
Learning from the Past: Real-World Exploit
Migration for Smart Contract PoC Generation

Kairan Sun∗, Zhengzi Xu†§, Kaixuan Li∗, Lyuye Zhang∗, Yebo Feng∗, Daoyuan Wu‡, and Yang Liu∗
∗ Nanyang Technological University, Singapore

† Imperial College London, Imperial Global Singapore, Singapore
‡ Lingnan University, Hong Kong SAR, China

Abstract—Smart contract vulnerabilities continue to cause
significant financial losses, despite the implementation of security
measures such as manual audits and bug bounty platforms. A
critical component often required by these security measures is
the proof-of-concept (PoC) exploit, which validates vulnerability
exploitability, assesses impact severity, and guides developers in
fixes. Existing tools have explored automated PoC generation
with techniques like symbolic execution, fuzzing, and program
synthesis. However, these approaches frequently fail to generate
PoCs for vulnerabilities exploited in real-world incidents, pri-
marily due to their limitations in handling complex transaction
dependencies, navigating vast on-chain state spaces, or requiring
extensive manual specifications. Our migration-based approach
extracts critical information from documented security incidents
and applies it to generate PoCs for similar vulnerable code.
This approach leverages proven exploit patterns rather than
generating PoCs from scratch. This approach is motivated by two
key observations: the prevalence of code reuse in smart contracts
(up to 90% at the function level) and the increasing availability
of documented PoCs for real-world incidents. Our approach
operates in three phases: (1) abstracting essential components
(i.e., environment properties, attack logic, and verification checks)
from existing PoCs into templates, (2) given a new target contract,
selecting suitable templates with adapted values through clone-
detection and property-feasibility analysis, and (3) generating
and validating PoCs in simulated environments. Our evaluation
demonstrates effectiveness and efficiency across multiple scales.
Our approach successfully generates valid PoCs for 62 out of 67
manually validated cases without false positives and completes
analysis in 3.8 hours compared to 133.2 and 210.5 hours required
by existing tools. Large-scale evaluation on 979,512 contracts
identifies 256 vulnerable contracts across blockchain networks
with 64 cross-chain cases, demonstrating real-world applicability.

Index Terms—Smart Contract Security, Proof-of-Concept Ex-
ploits, Real-World Incidents

I. INTRODUCTION

Blockchain provides fundamental infrastructure for cryp-
tocurrencies like Bitcoin, managing over $3.9 trillion in
assets [19]. Smart contracts are programs that execute on
blockchain platforms and serve as the actual applications users
interact with. Successful exploitation of contract vulnerabili-
ties (e.g., unauthorized token transfer, reentrancy, and price
manipulation) can result in immediate, irreversible financial
losses, with more than $2.2 billion in 2024 alone [32]. Al-
though traditional security measures like code audits provide
a foundational layer of protection, they can be slow and
resource-intensive. Security platforms such as Code4rena [2]

§Zhengzi Xu is the corresponding author (z.xu@imperial.ac.uk).

and Immunefi [7] encourage broader community participation
in detecting vulnerabilities by offering monetary rewards for
bug reports. However, regardless of whether vulnerabilities
are identified during formal audits or reported through these
open platforms, a proof-of-concept (PoC) exploit remains an
essential requirement [1], [8]. PoCs play important roles not
only in confirming the exploitability of vulnerabilities but also
in assessing their severity and potential impact. This also aids
developers in prioritizing fixes, thereby improving security
practices and contributing to the broader understanding of
vulnerability exploitation patterns within the community.

Despite the critical role of PoCs, creating them remains
largely a manual process that demands considerable domain
expertise and suffers from poor scalability. To reduce the man-
ual effort required, researchers and practitioners have explored
automated approaches, primarily through static analysis and
symbolic execution [29], [4], [31], fuzzing techniques [38],
[41], [33], and program synthesis [42], [48]. However, these
automated approaches have shown limited success in gen-
erating PoCs for vulnerabilities exploited in real-world in-
cidents [43], [46]. Static analysis and symbolic execution-
based approaches often struggle with complex inter-contract
dependencies and state transitions. Fuzzing approaches often
face challenges in achieving adequate coverage of complex
state spaces while incurring significant computational over-
head. Program synthesis approaches, while promising for
specific vulnerability types, require substantial manual effort in
specifying attack goals and initial states, limiting their practical
applicability. These limitations are particularly evident when
dealing with vulnerabilities exploited in real-world incidents,
as they often involve complex interactions and state conditions
that are difficult to be discovered from scratch.

Given these limitations, migration-based solutions have
emerged as a promising alternative in other automated soft-
ware engineering domains. SEIGE [24] and VESTA [17]
investigate migration-based test generation for Java libraries,
while MAM [47] explores API mapping between Java and C#.
Inspired by existing works, our work explores migration-based
PoC generation which is motivated by two insights: ① Preva-
lence of code reuse in smart contracts. Recent studies [13],
[40] reveal that smart contracts exhibit significant code reuse
(up to 90% at the function level) through direct copying and
protocol forking. This prevalent code reuse without sufficient
security checks makes it possible for vulnerable functions to

propagate across multiple contracts and blockchain networks.
Given that Ethereum alone manages over 79 million verified
contracts (contracts with original source code and compiler
settings available) [20], such vulnerability propagation could
create a substantial attack surface. ② Growing availability of
publicly documented PoCs for real-world incidents. Increasing
transparency in the security community has led to a growing
repository of PoCs, each targeting a successfully exploited
contract in real-world incidents. These PoCs are valuable
as they provide concrete evidence of successful exploitation
patterns, yet their potential for systematic PoC generation
remains largely unexplored by existing approaches.

Our work aims to address two critical security scenarios en-
abled by these insights. First, proactive contract auditing takes
contract source code as input and outputs executable PoCs
when vulnerabilities similar to previously exploited ones are
identified, enabling security analysts to confirm exploitability
before deployment. Second, post-exploit scanning takes known
exploit PoCs and its target vulnerable function as input and
outputs lists of similar vulnerable contracts with generated
PoCs, enabling proactive vulnerability propagation analysis
when major exploits occur throughout the ecosystem.

However, realizing these security scenarios requires over-
coming the following challenges in automation. First, smart
contract exploits for real-world incidents often require cross-
contract interactions and specific blockchain state conditions
to achieve successful exploitation. However, these exploits
lack standardized format and contain hardcoded values that
encode implicit exploit requirements, making it challenging to
identify essential components and adapt them across different
contract contexts. Second, even with effective abstraction and
adaptation methods, practical deployment faces scalability
challenges. When major exploits occur, attackers can hunt
similar vulnerabilities across blockchain networks. Given the
scale of verified contracts [20], post-exploit scanning requires
rapidly processing millions of contracts before attackers ex-
ploit them, ensuring both effectiveness and efficiency at scale.

To address these challenges, we propose POCSHIFT, an
automated migration-based PoC generation framework. 1)
PoC Abstraction: To address the first challenge, we identify
three key components essential for migration-based generation
(environment properties, attack logic, and validation checks).
These components are derived from comprehensive analysis
of existing PoCs, cross-referencing with recent studies on PoC
generation [44], [38], [29]. We explore how to automatically
identify these components and adapt them to new contexts by
reverse engineering the PoC creation workflow in a systematic
approach. 2) Candidate Matching: To address the second
challenge, we employ a two-stage filtering approach. We first
perform hash-based filtering to quickly reduce the candidate
pool, then conduct detailed feasibility analysis with only on
filtered matches. This ensures computational efficiency by
avoiding expensive ABI retrieval and analysis on the entire
contract repository. 3) Migration Test: Finally, with the se-
lected template and adapted values, PoC will be generated and
tested in an isolated simulation environment with validation

checks to validate the execution result.
Our evaluation demonstrates both the effectiveness and

practical impact of our approach. While existing tools like
ItyFuzz [38] and Mythril [4] achieve limited success with sig-
nificant false positives, our migration-based approach achieves
a 92% success rate with zero false positives. Furthermore, our
tool completes PoC generation over 35 times faster than ex-
isting approaches. Large-scale evaluation on 979,512 contracts
demonstrates real-world applicability, successfully generating
and validating PoCs for 256 vulnerable contracts across multi-
ple blockchain networks, including 64 cross-chain migrations.
This improvement makes security assessment at scale possible
with high precision, demonstrating the capability of our tool
to generate PoCs for recurring vulnerabilities across diverse
blockchain environments and protocols.

In summary, the main contributions of this work are:
• We propose POCSHIFT, a novel approach that automates

PoC generation for smart contracts by migrating existing
PoCs to contracts containing similar vulnerable functions.

• We evaluate POCSHIFT on 5,713 verified smart contracts
and demonstrate its superior effectiveness and efficiency
compared to state-of-the-art tools.

• We conduct large-scale experiments with POCSHIFT,
which reveals 256 vulnerable contracts, including 64
cross-chain cases.

II. BACKGROUND AND MOTIVATION

A. Smart Contracts and States

Smart contracts are self-executing programs on blockchain
platforms that automatically enforce encoded agreements. This
work focuses on Solidity smart contracts on EVM-compatible
chains, chosen for their widespread adoption and significant
impact. A crucial aspect of smart contracts is that all their
states are stored on-chain. These states are critical in determin-
ing contract behavior. Proper management of on-chain states
is essential for contract security and functionality.

B. Proof of Concepts (PoCs) and Exploits

In this work, PoCs refer to executable smart contracts that
demonstrate vulnerability exploitation process. While exploits
typically aim to maximize profit, PoCs validate exploitability
by demonstrating potential for profit or denial-of-service ca-
pabilities in real-world scenarios without pursuing maximum
returns. We prioritize determining exploitability over financial
impact assessment because confirming vulnerability existence
and exploitability is the essential first step in security evalua-
tion, regardless of potential profit magnitude.

C. Motivating Example

We analysis for two real-world incidents: Oynx Protocol [9]
(May 2023), which suffered a loss of $2.1M in Ethereum; and
Midas Capital [16] (June 2023), which was exploited on the
BNB Smart Chain with a loss of $600K.

Both incidents exploited a vulnerability in the redeemFresh
function, inherited from Compound V2 protocol [3]. Specifi-
cally, attackers could manipulate the exchange rate calculation

2

TABLE I: Summary of covered vulnerability categories in
collected PoCs.

Vulnerability Category Vulnerability Description

Price Manipulation (PM) Enables attackers to alter asset prices within
contracts, exploiting external dependencies.

Access Control (AC) Enforces user access policies, often leading to
unauthorized resource access or use.

Logic Flaw (LF) Business logic errors that can result in
incorrect states or token handling.

Reentrancy (RE) Occurs when a contract is recursively called
before its initial execution is complete.

Arithmetic (AR) Includes numerical errors like overflow or
underflow within contract operations.

Block Manipulation (BM) Exploits blockchain elements such as
timestamps to manipulate contract behavior.

Denial of Service (DoS) Leads to service disruption when a contract is
overloaded or misconfigured.

Other Vulnerabilities (OT) Encompasses a range of uncommon or unique
contract vulnerabilities.

(Equation (1)) by first depositing a minimal amount of tokens
into an empty market, followed by significant donations of
the same token to artificially inflate its market value. This
manipulation altered the exchange rate and, compounded by
rounding errors under low totalSupply, allowed the attackers
to redeem more assets than their actual deposits.

exchangeRate =
totalCash + totalBorrows − totalReserves

totalSupply
(1)

This recurring exploitation highlights a critical challenge in
smart contract security: vulnerabilities can propagate across
different protocols and blockchain networks through code
reuse, leading to repeated exploitation and severe financial
impact. While security audits are typically performed pre-
deployment, many vulnerabilities exploited in real-world in-
cidents emerge from complex runtime interactions between
multiple on-chain contracts and state manipulations. These
scenarios often exceed the capability of existing security tools.
Moreover, the reuse of vulnerable code alone does not guar-
antee exploitability. Determining whether a vulnerability can
be exploited requires extensive manual analysis of contract-
specific implementations and runtime conditions.

Our work addresses these challenges by systematically
extracting critical information from existing PoCs and adapting
into new contexts. This approach eliminates repetitive manual
analysis while accurately determining real-world exploitability
of recurring vulnerabilities across blockchain ecosystems.

III. POC COLLECTION

To ensure the dataset suitable for migration-based PoC
methodology, we conduct several filtering steps. We first assess
each PoC for executable integrity, which leads to narrowing
our dataset down to 320 PoCs. A PoC passes if it executes
successfully and demonstrates the intended exploitation. The
83 filtered cases (403-320) fail due to compilation errors or
invalid exploit outcomes (e.g., no attacker balance increase
after price manipulation). We further refine this list based

interface ITARGET {
function redeem(address, uint256) external;

}
…

contract FakeToken {
function underlying() external pure returns (address) {

return <OHMAddr>;;
}
……

}

contract AttackContract is Test {
address OHM = <OHMAddr>;
address TARGET = <TARGETAddr>;

function setUp() public {
vm.createSelectFork("mainnet", 15_794_363); }

function testExploit() public {
emit log_named_decimal_uint(“Balance before attack",

IERC20(OHM).balanceOf(address(this)), 9);
address fakeToken = address(new FakeToken());
uint256 ohmBalance = IERC20(OHM).balanceOf(TARGET);
ITARGET(TARGET).redeem(fakeToken, ohmBalance);
emit log_named_decimal_uint(“Balance after attack",

IERC20(OHM).balanceOf(address(this)), 9);
}

}

Interfaces

Helper Contracts

Test Contracts

Required for
making
function calls

test prefix can be
recognized by the
Foundry, serving
as the entry point
of testing

setUp: triggered
before testing
automatically

Blockchain
environment fork

Result verification

Exploitation logic

Exploitation logic

Fig. 1: A decomposition example of Olympus DAO PoC [5].

on the availability of vulnerable addresses and codes as
well as the language of the contracts, prioritizing PoCs with
comprehensive details and those written in Solidity due to
our existing tooling preferences, resulting in 243 PoCs left.
We then manually exclude PoCs that either lack complete
exploit logic or are highly specific to their target construction.
Two security experts independently complete this assessment
within one day, as these patterns are easily distinguishable
through code inspection. PoCs lacking exploit logic directly
call attacker contracts without reconstructing the vulnerability
exploitation logic (e.g., attackerContract.exploit()), making it
impossible to extract exploit logic for migration analysis.
Highly specific PoCs often contain hardcoded values such as
long hash strings (e.g., signature replay with r, v, s parameters)
that resist generalization across contracts. This results in a
refined set of 201 PoCs for real-world attacks that happened
between 2018 and July 2024, forming the basis for our
subsequent analyses and experiments.

a) Vulnerability Type distribution: We categorize these
attacks into 31 vulnerability types across 8 categories by ex-
tending existing taxonomies [30], [49]. The statistic summary
is presented in Table I. Notably, access control, price ma-
nipulation, and logic flaw emerge as predominant categories.
While existing tools perform poorly in price manipulation and
logic flaw vulnerabilities, our PoC migration approach aims to
help with the confirmation of these vulnerabilities, preventing
recurring attacks across diverse smart contract environments.

b) Blockchain Network Distribution: The attacks span
7 EVM-compatible networks, with Binance Smart Chain (98
attacks) and Ethereum (77 attacks) accounting for the major-
ity, while Polygon, Avalanche, Fantom, Optimism, and Base
collectively represent 26 cases. This distribution reflects the
market dominance of certain chains and highlights the need
for cross-chain vulnerability detection approaches.

c) PoC Example: In Fig. 1, we present the PoC of
Olympus DAO incident [5] as an example to illustrate key

3

components of PoCs (for clarity of presentation, we have sim-
plified the example by specific addresses and some functions):

• Interfaces: Interfaces are required for enabling function
calls to external contracts in Solidity due to its strong
typing and need for explicit function signatures.

• Helper Contracts: Helper contracts are used to mimic
legitimate behaviors or temporarily hold tokens, allowing
attackers to manipulate the token flows. For instance,
in the example, the FakeToken tricks the TARGET into
transferring its OHM balance by mimicking an expired
bond (insufficient validation of token metadata).

• Test Contracts: This component inherits from the Foundry
framework [6], with built-in functions for easier simula-
tions of EVM running environment. Only function with
test prefix under Test Contracts will be served as the entry
point of the simulation. Moreover, some PoCs include
additional helper functions that are passively triggered
but critical to the exploitation success.

IV. APPROACH

A. Overview

As illustrated in Fig. 2, we propose an automated framework
for migration-based PoC generation. The framework operates
in two primary modes: source code audit assistance, where it
scans new contract code to identify vulnerabilities similar to
past exploited cases and generates executable PoCs, and post-
exploit scanning, where it verifies exploitability of contracts
with similar vulnerabilities across blockchain networks follow-
ing major attacks. Both scenarios utilize the same automated
pipeline: in the first phase, we analyze existing PoCs to
extract key components (i.e., environment properties, attacker
contracts, validation checks), generating migration templates
and function signatures to prepare our PoC database. Next,
given a target address, we extract its source code and state
variables (via Application Binary Interface) to search for
suitable PoC templates from our database. Finally, the adapted
PoC will be generated by passing the final similarity check.
We then run the adapted PoCs and validate them in isolated
environments with pre-defined validation checks.

B. PoC Abstraction

Smart contract PoCs for real-world incidents often rely
on cross-contract interactions and specific blockchain state
conditions. To enable automated migration, we extract three
essential components: 1) Environment properties to capture
the complete state requirements for successful exploitation.
While previous approaches focus on sender roles and gas
limits, our analysis identifies broader requirements including
state variable values and contract address relationships nec-
essary for establishing exploitation preconditions. 2) Exploit
logic to capture both actively invoked and passively triggered
functions critical to exploitation. Unlike previous approaches
using simple EOA function calls, we capture both direct
attacker calls and triggered functions (including fallbacks)
that reflect complex real-world attack patterns. 3) Validation
checks to decide if an exploitation is successful, ensuring

Suitable PoC
Template

Property-Based
Feasibility Analysis

Environment
Property Mining

PoC for Real-
World Incidents

Phase 1:
PoC Abstraction

Phase 2:
Contract Matching

Phase 3:
Migration Test

Invocation
Flow

Structured
Information

Run

Validation Check
Generation

Exploit Logic
Extraction

Components
Critical to the

Success of Exploit
Vulnerable
Function

Target
Contract

Environment
Properties

Parsed
Contracts

Clone Detection

Adapted
Properties

PoC
Simulation

Successful
Migrations

Generated
PoC

/
/

1. Execution succeeds?
2. Validation passes?

Fig. 2: Overview of our approach.

the practical effectiveness of migrated exploits. These compo-
nents are derived from a comprehensive analysis of existing
PoCs, cross-referencing with recent studies related to PoC
generation [44], [38], [29]. This prioritizes soundness over
completeness, ensuring every generated PoC corresponds to
an exploitable vulnerability while potentially missing novel
attack patterns outside our knowledge base.

Extracting key components from existing PoCs presents
challenges due to the absence of standardized development
practices and the implicit nature of exploitation requirements.
Exploit logic can be structured in various ways: directly
embedded in test functions, wrapped in helper functions, or
distributed across multiple contracts, making systematic iden-
tification difficult. PoCs contain hardcoded addresses, token
amounts, and contract parameters with limited documenta-
tion on their derivation and roles. Environment properties
are rarely documented explicitly, as original PoCs typically
restore required states by forking blockchain at specific block
numbers. Existing PoCs also lack formal validation checks,
instead relying on console log statements for test validation.
To address these challenges, we leverage invocation traces as
standardized execution representations that capture function
call hierarchies, event emissions, and contract interactions,
providing uniform structure across various PoC formats. The
extraction process analyzes these traces to identify exploit
sequences, trace involved addresses and events to recon-
struct environment properties including contract relationships
and state variables, and extract validation criteria from state
changes between execution start and end points.

1) Exploit Logic Extraction: The first step of PoC abstrac-
tion focuses on extracting exploit logic. Our extraction process
combines PoC parsing and invocation trace analysis.

We first parse the PoC into a structured representation with
ANTLR4 [14], based on the exiting Solidity grammar [39]
with minor modifications to support compiler-version com-
patibility and precise parsing (available on our webpage [12]).
This representation maps interfaces, contracts, and their func-
tions, along with variable-address bindings and function call
dependencies. Each component maintains its source location
information to facilitate precise tracking and reconstruction.
However, PoCs present highly diverse structures: exploit logic

4

may appear inline in tests, encapsulated in helper functions,
or distributed across contracts. This variability obscures the
actual order of the exploit logic sequence.

To resolve this, we recover the order from invocation
traces using Algorithm 1. The algorithm takes two inputs:
AddrFunc (address–function pairs parsed from PoC source
code with ANTLR4) and InvoTrace (the execution trace
by running PoC where invocation order preserved). We first
locate the parsed address–function pairs within the trace to
recover their relative execution order (L1-4). Then, we traverse
the annotated trace and classify functions by caller–callee
relationships (L6-14): calls directly initiated by the attacker
are marked as active exploit steps E, while those triggered by
non-attacker addresses are treated as helper functions H that
enable but do not constitute the attack (e.g., setup or approval).

Furthermore, to enhance migration success probability, we
optimize the extracted exploit logic by detecting repeated func-
tion call sequences with different contract addresses but iden-
tical logic. For instance, an attack sequence {swap(poolA),
drain(poolA), swap(poolB), drain(poolB)} contains redundant
exploitation of independent pools. Such repetitions are typi-
cally for profit maximization, we keep the first instance and
remove duplicates (reduce to {swap(poolA), drain(poolA)}).
By removing address-related repetitions that merely enhance
profitability, we reduce migration complexity by reducing the
number of attack steps and addresses involved without com-
promising the fundamental attack logic. This simplification
is justified as our goal is to validate the exploitability of a
vulnerability rather than maximize profit.

2) Environment Property Mining: After deriving the exploit
logic, POCSHIFT proceeds to mine the necessary environment
properties. Unlike existing approaches that focus primarily on
address roles and gas limits, our method leverages the rich
context provided by the PoC and its invocation trace to identify
additional properties such as address relationships and required
state values. Although these properties are mostly implicit, we
demonstrate how they can be systematically mined.

a) Address Relationship: To address the challenge of
implicit address relationships, we first conducted address re-
lationship mining using existing PoCs. This initial step is
done by manually identifying each hardcoded address within
the PoCs. These addresses are then labeled and clustered
based on how they could be retrieved, given only the address
containing the vulnerable code. This systematic approach helps
us evaluate their interconnectedness and summarize their roles
within the exploit frameworks as follows:

• Common Addresses: Widely used tokens (e.g., WETH,
WBNB) and protocol addresses (e.g., Uniswap V2
Router). In PoCs, these addresses often serve as liquidity
sources or interaction points for common DeFi opera-
tions, facilitating the setup of exploit conditions.

• Derived Addresses: Addresses retrievable from the read
functions of the exploited address, representing contract-
specific relationships. They frequently represent key con-
tracts or tokens specific to the vulnerable protocol, crucial
in manipulating the contract states.

Algorithm 1: Exploit Logic Extraction
Input: Address-function pairs AddrFunc,

Invocation trace InvoTrace
Output: Exploit logic E, Helper functions H

1 foreach node n in InvoTrace do
2 n.layer← CalculateNestingDepth(n)
3 n.caller← GetCallerAddress(n,AddrFunc)
4 end
5 E ← ∅, H ← ∅
6 foreach node n in InvoTrace do
7 if n.layer = max({m.layer | m ∈ InvoTrace})

then
8 if n.caller = AttackerAddress then
9 E ← E ∪ {n}

10 else if n.caller ∈ ExternalAddresses then
11 H ← H ∪ {n}
12 end
13 end
14 end
15 return (E,H)

Exploited Address For Each Address
(To Be Checked)

Common
Address?

Derived
Address?

Pair
Address?

(COMMON, index)

(DERIVED, var_name)

(PAIR, (token1, token2))

Yes

Yes

Yes

No

No

No

(Address Relationship Graph Analysis)

(Chain,
Block Number)

{ “ADDR1": “VAR_NAME1",
“ADDR2": “VAR_NAME2",
“ADDR3": “VAR_NAME3",
……}

State Variables

Pair Addresses
{ “ADDR1":

[Token11, Token12],
“ADDR2":

[Token21, Token22],
……}

Fig. 3: Address relationship inference.

• Pair Addresses: Typically Uniswap V2 pairs are formed
across the first two types of addresses and the exploited
address. In PoCs, these addresses are commonly used for
price manipulation or flash loan attacks, playing a pivotal
role in creating the necessary conditions for exploitation.

With the mined possible relationships, we are able to auto-
mate the address relationship inference process. As illustrated
in Fig. 3, our inference process prioritizes the recovery of
relationships with common addresses due to its efficiency
and flexibility in real migration scenarios. We utilize a pre-
compiled list of common protocol addresses, derived from
our preliminary analysis. This comprehensive list was initially
compiled from 1,178 unique chain-address pairs identified in
our collected PoCs and further expanded using data from the
Immunefi GitHub Repository [25]. In the end, we managed
to compile a list of 45 commonly used addresses across
7 EVM-compatible chains. We encapsulated these addresses
into a sub-module that can be automatically retrieved based

5

Transfer Events
(14, 827) (address from, address to, address token, uint256 amount)

(address from, address to, uint256 value)

(address from, address to, uint256 tokenId)

 Variation 1 (14,584):

 Variation 2
(220):

 Variation 3 (23):

Within
Exploit Logic

?
stdstore.target(token).sig(IERC20(token).balanceOf
.selector).with_key(from).checked_write(value);

stdstore.target(token).sig(IERC20(token).balanceOf
.selector).with_key(to).checked_write(value);

token.transfer(…)

└

token.transfer(…)

└

Fig. 4: Property mapping of Transfer event.

on the runtime chain-id. Within this submodule, addresses
are carefully categorized and sorted according to their roles
and usage frequencies for each network, ensuring efficient
migration across various blockchain environments.

For addresses whose relationships to the exploited address
remain unresolved after identifying common address, we pro-
ceed to examine the addresses against the state variables of the
exploited address, accessible via its read functions. For any
remaining unresolved addresses, we chcek potential pair rela-
tionships among all identified addresses to establish the nec-
essary address mappings. If implicit address relationships still
exist, we retrieve state variables from all recovered addresses,
constructs a relationship graph based on these variables and
known interactions. We then identify the shortest path from the
exploited contract to unresolved addresses. This resolves cases
where addresses connect to the exploited address indirectly
through intermediate addresses. For example, if Address A
lacks direct relation to the exploited address but Address B
connects to both, we establish the path: Exploited Address →
Address B → Address A, enabling address resolution.

b) State Variables: To mine implicitly required state
variables and their values from the extracted exploit logic, we
leverage the emitted events during exploitation. This strategy
emerges from our observation that while PoC invocation
flow traces typically contain over 20,000 function calls, they
generate only a small, standardized set of event logs (208
distinct events across our PoC collection).

For instance, the Transfer event appears 14,827 times across
our PoC corpus with only 3 variations as illustrated in Figure 4.
Pattern 1 represents the standard ERC20 token event log,
pattern 2 corresponds to ERC721 tokens, while pattern 3 is
from a BSC token, occurring only 23 times in our dataset.
Despite variations, these Transfer events can be translated into
the same set of environment properties:

balance(from) ≥ amount

and
approval(from, to) ≥ amount

These two properties ensure that the from address has sufficient
tokens and has granted enough approval for the to address to

successfully execute the transaction. However, they are not
explicitly retrievable from the PoC code.

To leverage this insight, we first summarized an event-
property mapping table, enabling the translation of standard-
ized events into required properties. This was achieved by
initially gathering event logs from the invocation traces of
PoCs, from which we compiled a list of 208 events along with
their frequencies. Subsequently, two smart contract security
experts, each with at least two years of experience, analyzed
each event and independently drafted the required properties.
Any disagreements were resolved through discussions until
a consensus was reached. This collaborative and systematic
approach ensured a comprehensive and accurate mapping of
events to their corresponding properties.

Moreover, to address the potential variability in event
naming conventions across diverse smart contracts, we im-
plemented a keyword-matching algorithm incorporating name
stemming and lemmatization techniques. This enables us to
group semantically similar events like burn and burned under
the same condition settings, enhancing the robustness of our
precondition reconstruction process across a wide range of
smart contract implementations. We also discovered that the
ordering of event mappings is crucial for accurately interpret-
ing complex events. For example, an event named transferDe-
posit was identified during our examination, which contains
two keywords (i.e., transfer and deposit). To deal with the
ambiguities in multi-keyword events, we employed a ranking
system for the matching process. With the ranking system, the
event will be assigned to the higher-ranked transfer condition
set rather than deposit based on the empirical analysis of their
contextual relevance in exploit scenarios. The full list of event-
condition mappings can be found in our webpage [12].

Apart from these implicit state properties, there are also
explicit properties. Explicit properties are directly observable
in PoC source code including token allowances, initial balance
requirements, and direct state modifications. These properties
are set through standardized testing patterns. For instance,
vm.deal() is used for setting balances while vm.prank() and
approve() calls are used together for setting token allowances.
Since these leverage Foundry cheatcode [11], they can be
automatically identified through pattern-based matching.

3) Validation Check Generation: Validation checks play
important roles in minimizing false positives, which is a
significant concern in smart contract vulnerabilities where
successful execution of exploit logic does not necessarily
equate to successful exploitation. For instance, given an exploit
related to price manipulation, where the goal is to alter
market conditions to the attacker’s benefit, precise validation
is required to ensure that the intended economic impact has
occurred. Since over 95% PoCs log console values relevant
to test validation after the exploit logic, we can effectively
generate the required validation checks. For the remaining 5%
of PoCs without console logs, validation is currently added
manually by analyzing state changes and transaction outcomes.
We have classified these validation checks into three distinct
types as follows.

6

• Profitability Oracle: This oracle verifies whether the
attacker successfully gains profit by the end of the exploit
execution, comparing final balances against initial states;
over 80% of generated oracles are this type. Specifically,
assert(token.balanceOf(attacker) > initBalance).

• State Change Oracle: This oracle verifies exploitation
by detecting critical state changes before and after the
exploit. For example, to validate ownership transfer, it
uses assert(contract.owner()! = originalOwner).

• DoS Oracle: To confirm the impact of denial-of-service
vulnerabilities, this oracle verifies if a function call fails
to execute post-exploit. Validation detects failures by
catching function revert, out-of-gas errors, and timeouts.

C. Candidate Matching

To select appropriate PoC templates for a given target con-
tract, our approach first uses clone-based detection to identify
functions similar to known vulnerable functions exploited in
real-world incidents. For identified functions, we then perform
property-based feasibility analysis to determine whether an ex-
ploit path exists in the target contract. This two-stage filtering
approach enables rapid candidate matching across large-scale
contract repositories, with expensive property-based analysis
performed only on hash-filtered candidates to reduce compu-
tational overhead, improving both efficiency and precision.

1) Clone Detection: We adopt Type-2 hash-based matching
to achieve the scalability. This approach captures more vulner-
able patterns than exact matching while maintaining efficiency
compared to costly Type-3/4 approaches [37], [36]. Our imple-
mentation uses ANTLR4 parser to extract and normalize key
contract components and the TLSH algorithm [10] to calculate
hash values. Hash collisions are rare (∼ 2.3× 10−7) and can
be filtered out during subsequent feasibility analysis. While
we build upon established clone detection techniques, our
contribution lies in how we integrate this similarity detection
with contextual feasibility analysis (Section IV-C2) to enable
effective PoC migration.

2) Property-Based Feasibility Analysis: For feasibility
analysis, our framework extracts state variables and functions
from the target contract via its ABI which provides a standard-
ized interface specification to identify public state variables
(exposed as static calls) and functions, including their input
and output parameter types.

Our analysis proceeds in two steps. First, we match func-
tions and variables between the source PoC and target con-
tract based on two criteria: input/output type compatibility
(allowing for equivalent types like uint and uint256) and name
similarity measured by cosine similarity. Only candidates
satisfying both criteria are considered valid matches, ensuring
semantic equivalence while maintaining efficiency across large
contract codebases. Second, we validate the execution path
between the identified vulnerable function and its entry point
function (the public function that precedes the vulnerable call
in the original PoC). By verifying the existence of a valid
call path in the statical function graph of the target contract,
we ensure the vulnerability can be triggered through an

accessible sequence of function calls. Only templates passing
this feasibility analysis proceed to migration testing.

This analysis is to filter out clearly incompatible cases. It
uses intentionally relaxed criteria to avoid excluding potential
vulnerabilities, balancing efficiency with effectiveness.

D. Migration Test

Given the selected template and adapted values, the final
phase of our approach is to test the PoC. All PoCs are
generated and tested in an isolated blockchain environment
to simulate on-chain conditions without real-world impact.

The testing process begins with environment setup based
on the adapted properties from the PoC abstraction phase
(Section IV-B), reconstructing the required state conditions
(e.g., state variable initialization and permission configura-
tion). We then execute the adapted exploit sequence by
mapping template addresses to target addresses and adjusting
function parameters based on the state of the target contract.
To validate exploitation success, we employ the generated
validation checks from the original PoC, which verify whether
the exploit achieved its intended impact. This ensures that
only successfully migrated and validated PoCs are reported
as confirmed vulnerabilities in the target contract.

V. EVALUATION

A. Research Questions

To evaluate the performance of our tool in PoC generation,
we answer the following questions.
RQ1: How effective and efficient is POCSHIFT in generating

functional PoCs for contracts similar vulnerable func-
tions? What is the performance of other selected tools?

RQ2: How does each component contributes to POCSHIFT?
RQ3: Can POCSHIFT adapt existing PoCs to generate PoCs

for similar vulnerabilities in real-world scenarios?
RQ4: To what extent does POCSHIFT demonstrate practical

effectiveness on large-scale smart contracts?

B. Tool Selection

To the best of our knowledge, our work is the first attempt at
migration-based PoC generation for smart contracts. To better
evaluate the effectiveness of our approach, we select state-of-
the-art tools for each PoC generation technique as follows:

• ItyFuzz [38]: A snapshot-based fuzzer with waypoint
mechanisms to prioritize the exploration of interesting
snapshot states and reduce re-execution overhead.

• FORAY [42]: An attack synthesis framework for deep
logical vulnerabilities with a domain-specific language to
analyze token flow graphs and generate attack sketches.

• Mythril [4]: A security analysis tool that uses symbolic
execution to exploit vulnerabilities in bytecode.

While these tools represent various approaches to PoC
generation, we exclude FORAY from our comparison due to
its substantial manual requirements for writing attack goal
specifications and function mappings [42]. These requirements
make it impractical for automated analysis at scale.

7

C. Evaluation Dataset

To better assess POCSHIFT, we evaluate it on a dataset of
5,713 unique verified smart contracts deployed across seven
EVM-compatible blockchains as mentioned in Section III.
Unlike existing datasets that primarily contain simplified ex-
amples failing to reflect real-world complexity, this dataset
represents diverse real-world deployments with retrievable on-
chain state information. It is important to note that this dataset
excludes contracts in our PoC collection, preventing data
leakage and ensuring unbiased evaluation.

Regarding ground truth construction, since no comprehen-
sive vulnerability annotations exist for real-world contracts,
we follow the approach applied in existing works [45], [28],
[21] for fair ground truth creation. We execute POCSHIFT and
selected SOTA on this sampled dataset and manually validate
their outputs to establish ground truth. The validation process
is conducted by two smart contract security experts, each
with more than two years of experience. They independently
verify each reported vulnerability, and any disagreements are
resolved through discussion until consensus is reached. By
deriving ground truth from expert validation across all tool
results rather than being biased toward the output of any single
tool, we try to mitigate potential overfitting. Complete dataset
details are available on our website [12].

D. PoC Generation Capability

1) Experiment Details: To answer RQ1, we compare our
tool with selected SOTA on the evaluation dataset, measuring
both effectiveness and efficiency. For effectiveness, we eval-
uate true positives (TP, runnable PoC to successfully exploit
vulnerabilities), false positives (FP, runnable PoC but incorrect
exploit logic). True negatives (TN) and false negatives (FN)
would require comprehensive manual analysis of all 5,713
contracts to establish complete ground truth, which exceeds
practical research scope. Our precision-focused evaluation cor-
responds to real-world deployment scenarios where analysts
need trustworthy vulnerability identification. For efficiency,
we compare the execution time required by each tool when
processing the evaluation dataset. All generated PoCs are
manually validated by two security experts with over two years
of experience in smart contract security, with disagreements
resolved through discussion until consensus is reached.

2) Result Analysis: We present the analysis for our tools
and the selected tools from effectiveness and efficiency.

Effectiveness Analysis. Table II demonstrates the effec-
tiveness of POCSHIFT compared to existing tools. Based
on the ground truth established (Section V-C), our frame-
work successfully generates valid PoCs for 62 out of 67
exploitable instances with zero false positives, while ItyFuzz
and Mythril identified only 8 and 0 instances respectively.
The 67 exploitable instances represent ground truth established
through expert validation across outputs of all evaluated tools,
following established methodology in security research when
comprehensive annotations are unavailable [45], [28], [21].
While this represents a small fraction, it reflects the realistic

TABLE II: Summary of PoC generation results.

Category (#GT) ItyFuzz Mythril POCSHIFT

AC (11) ✓ (TP: 2, FP: 8) ✓ (TP: 0, FP: 0) ✓ (TP: 11, FP: 0)
LF (18) ✓ (TP: 2, FP: 0) ✗ ✓ (TP: 17, FP: 0)
PM (23) ✓ (TP: 4, FP: 3) ✗ ✓ (TP: 19, FP: 0)
RE (1) ✓ (TP: 0, FP: 0) ✓ (TP: 0, FP: 0) ✓ (TP: 1, FP: 0)
AR (7) ✗ ✓ (TP: 0, FP: 0) ✓ (TP: 7, FP: 0)
BM (7) ✓ (TP: 0, FP: 0) ✓ (TP: 0, FP: 0) ✓ (TP: 7, FP: 0)

Total (67) TP: 8, FP: 11 TP: 0, FP: 0 TP: 62, FP: 0

* #GT: number of ground truth, TP: True positive, FP: False positive.

distribution of exploitable vulnerabilities in production envi-
ronments rather than methodological limitations.

This performance gap comes from our method of model-
ing existing attack sequences from real-world exploits rather
than relying on generic vulnerability patterns. Existing tools
generally use generic vulnerability patterns and simplified
environmental assumptions, which do not adequately capture
the complex conditions of real-world exploits. While ItyFuzz
can technically cover new vulnerability types, the 8 cases
identified by ItyFuzz generate similar simple traces with fewer
than 4 function calls each, significantly simpler than real-
world exploits requiring multi-step exploit logic, complex
state manipulation, and cross-contract interactions. Instead, our
tool is designed to target successful exploitation by learning
from actual attack patterns and maintaining essential environ-
mental dependencies that enable real attacks. The observed
false negatives (5 cases) are mainly due to environmental
constraints inherent to real-world smart contract ecosystems:
① dependencies on deprecated or replaced external contracts
that alter the exploitation context, and ② variations in storage
layouts that affect state manipulation sequences. To address
these cases would require in-depth semantic analysis and
complex state dependency chains of the target contract. While
such analysis is technically feasible, it would significantly
increase computational overhead and analysis time, potentially
limiting the practical applicability of our current approach that
prioritizes efficiency and scalability. We leave this semantic-
aware exploitation analysis as future work to maintain a
balanced trade-off between coverage and real-world usability.

Our manual validation reveals that 11 of 19 cases re-
ported by ItyFuzz are false positives. False positives occur
when ItyFuzz generates a PoC for a reported vulnerability
that cannot actually be exploited in real-world blockchain
conditions. These false positives are mainly caused by its
approximation of real-world conditions and oversight of access
control modifiers. For instance, several ItyFuzz exploits failed
during execution because of price slippage effects absent in
its simplified market model. In contrast, our migration-based
approach achieves zero false positives by preserving actual
exploitation conditions from documented similar incidents
rather than approximating them.

These results also underscore that our framework prioritizes
precision over recall in security analysis. This ensures that
reported cases are exploitable threats rather than theoretical
weaknesses, reducing the burden of manual validation while
increasing the reliability of automated security assessments.

8

TABLE III: Summary of time spent over the evaluation dataset.

Tool Input Time Spent (in hrs)
Mythril Source Code 210.5
ItyFuzz Chain & RPC 133.2

POCSHIFT Chain & RPC 3.8

Efficiency Analysis. As presented in Table III, POCSHIFT
achieves a notable improvement in PoC generation time, com-
pleting the evaluation dataset in just 3.8 hours, compared to
133.2 and 210.5 hours required by ItyFuzz [38] and Mythril [4]
respectively. Note that the time spent for Mythril includes
additional compilation overhead due to source code input since
its RPC support is limited to a restricted format.

This significant efficiency gain arises from our fundamen-
tally different approach. Traditional approaches like ItyFuzz
and Mythril rely on resource-intensive techniques such as
exhaustive exploration and heavy symbolic reasoning. In con-
trast, our tool focuses on precisely generating PoCs for con-
tracts with vulnerable functions similar to those exploited in
real-world incidents. This specialized focus represents a strate-
gic trade-off: while we may not cover all possible vulnerabil-
ities, our approach enables rapid vulnerability assessment at a
scale previously unattainable. Such capability is particularly
valuable for security researchers and developers who need
to quickly validate the security implications of code reuse,
which is a common practice in smart contract development.
In addition, the capability of our tool can be further strengthen
by continuously compiling new vulnerability PoCs.

These results indicate that our precision-focused design
reduces the effort of verifying false positives, while a 35 times
efficiency improvement over existing tools suggests feasibility
for integration into development cycles.

E. Ablation Study

1) Experiment Details: To answer RQ2, we perform an
ablation study to evaluate the contributions of three critical
components: environment property mining, validation check
generation, and candidate matching. We exclude each com-
ponent individually and evaluate their impact based on design
objectives: environment property mining to increase migration
success by abstracting essential components to successful
migration, validation check generation to reduce false positives
by ensuring exploitation verification, and candidate matching
to improve efficiency by optimizing target selection procedure.
In summary, the first two components target effectiveness
while candidate matching targets efficiency.

2) Result Analysis: Table IV summarizes how removing
environment property mining and validation check generation
impacts key metrics such as True Positives (TP), False Pos-
itives (FP), Recall, and Precision, whereas Table V presents
the effect of excluding candidate matching on execution time.
Below, we provide a detailed discussion of each ablation.

Environment Property Mining. Environment property
mining is a novel component introduced to ensure that PoCs
are migrated with a precise understanding of cross-contract
dependencies, relevant blockchain states, and external library

calls. The importance of environment property mining is
evident from the results shown in Table IV. Excluding envi-
ronment property mining causes the true positives to plummet
from 62 to 7, resulting in a 88.70% drop in Recall. This steep
decline underscores the complexity of migrating existing PoCs
to new targets. In practice, even if the transaction sequence
itself is valid, failing to replicate external properties prevents
the exploit from succeeding. Thus, these results demonstrate
that environment property mining is essential for reliable PoC
migration in smart contract settings, and the properties we
mined are critical to successful migrations.

Validation Check Generation. Validation check generation
is designed to validate that the discovered exploit paths lead to
meaningful exploitation outcomes (e.g., an unauthorized funds
transfer or profit gain). Without validation check generation,
our tool still can detect 62 true positives, indicating that
it retains its capability to generate PoCs for new targets.
However, the lack of robust oracles causes 81 false positives,
dropping the precision rate to 43.36%.

The 81 false positives represent cases when PoCs are
generated and executed successfully but fail to achieve actual
exploitation goal. One representative example is that, in price
manipulation exploits, merely executing a transaction sequence
that swaps tokens successfully does not guarantee a net
profit. With validation check generation, our tool can generate
required checks to distinguish between a trivial sequence of
interactions and a truly profitable exploit (e.g., verifying actual
balances after swapping in the price manipulation example).

This finding highlights that many exploitable paths are
not profitable or do not cause adverse effects once detailed
financial or state-related checks are performed. Additionally,
if vulnerability identification produces false positives in earlier
stages, our precision-focused design filters them out during
adaptation or migration testing, as they cannot generate valid
exploitation outcomes under forked blockchain environments.
Consequently, our ablation study confirms that validation
check generation effectively reduces false positives by requir-
ing tangible exploit outcomes, improving the overall precision
of our PoC generation process.

Candidate Matching. While environment property mining
and validation check generation focus on enhancing effective-
ness, candidate matching serves as a filtering mechanism to
improve efficiency. By checking the compatibility of condi-
tions such as whether the environment properties of target
contracts align with the original PoC, candidate matching
helps to filter out unpromising test cases early on. Table V
illustrates that candidate matching significantly reduces the
time overhead of our approach, by cutting the number of test
runs from 5,713 to 1,306, thereby shortening the total test ex-
ecution time from 15.9 hours to 3.8 hours. The substantial 4.2
times reduction in test runs demonstrates the practical value
of candidate matching for real-world deployment. To validate
that this efficiency gain does not compromise effectiveness, we
conduct a manual validation on 384 filtered-out cases (calcu-
lated using Cochran’s formula with a 95% confidence level).
Our investigation finds no missed exploits, confirming that our

9

TABLE IV: Contribution of environment property mining
(EPM) and validation check generation (VCG).

TP FP Recall Precision

POCSHIFT 62 0 92.50% 100.00%
POCSHIFT w/o EPM 7 0 10.45% 100.00%
POCSHIFT w/o VCG 62 81 92.50% 43.36%
*TP: True positive, FP: False positive.

TABLE V: Time spent with and without candidate matching.

Configuration #Test Matching Test Total

POCSHIFT w/ CM 1,306 1.3 2.5 3.8
POCSHIFT w/o CM 5,713 - 15.9 15.9
* #Test: Number of tests left after the matching process (if applicable), CM:
Candidate matching. The rest columns present time spent in hours.

matching criteria remain sufficiently relaxed to preserve all
viable exploit candidates while excluding only conclusively
non-viable pairs based on environment properties.

F. Real-World Practicability

1) Experiment Details: To answer RQ3, we provide a case
study with the collected PoC to exploit Onyx Protocol in 2023,
whose exploitation logic is explained in our motivating exam-
ples (Section II-C). This example is to illustrate the complexity
of real-world exploits, providing evidence on the limitations
of generating PoCs from scratch, while demonstrating the
effectiveness of our tool in extracting essential exploitation
components for reuse across different vulnerable contracts.

2) Result Analysis: The original PoC for the Onyx Protocol
incident involves over 1,200 lines of Solidity code across
three contracts, coordinates with 15 external contracts using 25
distinct addresses, and features five-layer deep cross-contract
calls with dynamic helper contract deployments. Such com-
plexity makes it impractical for existing tools that struggle
with precise state coordination and cross-contract interactions.

This complexity demonstrates why existing automated tools
fail to generate such PoCs from scratch, while our approach
can automatically abstract essential components for PoC mi-
gration. First, it parses the Solidity code to identify inter-
faces and map hardcoded addresses to their corresponding
variables. By executing the PoC in a controlled environment,
it generates an invocation trace of 5,359 lines that reveales
the critical exploitation sequence. POCSHIFT also identifies
the existence of repeated exploit steps across six different
stablecoins to maximize profit. To simplify the template,
our framework extracts the core pattern targeting just one
stablecoin (WETH), reducing the required addresses from 25
to only 5. Subsequently, through event analysis, POCSHIFT
identifies eight state requirements necessary for successful
exploitation, including cross-contract states such as allowance
approvals. As a result, POCSHIFT reduces the PoC to 94 lines
of code while preserving the functionality of the PoC.

G. Large-scale Performance

1) Experiment Details: To answer RQ4, we evaluate POC-
SHIFT on 979,512 verified contracts from 2021-2024 across

7 EVM-compatible blockchain networks (detailed statistics
in our webpage [12]). We assess practical effectiveness by
using collected PoCs to identify potential attack targets with
similar vulnerable functions in large-scale verified contracts
by migration-based PoC generation. For each PoC, we per-
form abstraction, candidate matching, and migration testing.
Generated PoCs are manually verified, with 382 failed cases
analyzed via stratified sampling (95% confidence, 5% margin
of error); however, they are not necessarily false negatives.

2) Result Analysis: From the 979,512 contract dataset, we
generated and validated PoCs for 256 contracts across 12
vulnerability types in 6 categories. The detailed breakdown
with all execution trace could be found in our website due to
space constraint [12]. Among these, 13 contracts are flagged
as exploited or phishing on blockchain platforms, providing
external validation of our identification accuracy. Additionally,
the results include 64 cross-chain migrations, with only 23
contracts sharing protocols with the original vulnerable con-
tracts. These results demonstrate the effectiveness of migrating
PoCs across different blockchain networks and protocols.

For unsuccessful migration cases, we manually confirm that
none of the 382 sampled contracts were exploitable, indicating
no false negatives within this sample. This confirmation is
conducted by contract security experts with consensus on
disagreements. However, this validation faces inherent lim-
itations due to the lack of large-scale, high-quality labeled
datasets of real-world smart contract exploitability. While
we can reliably validate positive cases, comprehensive false
negative assessment remains challenging given the imbalanced
distribution of vulnerable versus non-vulnerable contracts real-
world deployments [35], where manual analysis of sufficient
contracts for statistical confidence is impractical.

VI. DISCUSSION

A. Limitations and Future Work

While our automated PoC migration approach shows poten-
tial for enhancing smart contract security, we acknowledge its
limitations and outline future work. First, our current imple-
mentation leverages well-established clone detection technique
for candidate matching (Section IV-C). While this technique
proves effective for the migration task, future research could
explore more sophisticated semantic matching techniques to
potentially increase recall without compromising the the over-
all efficiency and precision of the framework.

Second, our framework builds on knowledge extracted from
existing PoCs. While this is supported by growing availabil-
ity of organized repositories (e.g., DeFiHackLabs [18]), we
recognize the gap between when incidents occur and when
PoCs become available. Future work can explore automated
transaction-based incident analysis to extract key exploitation
components directly from blockchain data, reducing PoC
dependency. However, this direction faces challenges in re-
constructing contract semantics from transaction traces and
identifying exploit operations, which remain open problems.

Third, our validation checks create a trade-off between
precision and developer warnings. While potentially vulner-

10

able code that currently fails exploitation might eventually be
exploited through different vectors, our approach prioritizes
immediate demonstrable threats in blockchain environments.
Future work could analyze validation-failed cases to categorize
them by exploitability likelihood, helping developers prioritize
manual review efforts on cases with higher potential for
becoming exploitable under different conditions.

B. Threats to Validity

First, the manual exclusion of PoCs during PoC collection
may introduce bias. To mitigate this, we implement predefined
criteria with clear patterns (e.g., direct call functions from
attacker contracts on chain) and invite two researchers to
independently complete the task following predefined criteria
with consensus on disagreements.

Second, our approach relies on the representativeness of our
evaluation dataset. To mitigate selection bias, we collect con-
tracts from diverse blockchain networks and conduct similarity
matching to ensure different contract-level implementations.
All confirmed vulnerable cases have distinct structures, imple-
mentation patterns, and deployment contexts, ensuring results
are not inflated by analyzing variants of the same contract.

Third, regarding ground truth construction, to reduce bias
and avoid overfitting toward POCSHIFT, ground truth is
derived from expert validation across all tool outputs rather
than any single tool. This ensures fairness in the constructed
dataset, following established practices [45], [28], [21] when
comprehensive vulnerability annotations are unavailable.

VII. RELATED WORK

A. Smart Contract PoC Generation

Exploit migration for smart contracts builds on exploit gen-
eration by adapting attacks to new contexts, though research
here remains limited. Traditional methods like those proposed
by Ignacio et al.[15] and Feng et al.[22] generate attacker
contracts from victim contract ABIs and predefined templates,
limiting their ability to detect vulnerabilities with complex
logic and inter-contract interactions. In contrast, fuzzing meth-
ods such as ConFuzzius [41], ContractFuzzer [26], and Ity-
Fuzz [38] focus on identifying vulnerabilities at the bytecode
level or through ABI-driven inputs but typically lack cross-
contract analysis capabilities. For example, ItyFuzz introduces
snapshot-based fuzzing to minimize re-execution overhead, but
struggles with complex vulnerabilities like price manipulation
and lacks efficiency in cross-contract contexts.

However, existing tools often struggle to generate PoCs for
real-world vulnerabilities. These vulnerabilities mostly involve
complex transaction dependencies and state conditions that are
challenging to automate from scratch, even with substantial
computational resources. Our approach overcomes these lim-
itations by systematically abstracting key components from
existing PoCs and adapting to other contract environments.

B. Migration-based Test Generation

Research on migration-based test case generation for vul-
nerabilities in open-source software (OSS) libraries has pro-

gressed in several directions. SIEGE [24] automates min-
imal test case creation for vulnerable library fragments,
while TRANSFER [27] uses evolutionary search to repro-
duce vulnerability-triggering program states in client code.
VESTA [17] integrates static analysis to migrate parameters
into existing project tests, reducing manual effort through
combined testing approaches. While conventional migration
adapts source code across APIs [34], libraries [23], or lan-
guages [47] to preserve semantics, these approaches migrate
testing artifacts to reproduce specific behaviors like vulnera-
bility triggering conditions in new contexts.

However, smart contract PoC migration faces unique chal-
lenges. Smart contracts execute in persistent blockchain en-
vironments where exploitability depends on contract states,
external addresses, and cross-contract interactions. Valid
PoC construction requires orchestrating transaction sequences
rather than adapting function parameters, limiting the appli-
cability of existing migration techniques and necessitating
specialized blockchain approaches.

VIII. CONCLUSION

In this paper, we introduce POCSHIFT, an automated PoC
generation tool for smart contracts. Unlike existing methods
that rely on exhaustive exploration or symbolic reasoning,
POCSHIFT uses existing PoCs to generate PoCs for contracts
with similar vulnerabilities. The evaluation demonstrates the
effectiveness of POCSHIFT by successfully generating PoCs
for 62 out of 67 cases, outperforming existing tools including
ItyFuzz and Mythril. For efficiency, POCSHIFT completes
analyzing 5,713 on-chain contracts in just 3.8 hours versus
133.2 and 210.5 hours by existing tools. Large-scale evaluation
on 979,512 contracts identifies 256 vulnerable contracts across
multiple blockchain networks, including 64 cross-chain cases.
These results demonstrate the effectiveness of our approach
in generating PoCs for recurring real-world vulnerabilities,
contributing to smart contract security analysis.

IX. DATA AVAILABILITY

All experimental data, evaluation results, and tool imple-
mentations are publicly available on our webpage [12] to
support reproducibility and future research.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Singapore, and DSO National Laboratories under the
AI Singapore Programme (AISG Award No: AISG4-GC-2023-
008-1B); by the National Research Foundation Singapore and
the Cyber Security Agency under the National Cybersecu-
rity R&D Programme (NCRP25-P04-TAICeN); and by the
Prime Minister’s Office, Singapore under the Campus for
Research Excellence and Technological Enterprise (CREATE)
Programme. Any opinions, findings and conclusions, or rec-
ommendations expressed in these materials are those of the
author(s) and do not reflect the views of the National Research
Foundation, Singapore, Cyber Security Agency of Singapore,
Singapore.

11

REFERENCES

[1] “Auditing with poc tests in audit wizard,” 2024, [Online; accessed 2024-
12-28]. [Online]. Available: https://www.auditwizard.io/blog/auditing-
with-poc-tests-in-audit-wizard

[2] “Code4rena — keeping high severity bugs out of production,”
2024, [Online; accessed 2024-12-23]. [Online]. Available: https:
//code4rena.com/

[3] “Compound v2 documentation,” 2024. [Online]. Available: https:
//docs.compound.finance/v2/

[4] “Consensys/mythril: Security analysis tool for evm bytecode. supports
smart contracts built for ethereum, hedera, quorum, vechain, root-
stock, tron and other evm-compatible blockchains.” https://github.com/
ConsenSys/mythril, 2024, (Accessed on 07/08/2024).

[5] “Defihacklabs/src/test/2022-10/olympusdao exp.sol at
6811c608ff90d9bde1c3067da12b958dd63e890b · sun-
web3sec/defihacklabs,” https://github.com/SunWeb3Sec/DeFiHackLabs/
blob/6811c608ff90d9bde1c3067da12b958dd63e890b/src/test/2022-
10/OlympusDao exp.sol, 2024, (Accessed on 09/11/2024).

[6] “foundry-rs/foundry: Foundry is a blazing fast, portable and modular
toolkit for ethereum application development written in rust.” https://
github.com/foundry-rs/foundry, 2024, (Accessed on 03/17/2024).

[7] “Immunefi,” 2024, [Online; accessed 2024-12-23]. [Online]. Available:
https://immunefi.com/

[8] “Immunefi bug bounties — immunefi,” 2024, [Online; accessed
2024-12-28]. [Online]. Available: https://immunefi.com/bug-bounty/
immunefi/information/

[9] “Onyx address etherscan,” https://etherscan.io/address/
0x5FdBcD61bC9bd4B6D3FD1F49a5D253165Ea11750, 2024,
(Accessed on 07/08/2024).

[10] “Tlsh - a locality sensitive hash,” https://tlsh.org/, 2024, (Accessed on
03/19/2024).

[11] “foundry - ethereum development framework,” 8 2025, [Online;
accessed 2025-08-29]. [Online]. Available: https://getfoundry.sh/forge/
tests/cheatcodes/

[12] “kairanskrr/pocshift,” 2025, [Online; accessed 2025-10-02]. [Online].
Available: https://github.com/kairanskrr/PoCShift

[13] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A
systematic review on code clone detection,” IEEE access, vol. 7, pp.
86 121–86 144, 2019.

[14] ANTLR, “antlr/antlr4: Antlr (another tool for language recognition)
is a powerful parser generator for reading, processing, executing, or
translating structured text or binary files.” https://github.com/antlr/antlr4,
2024, (Accessed on 03/17/2024).

[15] I. Ballesteros, C. Benac-Earle, L. E. B. de Barrio, L.-Å. Fredlund,
Á. Herranz, and J. Mariño, “Automatic generation of attacker contracts
in solidity,” in 4th International Workshop on Formal Methods for
Blockchains (FMBC 2022). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2022.

[16] BscScan.com, “Cerc20delegator — address
0xf8527dc5611b589cbb365acacaac0d1dc70b25cb — bscscan,”
2024. [Online]. Available: https://bscscan.com/address/
0xf8527dc5611b589cbb365acacaac0d1dc70b25cb#code

[17] Z. Chen, X. Hu, X. Xia, Y. Gao, T. Xu, D. Lo, and X. Yang, “Exploiting
library vulnerability via migration based automating test generation,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 2024, pp. 1–12.

[18] DeFiHackLabs, “Defihacklabs: Reproduce defi hacked incidents us-
ing foundry.” https://github.com/SunWeb3Sec/DeFiHackLabs/tree/main,
2023, (Accessed on 12/25/2023).

[19] T. Edge, “Crypto market cap races toward $4 tril-
lion as congress passes three key bills - coincentral,”
7 2025, [Online; accessed 2025-08-25]. [Online]. Avail-
able: https://coincentral.com/crypto-market-cap-races-toward-4-trillion-
as-congress-passes-three-key-bills/?utm source=chatgpt.com

[20] etherscan.io, “Ethereum charts and statistics — etherscan,” 2025,
[Online; accessed 2025-08-22]. [Online]. Available: https://etherscan.
io/charts

[21] S. Feng, Y. Wu, W. Xue, S. Pan, D. Zou, Y. Liu, and H. Jin, “Fire:
combining multi-stage filtering with taint analysis for scalable recurring
vulnerability detection,” in Proceedings of the 33rd USENIX Conference
on Security Symposium, ser. SEC ’24. USA: USENIX Association,
2024.

[22] Y. Feng, E. Torlak, and R. Bodı́k, “Summary-based symbolic evaluation
for smart contracts,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 1141–1152.

[23] H. He, R. He, H. Gu, and M. Zhou, “A large-scale empirical study on
java library migrations: prevalence, trends, and rationales,” in Proceed-
ings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering,
2021, pp. 478–490.

[24] E. Iannone, D. Di Nucci, A. Sabetta, and A. De Lucia, “Toward
automated exploit generation for known vulnerabilities in open-source
libraries,” in 2021 IEEE/ACM 29th International Conference on Pro-
gram Comprehension (ICPC). IEEE, 2021, pp. 396–400.

[25] immunefi, “immunefi-team/hack-analysis-pocs,” https://github.com/
immunefi-team/hack-analysis-pocs/tree/main, 2023, (Accessed on
12/25/2023).

[26] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering, 2018, pp.
259–269.

[27] H. J. Kang, T. G. Nguyen, B. Le, C. S. Păsăreanu, and D. Lo,
“Test mimicry to assess the exploitability of library vulnerabilities,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 276–288.

[28] W. Kang, B. Son, and K. Heo, “Tracer: Signature-based static
analysis for detecting recurring vulnerabilities,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1695–1708. [Online]. Available:
https://doi.org/10.1145/3548606.3560664

[29] J. Krupp and C. Rossow, “{teEther}: Gnawing at ethereum to auto-
matically exploit smart contracts,” in 27th USENIX security symposium
(USENIX Security 18), 2018, pp. 1317–1333.

[30] K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu, H. Wang, Y. Liu,
and Y. Chen, “Static application security testing (sast) tools for smart
contracts: How far are we?” Proc. ACM Softw. Eng., vol. 1, no. FSE,
Jul. 2024. [Online]. Available: https://doi.org/10.1145/3660772

[31] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[32] B. News, “Web3 security threats surge in 2024 with significant
financial losses — binance news on binance square,” 12
2024, [Online; accessed 2024-12-23]. [Online]. Available: https:
//www.binance.com/en/square/post/12-22-2024-web3-security-threats-
surge-in-2024-with-significant-financial-losses-17887756196249

[33] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[34] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
api embedding for api usages and applications,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 438–449.

[35] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnera-
ble does not imply exploited,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1325–1341.

[36] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[37] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[38] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 322–333.

[39] solidity parser, “Github - solidity-parser/antlr: Solidity grammar for
antlr4,” 2025, [Online; accessed 2025-08-29]. [Online]. Available:
https://github.com/solidity-parser/antlr

[40] K. Sun, Z. Xu, C. Liu, K. Li, and Y. Liu, “Demystifying the composition
and code reuse in solidity smart contracts,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 796–807.

12

https://www.auditwizard.io/blog/auditing-with-poc-tests-in-audit-wizard
https://www.auditwizard.io/blog/auditing-with-poc-tests-in-audit-wizard
https://code4rena.com/
https://code4rena.com/
https://docs.compound.finance/v2/
https://docs.compound.finance/v2/
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/SunWeb3Sec/DeFiHackLabs/blob/6811c608ff90d9bde1c3067da12b958dd63e890b/src/test/2022-10/OlympusDao_exp.sol
https://github.com/SunWeb3Sec/DeFiHackLabs/blob/6811c608ff90d9bde1c3067da12b958dd63e890b/src/test/2022-10/OlympusDao_exp.sol
https://github.com/SunWeb3Sec/DeFiHackLabs/blob/6811c608ff90d9bde1c3067da12b958dd63e890b/src/test/2022-10/OlympusDao_exp.sol
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://immunefi.com/
https://immunefi.com/bug-bounty/immunefi/information/
https://immunefi.com/bug-bounty/immunefi/information/
https://etherscan.io/address/0x5FdBcD61bC9bd4B6D3FD1F49a5D253165Ea11750
https://etherscan.io/address/0x5FdBcD61bC9bd4B6D3FD1F49a5D253165Ea11750
https://tlsh.org/
https://getfoundry.sh/forge/tests/cheatcodes/
https://getfoundry.sh/forge/tests/cheatcodes/
https://github.com/kairanskrr/PoCShift
https://github.com/antlr/antlr4
https://bscscan.com/address/0xf8527dc5611b589cbb365acacaac0d1dc70b25cb#code
https://bscscan.com/address/0xf8527dc5611b589cbb365acacaac0d1dc70b25cb#code
https://github.com/SunWeb3Sec/DeFiHackLabs/tree/main
https://coincentral.com/crypto-market-cap-races-toward-4-trillion-as-congress-passes-three-key-bills/?utm_source=chatgpt.com
https://coincentral.com/crypto-market-cap-races-toward-4-trillion-as-congress-passes-three-key-bills/?utm_source=chatgpt.com
https://etherscan.io/charts
https://etherscan.io/charts
https://github.com/immunefi-team/hack-analysis-pocs/tree/main
https://github.com/immunefi-team/hack-analysis-pocs/tree/main
https://doi.org/10.1145/3548606.3560664
https://doi.org/10.1145/3660772
https://www.binance.com/en/square/post/12-22-2024-web3-security-threats-surge-in-2024-with-significant-financial-losses-17887756196249
https://www.binance.com/en/square/post/12-22-2024-web3-security-threats-surge-in-2024-with-significant-financial-losses-17887756196249
https://www.binance.com/en/square/post/12-22-2024-web3-security-threats-surge-in-2024-with-significant-financial-losses-17887756196249
https://github.com/solidity-parser/antlr

[41] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius:
A data dependency-aware hybrid fuzzer for smart contracts,” in 2021
IEEE European Symposium on Security and Privacy (EuroS&P), 2021,
pp. 103–119.

[42] H. Wen, H. Liu, J. Song, Y. Chen, W. Guo, and Y. Feng, “Foray:
Towards effective attack synthesis against deep logical vulnerabilities in
defi protocols,” in Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, 2024, pp. 1001–1015.

[43] S. Wu, Z. Li, L. Yan, W. Chen, M. Jiang, C. Wang, X. Luo, and H. Zhou,
“Are we there yet? unraveling the state-of-the-art smart contract fuzzers,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 2024, pp. 1–13.

[44] ——, “Are we there yet? unraveling the state-of-the-art smart
contract fuzzers,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639152

[45] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu,

W. Huo, W. Zou et al., “{MVP}: Detecting vulnerabilities using
{Patch-Enhanced} vulnerability signatures,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1165–1182.

[46] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 615–627.

[47] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
api mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
1, 2010, pp. 195–204.

[48] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais, “On the just-
in-time discovery of profit-generating transactions in defi protocols,” in
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
919–936.

[49] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 2444–2461.

13

https://doi.org/10.1145/3597503.3639152

	Introduction
	Background and Motivation
	Smart Contracts and States
	Proof of Concepts (PoCs) and Exploits
	Motivating Example

	PoC Collection
	Approach
	Overview
	PoC Abstraction
	Exploit Logic Extraction
	Environment Property Mining
	Validation Check Generation

	Candidate Matching
	Clone Detection
	Property-Based Feasibility Analysis

	Migration Test

	Evaluation
	Research Questions
	Tool Selection
	Evaluation Dataset
	PoC Generation Capability
	Experiment Details
	Result Analysis

	Ablation Study
	Experiment Details
	Result Analysis

	Real-World Practicability
	Experiment Details
	Result Analysis

	Large-scale Performance
	Experiment Details
	Result Analysis

	Discussion
	Limitations and Future Work
	Threats to Validity

	Related Work
	Smart Contract PoC Generation
	Migration-based Test Generation

	Conclusion
	Data Availability
	References

