 380, no. 6650, pp. 1110-1111,
2023.

A. Khare, S. Dutta, Z. Li, A. Solko-Breslin, R. Alur, and M. Naik,
“Understanding the effectiveness of large language models in detecting
security vulnerabilities,” arXiv preprint arXiv:2311.16169, 2023.

S. Yao, J. Zhao, D. Yu, N. Du, 1. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” arXiv
preprint arXiv:2210.03629, 2022.

L. Yang, Z. Yu, T. Zhang, S. Cao, M. Xu, W. Zhang, J. E. Gonzalez, and
B. Cui, “Buffer of thoughts: Thought-augmented reasoning with large
language models,” arXiv preprint arXiv:2406.04271, 2024.

(33]

[34]

[35]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 615-627.

Y. Liu, Y. Xue, D. Wu, Y. Sun, Y. Li, M. Shi, and Y. Liu, “Propertygpt:
Llm-driven formal verification of smart contracts through retrieval-
augmented property generation,” arXiv preprint arXiv:2405.02580,
2024.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, 2018, pp. 67-82.

S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly precise
safety verifier for ethereum smart contracts,” in 2020 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2020, pp. 1678-1694.

M. development team. (2023, Mar.) “mythril. [Online]. Available:
https://github.com/ConsenSys/mythril

C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” in 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). 1EEE, 2021,
pp. 103-119.

T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE), 2020, pp. 778-788.

J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8-15.

N. Veloso. (2021, Mar.) conkas. [Online]. Available: https://github.com/
nveloso/conkas

Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural networks,” in Proceedings
of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2021, pp. 3283-3290.

N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, “Eth2vec: learn-
ing contract-wide code representations for vulnerability detection on
ethereum smart contracts,” in Proceedings of the 3rd ACM international
symposium on blockchain and secure critical infrastructure, 2021, pp.
47-59.

Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts by
combining gpt with program analysis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (ICSE), 2024,
pp. 1-13.

P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen, H. Weng, S. Ji,
and W. Wang, “Exploring {ChatGPT’s} capabilities on vulnerability
management,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 811-828.

C. Chen, J. Su, J. Chen, Y. Wang, T. Bi, Y. Wang, X. Lin, T. Chen, and
Z. Zheng, “When chatgpt meets smart contract vulnerability detection:
How far are we?” arXiv preprint arXiv:2309.05520, 2023.

C. Shou, J. Liu, D. Lu, and K. Sen, “Llm4fuzz: Guided fuzzing of smart
contracts with large language models,” arXiv preprint arXiv:2401.11108,
2024.

Y. Sun, D. Wu, Y. Xue, H. Liu, W. Ma, L. Zhang, M. Shi, and Y. Liu,
“Llm4vuln: A unified evaluation framework for decoupling and enhanc-
ing llms’ vulnerability reasoning,” arXiv preprint arXiv:2401.16185,
2024.

Authorized licensed use limited to: Lingnan University Library. Downloaded on August 17,2025 at 03:12:06 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://github.com/ConsenSys/mythril
https://github.com/nveloso/conkas
https://github.com/nveloso/conkas

	Introduction
	Backgrounds
	Smart Contract Security
	Automated Security Analysis
	LLMs for Vulnerability Prediction

	LLM-SmartAudit System
	Framework
	Role Specialization
	Action Execution Pipeline

	Audit Execution Modes and Prompting Strategies
	Operational Modes
	Advanced Prompting Strategies for Operational Modes

	Collaborative Decision-Making
	Mechanisms of Collaboration
	Role Exchanges


	Evaluation
	Research Questions
	Experimental Settings
	Benchmarking Dataset
	Evaluation Criteria
	Implementation Details

	RQ1: Comparative Evaluation with Other Vulnerability Detection Methods
	RQ2: Performance of LLM-SmartAudit Across Different Strategies and Configurations
	RQ3: Performance Comparison on Real-World Set
	RQ4: Performance Comparison with Other LLM-based Auditing Methods
	RQ5: Ablation Study of TA and BA modes
	RQ6: Stability Analysis
	RQ7: Operational Cost Analysis and Token Utilization

	Related Work and Discussions
	Related Work
	Summary of Findings
	Threats of Validity
	Ethical Considerations

	Conclusion
	References

