
Measuring and Augmenting Large Language Models for Solving
Capture-the-Flag Challenges

Zimo Ji
zjiag@connect.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Daoyuan Wu∗†
daoyuanwu@ln.edu.hk
Lingnan University
Hong Kong, China

Wenyuan Jiang
wenyjiang@student.ethz.ch

D-INFK, ETH Zurich
Zurich, Switzerland

Pingchuan Ma
pmaab@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Zongjie Li
zligo@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Shuai Wang∗
shuaiw@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Abstract

Capture-the-Flag (CTF) competitions are crucial for cybersecurity
education and training. As large language models (LLMs) evolve,
there is increasing interest in their ability to automate CTF chal-
lenge solving. For example, DARPA has organized the AIxCC com-
petition since 2023 to advance AI-powered automated offense and
defense. However, this demands a combination of multiple abilities,
from knowledge to reasoning and further to actions. In this paper,
we highlight the importance of technical knowledge in solving CTF
problems and deliberately construct a focused benchmark, CTF-
Know, with 3,992 questions to measure LLMs’ performance in this
core aspect. Our study offers a focused and innovative measurement
of LLMs’ capability in understanding CTF knowledge and applying
it to solve CTF challenges. Our key findings reveal that while LLMs
possess substantial technical knowledge, they falter in accurately
applying this knowledge to specific scenarios and adapting their
strategies based on feedback from the CTF environment.

Based on insights derived from this measurement study, we pro-
pose CTFAgent, a novel LLM-driven framework for advancing
CTF problem-solving. CTFAgent introduces two new modules:
two-stage Retrieval Augmented Generation (RAG) and interac-
tive Environmental Augmentation, which enhance LLMs’ technical
knowledge and vulnerability exploitation on CTF, respectively. Our
experimental results show that, on two popular CTF datasets,CTFA-
gent both achieves over 80% performance improvement. Moreover,
in the recent picoCTF2024 hosted by CMU,CTFAgent ranked in the
top 23.6% of nearly 7,000 participating teams. This reflects the ben-
efit of our measurement study and the potential of our framework
in advancing LLMs’ capabilities in CTF problem-solving.

CCS Concepts

• Social and professional topics→ Computing education; • Se-
curity and privacy; • Computing methodologies → Artificial

intelligence;

∗Corresponding authors.
†Work conducted by Daoyuan Wu during his time at HKUST.

ACM Reference Format:

Zimo Ji, DaoyuanWu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai
Wang. 2025. Measuring and Augmenting Large Language Models for Solv-
ing Capture-the-Flag Challenges. In Proceedings of the 2025 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’25), October
13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3719027.3744855

1 Introduction

Capture-the-Flag (CTF) is universally acknowledged as an essential
component of cybersecurity. To simulate real-world vulnerability
scenarios and enhance participants’ cybersecurity skills and knowl-
edge, CTF competitions have become an indispensable tool for cy-
bersecurity training since their inception at DEFCON in 1993 [39].
In a typical CTF challenge, participants are tasked with identifying
and exploiting vulnerabilities in a target system, aiming to discover
the hidden “flag” string within the sandbox environment. CTF chal-
lenges cover a broad spectrum of domains, such as cryptography,
reverse engineering, web exploitation, forensics, and miscellaneous.

To date, CTF competitions have become a popular and “real
business” in the cybersecurity community, with numerous competi-
tions held worldwide, such as DEFCON CTF [13], GoogleCTF [16],
and picoCTF [26]. Moreover, it is believed that many intelligence
agencies use CTF competitions as a recruitment tool to identify
top cybersecurity talent [39] and to train their own cybersecurity
professionals for various missions. Despite the high benefits and
popularity of CTF competitions in cybersecurity, solving CTF chal-
lenges requires a combination of technical, problem-solving, and
analytical skills, all of which demand human-level intelligence.

As large language models (LLMs) exhibit exceptional capabilities
in various security tasks, such as penetration testing [44], vulnera-
bility detection [73], and exploiting zero-day vulnerabilities [47],
CTF education and research could also evolve into a new era of
leveraging LLMs to automate CTF challenge solving. With such intel-
ligent CTF automation, it is anticipated that existing CTF education
and training will be significantly enhanced, as cybersecurity learn-
ers can use LLM-based “copilots” to quickly identify various attack
surfaces across numerous CTF challenges; see more in §6. More-
over, automating offense and defense in CTF competitions, and in
cyber-autonomy more generally [38], has long been recognized

1

https://orcid.org/0009-0002-7014-9030
https://orcid.org/0000-0002-3752-0718
https://orcid.org/0000-0003-4646-7960
https://orcid.org/0000-0001-7680-2817
https://orcid.org/0000-0002-9897-4086
https://orcid.org/0000-0002-0866-0308
https://doi.org/10.1145/3719027.3744855
https://doi.org/10.1145/3719027.3744855

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

to stimulate notable research challenges and opportunities, e.g.,
achieving automated vulnerability discovery and repair in light of
software releases now exceeding human review capacity [38], and
assessing and enhancing LLMs’ vulnerability reasoning [70, 73].

Yet, the full automation of CTF challenge solving by LLMs re-
quires a complex array of composite skills, including scenario com-
prehension, multi-turn reasoning, and action execution, which
are generally hard to assess. To date, few benchmarks have been
proposed to evaluate the proficiency of LLMs in CTF competi-
tions [69, 70, 87], in which researchers propose an LLM-based bot
in a command-line environment with common security toolkits to
solve challenges. However, our tentative exploration finds that ex-
isting benchmarks do not delve deeply into the CTF abilities during
different phases of challenge solving, including from knowledge to
reasoning and further to action.

Given the demand for a more in-depth measurement of LLMs’
capability in CTF and the challenges posed by the substantial reason-
ing and hacking requirements involved, we identify a key enabling
factor — LLM’s core technical knowledge in CTF. We argue that the
ability to effectively apply technical knowledge is a critical factor in
determining the success of LLMs in solving CTF challenges. Impor-
tantly, by focusing on the technical knowledge aspect, it is practi-
cally feasible to provide a focused, in-depth, yet not overly complex
benchmark. Overall, we construct a new and focused benchmark,
CTFKnow, with 3,992 questions to specifically assess LLMs’ per-
formance on CTF technical knowledge. We collect 1,084 write-ups
from the most well-known CTF competitions over the past five
years, including 0CTF [4], UIUCTF [28], GoogleCTF [16], etc. To
extract the technical knowledge from these write-ups, we use the re-
cent GPT-4 [35] model, carefully constructing customized prompts
to enable it to complete this task more effectively. This approach
allows us to identify and extract 1,996 distinct CTF core knowledge
points. These knowledge points are then used to construct 1,996
single-choice questions and 1,996 open-ended questions designed
to evaluate the technical knowledge of LLMs in scenarios of differ-
ent difficulty. We employ another LLM to generate these questions,
utilizing prompts refined through multiple iterations to ensure the
questions’ validity and rigor. Moreover, to avoid hallucination and
bias in the knowledge extraction and question generation tasks, we
use another open-source LLM [12] to check and filter the results of
these tasks, which are further manually verified.

With CTFKnow, we measure five mainstream LLM models, in-
cluding three OpenAI models (GPT-3.5 [17]/4 [18]/4o [19]) and
two open-source models, Llama3 [23] and Mixtral [24]. The main
findings are twofold: On one hand, LLMs exhibit a strong grasp of
technical knowledge in CTF when the potential correct answer is
provided in the single-choice questions. This indicates that the vast
majority of technical knowledge encountered in most CTF contexts
have been adopted by LLMs during their pre-training phase, which
is encouraging. On the other hand, with open-ended questions,
we find that LLMs exhibit poor capability in matching technical
knowledge to specific CTF scenarios. In particular, LLMs strug-
gle more with accurately matching technical knowledge to more
challenging CTF scenarios. This underscores how aiding LLMs in
effectively mapping their CTF knowledge to specific problems is a
crucial area for improvement. Furthermore, the correlation analysis
between our results and previous benchmark results [69, 70, 87],

along with an in-depth analysis of execution logs from these works,
indicates that the absence of tools and unfriendly environments
pose significant limitations for LLMs to solve CTF challenges.

To illustrate the benefit of our measurement, we design CTFA-
gent, a novel LLM-driven framework for advancing CTF problem-
solving. CTFAgent introduces two new modules: two-stage Re-
trieval Augmented Generation (RAG) and interactive Environmen-
tal Augmentation (EA). Specifically, we provide CTF knowledge via
RAG at different stages of the CTF, including searching for potential
vulnerabilities based on relevant CTF vulnerability code snippets
during the problem understanding phase and supplying knowledge
on how to effectively exploit a specific vulnerability during the
problem exploiting phase. In the EA module of CTFAgent, we
provide a more interactive CTF environment by integrating inter-
active command lines and advanced CTF tools, which significantly
simplifies the challenge-solving process for LLMs compared to their
operation within a native command-line environment.

We conduct an extensive evaluation of CTFAgent on two re-
cent and popular CTF datasets, Intercode-CTF [87] and NYU CTF
Dataset [70]. The results show that the CTFAgent framework has
enhanced the capability of LLMs in automatically solving CTF prob-
lems by 85%, improving from the original 39 out of 100 to 73 out
of 100 on Intercode-CTF. Leveraging OpenAI’s SOTA model o1
as its backbone, CTFAgent is capable of solving an additional 11
challenges within this dataset. On the more challenging NYU CTF
Dataset, CTFAgent still performs commendably by improving the
number of solved challenges by over 120%. Furthermore, in the
recent picoCTF2024 hosted by CMU, CTFAgent ranked in the top
23.6% of nearly 7,000 human participants, significantly higher than
the NYU CTF framework [70], which ranked in the top 47.2%. Mean-
while, as disscussed in §6.3, we thoroughly consider the potential
risks of CTFAgent being misused. While taking appropriate ac-
tions, we also call on the broader community to remain vigilant
about the possible abuse of automated tools.

In sum, we make the following contributions in this paper:
• CTFKnow: A benchmark for measuring LLMs’ CTF knowl-

edge. We construct CTFKnow with 3,992 questions based on
1,086 CTF write-ups and nearly 2,000 distinct knowledge points
extracted from them, enabling targeted assessment of LLMs’ tech-
nical knowledge across varying difficulty levels.

• Comprehensive measurement of LLMs on CTF tasks. Us-
ing CTFKnow, we perform a systematic measurement with five
mainstream LLMs, revealing both strengths and limitations in
their understanding and application of CTF knowledge.

• CTFAgent: Augmenting LLMs for automated CTF solving.

We propose CTFAgent, which integrates tailored RAG and inter-
active environment modules, achieving substantial performance
gains across two CTF benchmarks and real-world competitions.

Artifact. CTFKnow and its evaluation scripts, with the full paper
(Appendix included), are accessible at our landing website. CTF-
Know is designed to be easily extensible. To minimize potential
misuse, the release of CTFAgent is subject to a review process on
the website, ensuring that access is restricted to institute-affiliated
research personnel only.

2 Background

2

https://yan5ui.github.io/CCSCTF-Web/

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

2.1 Capture the Flag (CTF)

CTF competitions are a crucial component of cybersecurity edu-
cation [81]. These gamified competitions expose participants to
diverse challenges that encompass a wide range of cybersecurity
topics. Each challenge constitutes a carefully designed sandbox en-
vironment that mimics real-world security vulnerabilities. In these
scenarios, organizers set up services or create situations laden with
specific vulnerabilities, containing a hidden text string or “flag.”

Core CTF Knowledge

Exploit Actions

Challenge
Description

Attached
Files

CTF Challenges
System Feedback

Flag: flag{...}

Figure 1: The typical progress of solving a CTF challenge.

Figure 1 illustrates the typical progress of solving a CTF chal-
lenge, summarized from previous work [42, 69, 87]. Overall, to
“capture a flag”, the CTF player will need to possess a combination
of technical knowledge, reasoning skills, and the ability to execute
actions effectively. The process begins with the player identifying
the challenge type and understanding the underlying vulnerabilities
with his/her core CTF knowledge. Next, the player must apply the
appropriate techniques to exploit these vulnerabilities, e.g., crafting
a payload to manipulate the target system. Finally, the player exe-
cutes the payload and monitors the system’s response to determine
whether the exploit was successful. If successful, the player cap-
tures the flag and scores points. Overall, non-trivial CTF challenges
require participants to demonstrate both theoretical knowledge and
practical skills in cybersecurity. Successfully capturing a flag allows
participants to score points in the competition, and the player with
the highest score at the end of the CTF competition wins.

To support the study and practice of CTF competitions, engag-
ing with various CTF platforms that aggregate, document, and
curate challenges from past contests is essential for participants’
learning [57]. Representative platforms include picoCTF [25], NYU-
CSAW [8], and buuctf [7], and others. Additionally, specialized
platforms such as CTFtime [5] compile information on CTF compe-
titions, team data, challenge details, and write-ups. In this paper, all
collectedwrite-ups have been sourced fromCTFtime.Well-designed
CTF challenges encompass a wide range of types that cover most
real-world cybersecurity scenarios. The primary categories include:
• Web: These focus on web application security, requiring par-
ticipants to exploit vulnerabilities like SQL injection, Cross-Site
Scripting (XSS), and file upload issues to retrieve hidden flags.

• Reverse (Rev): Using reverse engineering methods to extract
vulnerability information from binary files and write scripts to
capture flags, often hidden using complex encryption methods.

• Pwn: Concentrating on binary security, these challenges involve
vulnerabilities such as stack overflows, heap overflows, requiring
extensive knowledge of system and binary code security.

• Crypto: These involve attacking cryptographic systems like
AES, RSA, and ECDSA, demanding strong mathematical skills,
particularly in number theory and abstract algebra.

• Forensics: Inspired by real-world computer forensics, these chal-
lenges often hide flags within multimedia files and include tasks
like traffic packet analysis and steganography.

• Misc: These cover a variety of security scenarios including Open
Source Intelligence (OSINT), social engineering, etc.

CTF Value in Cybersecurity. According to projections by Cyber-
security Ventures, global cybercrime costs are expected to reach
$10.5 trillion annually by 2025, reflecting a 15% annual growth
rate since 2020 [1]. This increasing threat landscape is prompting
organizations to invest more in cybersecurity training and skill
development. To date, CTF competitions have been playing a vital
role in cybersecurity education and training. These competitions
simulate real-world security scenarios, challenging participants
across various categories. This encourages continuous learning to
the ever-evolving cybersecurity landscape. CTFs have significant
industry visibility. Industrial giants like Google and governmental
organizations like DARPA actively hosts CTFs to showcase their
cybersecurity prowess and attract a talent pool. Leading-edge CTFs
often leverage cutting-edge information systems to design chal-
lenges that may involve exploiting zero-day vulnerabilities, offering
substantial rewards and valuable contributions to the cybersecurity
community [3, 9, 27, 29, 72]. These illustrate the importance and
value of measuring and augmenting LLMs for CTF challenges.

2.2 Large Language Models (LLMs)

Since the release of GPT-3.5 in 2022 [17], Large Language Models
(LLMs) have attracted increasing attention. Trained on extensive
natural language data, these models are fine-tuned for various
downstream tasks [40, 60, 65, 82]. Leading LLMs such as o1 [22],
GPT-4 [35], Claude 3.5 Sonnet [11], and Llama-3.1 [23] have excelled
in natural language understanding [51] and code generation [92].

List the news happened
in September 2024.

Query

Vector DB

Embeded ChunksEmbedding

Chunk 1: In Sept. 2024...
 Chunk 2: (Another news)

...
News happed :...

Response

Label 1In September 2024...

Documents
Embedding

❶ Indexing

❷ Retrieval❸ Generation

Figure 2: The standard workflow of RAG.

In this paper, we enhance LLMs using a customized version of
Retrieval-Augmented Generation (RAG) technology, which incor-
porates knowledge from external databases [48]. As illustrated in
Figure 2, RAG allows for pre-retrieval of information, enriching the
LLM’s context and knowledge base. The standard RAG workflow
includes three stages: indexing, retrieval, and generation. During
indexing, a pre-collected knowledge dataset is converted into plain
text, segmented, and embedded into a vector database. In the re-
trieval stage, the framework performs cosine similarity searches
based on user queries, returning the top-K results for the LLM’s ref-
erence. Recent enhancements in RAG technology, such as CoN [90]
and NoiseRAG [43], have further refined this method.

LLM agents have recently seen widespread application across
a variety of commercial tasks [59, 66, 89]. A typical LLM agent

3

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

comprises three main modules: understand, plan, and act. The un-
derstand module is primarily responsible for identifying the task
that needs to be completed, based on user input or environmental
feedback. The plan module decomposes the understood task into
sub-tasks, facilitating their completion by the act module. The act
module primarily leverages the tool invocation capability of LLMs,
enabling the LLM to utilize externally provided tools to accomplish
these sub-tasks and to receive the results following the tool’s ex-
ecution. In this paper, we primarily utilize the OpenAI Assistants
API [6] and OpenAI Function Calling [14] to construct our tool.

3 Measuring LLM Capability for CTF

3.1 LLM4CTF: Understanding and Exploiting

In accordance with our introduction on how human participants
solve CTF challenges, as detailed in §2, we synthesize insights
from previous work [69, 70] to summarize the steps involved in the
LLM4CTF process.

Overall, using LLMs to solve CTF challenges involves two general
phases: Understanding and Exploiting.
• Understanding entails comprehending the problem’s context,
identifying the appropriate vulnerability type, and proposing
potential exploitation strategies.

• Exploiting involves using command-line tools, CTF-specific tools,
or scripts to capture the flag, based on a clear understanding.
In the Understanding phase, an LLM must evaluate potential

vulnerabilities and attack surfaces from provided code snippets
and scenarios, requiring the correlation of vulnerable code charac-
teristics with specific vulnerabilities. This capability is grounded
in technical knowledge—a cybersecurity competency that encom-
passes a comprehensive understanding of vulnerability types and
their typical code manifestations. Nevertheless, as defined in previ-
ous works [42, 62], CTF technical knowledge should exclude non-
technical aspects such as security regulations. We clarify that this
definition aligns precisely with our study’s focus on the technical
understanding of vulnerabilities and their code-level expressions.

Transitioning to the Exploiting phase, the demands on LLMs’
capability further increase. First, there is a need for knowledge
about using relevant tools or writing scripts, also considered part
of technical knowledge. This includes proficiency with command-
line interfaces, specialized CTF tools, and Python libraries designed
for exploiting vulnerabilities. Second, this phase emphasizes the
model’s reasoning ability, particularly its capacity to refine strate-
gies based on feedback from tool or script execution, such as de-
bugging Python scripts after runtime errors.

As such, technical knowledge is needed in both phases. How-
ever, current research primarily evaluates LLMs on their overall
performance in solving CTF challenges [69, 70, 87], without recog-
nizing the importance of technical knowledge. To address this, this
section presents a benchmark specifically designed to assess the
technical knowledge of LLMs, using single-choice and open-ended
questions to isolate this evaluation from reasoning ability.

3.2 CTFKnow Design

Motivation. We recognize the necessity for a benchmark that
specifically measures LLM capabilities in CTF. Yet, existing bench-
marks, such as Intercode-CTF [87] and NYU CTF Dataset [70], focus

❶ Write-up Collection ❷ Technical Knowledge
Extraction

❹ Question Generation

- Challenge Description
 - Exploit Methods
 - Exploit Scripts

Prompt Template In a XSS challenge, which option is right?

Prompt Template

Label 1In case of a XSS challenge...

⨁ single-choice question

In a XSS challenge, what should you do?

open-ended question

❸ Knowledge FilteringHallucination Judge and Filter

❺ Question Filtering Ground Truth Judge and Filter

Figure 3: The workflow of building our benchmark.

on evaluating LLMs’ overall performance in solving CTF challenges.
We see this as a limitation, as it is often challenging to disentan-
gle the technical knowledge from the reasoning ability of LLMs,
resulting in a lack of clarity in the evaluation and even bloated
performance metrics. We thus champion a targeted benchmark that
deliberately measures LLMs’ technical knowledge, which is crucial
for understanding and exploiting vulnerabilities in CTF challenges.
This benchmark should offer a focused and innovative viewpoint
on LLM, without incurring biases or bloated performance metrics.

Building on the above motivation, we develop CTFKnow to mea-
sure LLMs’ technical knowledge in CTF scenarios. As in Figure 3,
building CTFKnow was divided into the following five phases.
① Write-up Collection. We first select over 700 large-scale inter-
national CTF competitions from the past five years, including pres-
tigious events like DEFCON [13], HITCON [20], GoogleCTF [16],
and UIUCTF [28], among others. We use the CTFtime platform
(introduced in §2.1) as our primary source for the collection of
competition information and write-ups.

Specifically, we deployed web scraping scripts to extract all avail-
able challenge write-ups from these competitions, converting them
fromHTML toMarkdown format to facilitate easier comprehension
by LLMs. This process yielded a collection of over 10,000 write-ups.
However, recognizing not all write-ups met our quality standards,
we applied the following criteria to refine our selection: (i) A mini-
mum of 30 lines of text, ensuring the write-ups were sufficiently
detailed and comprehensive, covering aspects such as Challenge De-
scription and Exploit Method. (ii) Exclusion of images and external
resource links. Despite state-of-the-art LLMs’ capability to process
images, we focused on write-ups relying on textual command-line
outputs to avoid challenges and biases associated with image in-
terpretation. (iii) Inclusion of a “Challenge Description” section to
provide contextual background, enhancing LLMs’ understanding
of the scenario and avoiding substantial comprehension biases.

This filtration process yielded 1,084 high-quality write-ups that
form the basis for our benchmark’s single-choice questions.
② CTF Knowledge Extraction. To ensure the scalability of our
benchmark and to manage the overall workload efficiently, we use
the advanced LLM, GPT-4, for CTF knowledge extraction. Our
method employs prompt engineering techniques, utilizing cus-
tomized prompts that enable the LLM to accurately identify CTF

4

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

{In a scenario involving a blind command injection vulnerability where direct output is not available}, which of the below command
sequences would be effective for determining the presence of files starting with the letter 'f' in the current directory given the binary success
or failure response from the system?
A. {ls | grep ^f | wc -l | grep 1}
B. ls -a | grep f*
C. find / -name f*
D. echo f | ls -l
Answer : A Type : Misc Difficulty of original Challange : 0.84

Technical Knowledge

Single-choice Question

{When dealing with blind command injection vulnerabilities, where output only indicates success or failure}, {use conditional commands
based on output success to infer the presence or absence of specific files, file contents, or directory listings. Commands like `ls`, `wc`, and
`grep` can be combined to derive information about the file system layout, the number of files present, or even the content of files, by iterating
through possible values and observing the binary outcome. This approach is viable when direct output is suppressed or not indicative of the
executed command's result.} {Example payload for deriving file names: `ls | grep ^f | wc -l | grep 1`}

{} CTF Scenario
{} Exploit Method
{} Example Payload

Figure 4: A benchmark example includes extracted technical knowledge and a single-choice question. The open-ended question

is derived by changing the single-choice question’s wording from “which of the below” to “what” and removing all options.

knowledge. This setup instructs the LLM to extract up to two dis-
tinct pieces of CTF knowledge from each write-up since both under-
standing and exploiting steps have the corresponding knowledge.
Each piece of CTF knowledge is categorized into three segments:
CTF Scenario, Exploit Method, and Example Payload. This structure
ensures that each piece of CTF knowledge maintains as much infor-
mational integrity as possible, facilitating further work. We repeat
this process for each of the 1,084 selected write-ups, ultimately
extracting 2,078 instances of CTF technical knowledge.
③ Knowledge Filtering. To mitigate potential hallucinations by
LLMs in the CTF Knowledge Extraction task, we employ another
LLM to assess and filter the extracted knowledge for hallucinations.
To avoid potential bias, we utilize the Deepseek model (version
Deepseek-chat-v2.5), which differs from GPT-4, for this evalu-
ation and filtering process. The knowledge extracted in step ②,
along with its corresponding original write-up, is input into the
Deepseek model, which assesses the degree of alignment between
the knowledge and the write-up.

For each knowledge point, we retain it only if Deepseek assesses
it fully matches the write-up and accurately reflects its content.
Following this step, we keep 2,013 high-quality knowledge points
that are mostly free from hallucinations to serve as the foundational
data for subsequent processing.
④ Question Generation. The design process for single-choice
questions is facilitated through prompt engineering with GPT-4.
To avoid potential context loss that could adversely affect ques-
tion design, we input both the original write-up and extracted CTF
knowledge into the LLM. This approach enables generation of a
single-choice question based on each piece of CTF knowledge, en-
suring questions remain grounded in the context of the originating
write-up. For each question, we ensure the LLM retains the CTF
Scenario from the CTF Knowledge as the stem, using either the
Exploit Method or Example Payload as the correct option, thereby
maintaining the independence and integrity of each question.

Based on these single-choice questions, we slightly adjust the
wording of each question, for example, changing “which of the
following” to “what” and removing all option information, thus
creating our set of open-ended questions. Hence, the number of
open-ended questions matches that of the single-choice questions.

These open-ended questions do not provide potential answers to
the LLM and are primarily used to assess the LLM’s ability to match
CTF scenarios with CTF technical knowledge, posing a higher
level of difficulty. Given that both single-choice and open-ended
questions are constructed from technical knowledge points derived
from CTF Knowledge Extraction, we treat the assessment results as
indicators of the test subjects’ understanding of the corresponding
technical knowledge, which is commonly adopted in educational
and cybersecurity assessment [71, 78] contexts.
⑤ Question Filtering. To ensure the accuracy of the ground truth
answers for the questions generated in ④, we employed another
LLM (Deepseek) for Question Filtering. After this step, we retained
a total of 1,996 high-quality questions for subsequent evaluation.
Manual Verification. Given the benchmark formed by the above
steps, we manually verified the final set of knowledge points and
questions. We selected 323 instances1 for evaluation. Two authors
independently cross-checked these knowledge points to assess their
relevance to the original write-ups as well as the accuracy of the
ground truth answers for the single-choice questions. We find that
only two technical knowledge points and questions exhibit slight
inaccuracies, indicating that over 99.38% (1− 2/323) of the knowledge
points and single-choice questions are reliable after two rounds of
filtering. This further reflects the high quality of CTFKnow.
An Illustrative Example. Figure 4 demonstrates a technical knowl-
edge example and a single-choice question crafted using ② and ③.
The original challenge write-up employs the payload ls | grep
ˆf | wc -l | grep 1 in a blind command injection vulnerability,
effectively bypassing restrictions by indicating the presence of files
starting with ’f’ in the directory. The designed technical knowledge
states: "In blind command injection scenarios, where output indi-
cates only success or failure, commands like ls, wc, and grep can
be combined... Example payload: ls | grep ˆf | wc -l | grep
1." The single-choice question utilizes this CTF scenario, presenting
the example payload as the correct answer alongside three incorrect
options. The open-ended question is crafted by subtly altering the
wording to avoid direct repetition of the example.
1“323” is determined using the “Statistics of a Random Sample” algorithm at https:
//www.calculator.net/sample-size-calculator.html. For a population of 1,996 instances,
a sample size of 323 ensures a 95% confidence level with a 5% margin of error.

5

https://www.calculator.net/sample-size-calculator.html
https://www.calculator.net/sample-size-calculator.html

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

3.3 Measurement Settings

Using CTFKnow, we measure LLMs’ mastery of CTF technical
knowledge. Specifically, we aim to address the following two re-
search questions (RQs):
• RQ1: To what extent do LLMs grasp technical knowledge in CTF
scenarios?

• RQ2: How well can LLMs correctly match and apply this techni-
cal knowledge in given CTF scenarios?

Single-choice Questions. The evaluation of single-choice ques-
tions is straightforward. During the question generation, we gener-
ated only one possible ground-truth answer per question, such as
answer A in the case shown in Figure 4.
Open-ended Questions. The evaluation of open-ended questions
is more complex. We use another LLM (GPT-4-Turbo, version
gpt-0125-preview) as an evaluator to assess the responses of
the LLM being tested. The inputs for this evaluator include the
open-ended question, the corresponding reference answer, and
the response from the LLM under test. A response is considered
correct only if it achieves the same effect as the reference an-
swer without modifications needed to solve the problem. This
rigorous evaluation standard is adopted to more accurately as-
sess the LLM’s ability to precisely match technical knowledge in a
given CTF scenario. To avoid possible biases in evaluating GPT-4-
Turbo’s answer using itself, we add an additional evaluation of the
GPT-4-Turbo model using the open-source Qwen model (version
Qwen2.5-72B-Instruct) as a cross-check.
Model Selection.We selected five widely-used LLMs, including
three proprietary models: GPT-4 Turbo (version gpt-4-0125-
preview), GPT-4o (version gpt-4o-2024-08-06), andGPT-3.5-Turbo
(version gpt-3.5-turbo-0125). The two open-source models cho-
sen are Llama 3 (version llama3-70b, with an 8,192 context win-
dow) and Mixtral-8x7b (with a 32,768 context window). These LLMs
collectively represent the best in both proprietary and open-source
models, providing comprehensive data support for our exploratory
study. Findings are reported in the following sections.
Human Evaluation. To assess the quality of questions in CTF-
Know and provide a more intuitive comparison of LLM evaluation
results, we invited five undergraduate-level CTF players to par-
ticipate in the testing. Each participant was asked to complete 90
single-choice questions and 30 open-ended questions within 120
minutes. These questions were randomly sampled from CTFKnow,
ensuring a comprehensive inclusion across all CTF categories. For
assessing the correctness of open-ended responses, we employed
manual verification instead of LLM-based evaluation. This decision
was made because human participants tend to provide brief an-
swers, which could introduce significant bias if an LLM were used
as the evaluator, per our observation. It is also worth noting that in
this testing, it is the human experts who are involved in answering
cybersecurity questions only. Thus, no human is under “attack” in
any circumstances, and no personal or identifiable information (PII)
is collected. Given the nature of this testing, which involves non-
interventional expert task responses and no collection of personal
data, it qualifies for exemption under Exempt Category 2 [80]. We
will also acknowledge the assistance of these invited students in
the Acknowledgement section upon publication of this paper.

3.4 Knowledge Measurement (RQ1)

Table 1 presents the measurement results of LLMs on single-choice
questions. The outcomes show that all five evaluated LLMs perform
exceptionally well, with an overall accuracy rate exceeding 70% for
each model. Notably, GPT-4o achieved the best results, successfully
answering 1,753 out of 1,996 questions, which translates to an im-
pressive accuracy rate of 87.83%. This demonstrates that LLMs have
thoroughly mastered a significant amount of technical knowledge
during the pre-training phase.

Finding 1: LLMs exhibit a strong grasp of technical knowledge
on CTF, mastering the vast majority of technical knowledge
encountered in most CTF contexts.

Further analysis of the single choice question section in Table 1
across different challenge categories reveals that, generally, LLMs
have the most solid understanding of technical knowledge in re-
verse engineering challenges, while their grasp on Web challenges
appears weakest. This aligns with intuition, as reverse engineering
challenges often involve understanding and analyzing decompiled
code, a skill at which LLMs excel. In contrast, Web challenges in-
volve dynamic operations and usage of penetration testing tools,
knowledge that is typically distributed across various multimodal
data sources, making it more challenging and costly to learn.

Finding 2: LLMs’ mastery of technical knowledge varies across
different types of CTF challenges, with the strongest perfor-
mance in Reverse and the weakest in Web.

A longitudinal comparison among different LLMs reveals that,
while all demonstrate commendable performance, notable differ-
ences exist. Among five LLMs tested, GPT-4-Turbo, GPT-4o, and
Llama-3 slightly outperform GPT-3.5-Turbo and Mixtral-8x7b. This
is consistentwith results from general benchmarks such asMMLU [51],
suggesting that for general-purpose models, better overall capabili-
ties correlate with robust mastery of CTF technical knowledge.

3.5 Comparative Analysis (RQ2)

Despite LLMs demonstrating a strong grasp of technical knowledge
in CTF scenarios, successfully solving CTF challenges requires not
only mastering this knowledge but also accurately matching and
applying it to the scenarios. This is the focus of RQ2, for which
we employed the aforementioned open-ended question evaluation
method.

Table 1 summarizes the experimental results, indicating that
LLMs perform significantly worse on open-ended questions com-
pared to single-choice questions. Even the best-performing mod-
els, GPT-4o and GPT-4 Turbo, barely reach an accuracy of 50%,
with the poorest performer, Mixtral-8x7b, achieving only 30% ac-
curacy. The evaluation results of GPT-4 Turbo using GPT-4 Turbo
and Qwen as evaluator are quite similar, the result evaluated by
Qwen is even slightly higher than that evaluated by GPT-4 Turbo,
indicating that the evaluation is free of bias in this task. The accu-
racy rates for all models dropped by about half when compared
to single-choice questions. This suggests that without potential
correct answers, LLMs struggle to precisely apply their mastered
technical knowledge based on CTF scenarios, a critical capability

6

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 1: Overall performance of mainstream LLMs on our CTF technical knowledge measurement. The numbers in parentheses

indicate the counts of correctly solved questions. The same convention applies to all subsequent tables. Since the human

baseline is tested on a subset of CTFKnow, we omit the parentheses in the “Human Eval.” row to avoid misleading.

Models / Human Web (218) Pwn (459) Misc (332) Crypto (638) Reverse (128) Forensics (221) Total (1996)

Single-choice Questions

GPT-3.5-Turbo 72.02% (157) 79.08% (363) 82.23% (273) 81.03% (517) 79.69% (102) 76.47% (169) 79.21% (1581)
GPT-4-Turbo 80.73% (176) 85.40% (392) 87.95% (292) 86.21% (550) 90.62% (116) 85.07% (188) 85.87% (1714)
GPT-4o 83.03% (181) 88.02% (404) 89.46% (297) 88.56% (565) 89.84% (115) 86.43% (191) 87.83% (1753)

Llama-3-70b 83.03% (181) 86.06% (395) 88.86% (295) 85.89% (548) 89.84% (115) 87.33% (193) 86.52% (1727)
Mixtral-8x7b 77.98% (170) 78.00% (358) 84.34% (280) 79.15% (505) 78.91% (101) 75.11% (166) 79.16% (1580)
Sampled Human Eval. 59.15% 66.67% 65.62% 69.88% 62.67% 55.26% 63.33%

Open-ended Questions

GPT-3.5-Turbo 33.49% (73) 32.68% (150) 43.07% (143) 34.01% (217) 34.38% (44) 35.75% (79) 35.37% (706)
GPT-4-Turbo 46.79% (102) 50.33% (231) 56.63% (188) 51.72% (330) 49.22% (63) 55.20% (122) 51.90% (1036)

GPT-4o 47.71% (104) 48.58% (223) 55.72% (185) 48.28% (308) 54.69% (70) 55.20% (122) 50.70% (1012)
Llama-3-70b 34.40% (75) 32.03% (147) 40.96% (136) 36.68% (234) 42.19% (54) 40.27% (89) 36.82% (735)
Mixtral-8x7b 33.94% (74) 26.36% (121) 34.34% (114) 28.37% (181) 34.38% (44) 32.58% (72) 30.36% (606)
Sampled Human Eval. 12% 36% 52% 16% 40% 40% 32.66%
GPT-4-Turbo
(Evaluated by Qwen) 51.83% (113) 54.90% (252) 59.34% (197) 54.55% (348) 57.03% (73) 54.30% (120) 55.26% (1103)

in actual problem-solving. Additionally, the data distribution for
open-ended questions across different types of CTF challenges re-
mains consistent with that of single-choice questions, with LLMs
still showing a preference for Reverse over other challenges.

The human evaluation results demonstrate that both types of
questions present significant challenges even for human experts. For
the single-choice questions, the average accuracy is generally lower
than that of the LLMs. For the open-ended questions, while human
participants achieved performance comparable to some LLMs (e.g.,
GPT-3.5-Turbo, Mixtral-8x7b, and Llama-3-70b), we observe that
advanced LLMs can notably outperform human participants. We
find these results encouraging, as they illustrate both the difficulty
of our CTF questions and the potential of LLMs in this domain.

Finding 3: LLMs exhibit poor capability in matching technical
knowledge to specific CTF scenarios, highlighting a crucial area
for enhancing LLMs’ ability to effectively solve CTF problems.

Given that our open-ended questions were derived from write-
ups corresponding to original CTF challenges, the difficulty of these
challenges might influence LLMs’ responses to these questions. To
explore this, we analyze the performance of the five LLMs across
open-ended questions for CTF challenges of varying difficulties.

Figure 5 shows the results, where the x-axis represents the diffi-
culty of the original CTF challenges, calculated as the score of the
current challenge divided by the highest score in the same competi-
tion. Values closer to 1 indicate higher difficulty, while values closer
to 0 suggest easier challenges. The data and trends indicate that for
all LLMs, accuracy decreases with increasing challenge difficulty.
Notably, the GPT-4o model shows significant variation, achieving
nearly 80% accuracy for questions with difficulty below 0.1. Yet, it
achieves about 45% for questions with a difficulty above 0.9. Even
the Llama-3 model, which exhibited the least variation, showed a
difference of over 10% in accuracy.

0.0
-0.

1
0.1

-0.
2
0.2

-0.
3
0.3

-0.
4
0.4

-0.
5
0.5

-0.
6
0.6

-0.
7
0.7

-0.
8
0.8

-0.
9
0.9

-1.
0

Difficulty Range

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 R

at
e

GPT-3.5-Turbo
Llama-3-70b
GPT-4-Turbo
GPT-4o
Mixtral-8x7b

Figure 5: LLMs’ correctness rate by difficulty of original chal-

lenges in open-ended questions.

Finding 4: In general, LLMs appear to demonstrate a visible
decline in its performance as the difficulty of the original CTF
challenges increases, indicating that they struggle in matching
technical knowledge to those more challenging CTF scenarios.

However, previous studies [69, 70, 87] indicate that even for sim-
pler CTF problems, the proportion of challenges that LLMs can
correctly solve in actual CTF solving processes does not exceed
30%, which is lower than our evaluation results for open-ended
questions. Our research and observations from some examples sug-
gest that this discrepancy occurs because, often, even when LLMs
correctly match the necessary technical knowledge, they fail to
solve problems successfully due to the absence of specific CTF
tools, installation failures, or an inability to adjust the solution
payload based on feedback from the environment. For example, by
analyzing the execution logs of Intercode-CTF [87], we observed
that many failures stem from LLM agents lacking necessary Python
libraries when writing solution scripts, coupled with their inability
to resolve system-related errors during library installation. Typical

7

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

missing packages include cryptography and gmpy2. Additionally,
even when agents successfully wrote complete scripts with all
dependencies installed, they often failed to debug the scripts, ul-
timately leading to task failure. Failures due to missing tools or
guidance were also frequent. Notably, in the Mini RSA challenge,
while the agent correctly identified the need to factorize the RSA
modulus N, it failed to use online integer factorization databases,
instead attempting alternative factorization algorithms, which re-
sulted in timeout-induced failures. Similar patterns were observed
in the execution logs of NYU CTF Bench [70].

Finding 5: Our knowledge measurement and analysis of previ-
ous works shows that when LLMs attempt to solve CTF chal-
lenges and interact with the CTF environment to capture flags,
the absence of tools and the presence of unfriendly environ-
ments pose significant limitations.

Broader Implications for the CTF Domain. Our findings high-
light both the encouraging potential and implications of LLMs in
the CTF domain. Overall, the strong grasp of technical knowledge
suggests LLMs can serve as effective educational aids, providing
learners with instant access to security breach insight. Specifically,
LLMs could function as intelligent tutoring systems and interactive
knowledge bases that guide learners through CTF challenges by
explaining vulnerabilities and suggesting relevant technical con-
cepts on demand. This is encouraging, as it aligns with the growing
trend of using LLMs in educational settings, where they can assist
learners in understanding complex topics and provide personalized
learning experiences. Moreover, we believe LLMs can also augment
the CTF community by serving as valuable tools for CTF content cre-
ation and competition judging. They could automate the generation
of new challenges, develop realistic scenarios, assess competitor
performance, and even provide hints during competitions. This
reduces the burden on CTF organizers and fostering a more vi-
brant and engaging competition environment. This could lead to
more frequent and diverse CTF events, benefiting both seasoned
professionals and aspiring cybersecurity enthusiasts.

4 Augmenting LLMs for CTF with CTFAgent

Our above discussion (“Broader Implications for the CTF Domain”)
sheds light on the promising potential of LLMs in accelerating
various aspects of the CTF community (e.g., education, training,
and competition). That said, the measurement study findings also
uncover technical challenges that LLMs face when solving CTF. To
effectively address them and unleash the full potential of LLMs in
the CTF domain, we propose CTFAgent to augment LLMs for CTF.
Below, we first elaborate on how findings from our measurement
study inform the design of CTFAgent and then present the design.

4.1 Reflection from Measurement Findings

In Findings 1 and 2 of §3.4, we observed that LLMs demonstrate
a strong grasp of CTF technical knowledge. Even in the relatively
low-performing Web category, the accuracy exceeds 70%, highlight-
ing their significant potential for automating the solution of CTF
challenges. Despite these encouraging observations, the following
limitations motivate our further exploration and augmentation of
LLMs for CTF challenges:

§4.2 RAG Module

Challenge
Description

Attached
Files

CTF Challenges
Interactive Command

Advanced CTF tools

DB-Understanding

Understanding

Retrieval

Technical
Knowledge

Hints

Exploiting

Retrieval

Technical
Knowledge

Hints

DB-Exploiting

Submit Flag

§4.3 EA Module

Figure 6: Overview of CTFAgent.

In Finding 3, we observed that LLMs struggle to match technical
knowledge to specific CTF scenarios, a challenge also common
among human CTF participants due to the vast and complex nature
of technical details, which can be difficult to recall. As a result,
human solvers often rely on web browsers, personal wikis, or blogs
to retrieve detailed hints and knowledge for their problem-solving
efforts. In Finding 4, we discovered that for complex and difficult
CTF scenarios, it is even more difficult for LLMs to precisely pro-
vide effective technical knowledge to solve CTF challenges, which
increasingly shows that for a given CTF scenario, we need an effec-
tive means to provide LLMs with accurate technical knowledge to
imitate the behavior of human player to retrieve external resources.
As a result, we design a customized version of RAG, called two-
stage RAG, which allows LLMs to perform searches based on CTF
scenarios and more accurately match technical knowledge during
both the Understanding and Exploiting phases.

In Finding 5, we discovered that the usefulness of the interaction
environment affects the performance of LLMs in CTF scenarios.
Human CTF participants often require a variety of specialized tools
to complete complex problem-solving processes. Therefore, we aim
to simplify operations for LLMs within the CTF environment by
providing them with interactive commands and advanced tools
through Interactive Environmental Augmentation.
CTFAgent Overview. Based on the design principles above, we
designed CTFAgent as illustrated in Figure 6. CTFAgent primar-
ily comprises two modules: the Retrieval-Augmented Generation
(RAG) and Environmental Augmentation (EA). Upon receiving a
CTF challenge, including both the challenge description and at-
tached files, CTFAgent initially engages with the EA module. This
interaction involves executing commands such as cat or decompi-
lation instructions to read the code within the CTF challenge. Once
the RAG module detects that the LLM has received code from the
EA, it uses DB-Understanding to employ the code as a key. This
facilitates the retrieval of the two most closely related pieces of
technical knowledge based on vector similarity, which are then
returned to the LLM along with the code itself as hints. Following
the LLM’s successful understanding, identification of vulnerabili-
ties, and formulation of exploitation ideas, it attempts to execute
commands within the EA module to exploit these vulnerabilities
and hence, discover the flag. Throughout this process, the RAG
module employs DB-Exploiting to retrieve technical knowledge
closely aligned with the LLM’s exploit ideas, aiding in capturing
the flag. This continues until the LLM successfully secures the flag
or terminates the problem-solving attempt. Details of these two
modules are presented below.

8

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

To successfully exploit a buffer
overflow vulnerability, you should..

...fgets(buffer, 0x28, stdin);...

DB-Understanding
Embedding

Query

Example payload to the overflow :
\"A\"x16 . \"B\"x4 . \"C\"x108

DB-Exploiting

Hints

Label 1...fgets(buffer, 0x30, stdin)...

Code in CTF Challenges
Vulnerable Code Snippet

Technical Knowledge

Label 1The challenge likely involves
exploiting a buffer overflow
vulnerability, to exploit it..

Exploit Ideas
Technical KnowledgeEmbedding

Query

❶ ❷

❸ ❹ Hints

Figure 7: The architecture of two-stage RAG system. Firstly,

upon reading the code within a CTF challenge, the DB-

Understanding conducts a search based on the code and re-

turns Hints. When the LLM proceeds with subsequent ex-

ploitation, each output of Exploit Ideas is searched in the

BD-Exploit and Hints are returned accordingly.

4.2 Two-stage RAG for CTF Knowledge

To construct technical knowledge pieces as the database for RAG,
the optimal retrieval results should be condensed and focused2
CTF knowledge trunks. These trunks should include relevant back-
ground on CTF scenarios, causes of vulnerabilities, and ideas for
exploitation. Furthermore, we need to provide CTF knowledge via
RAG at different stages of CTF. During the Understanding phase,
the LLM needs to search for potential vulnerabilities based on rele-
vant code snippets. Similarly, during the Exploit phase, it requires
knowledge on how to effectively exploit a specific vulnerability.
To accommodate these two distinct scenarios, we design a two-
stage RAG system, consisting of RAG-Understanding and RAG-
Exploiting, whose architecture is shown in Figure 7.
RAG-Understanding aims to assist LLMs in better identifying
potential vulnerabilities in the tested CTF-related code. Vulnerabil-
ity code snippets serve as the retrieval key in the Understanding
scenario. During the offline preparation, we use another LLM to
extract or reconstruct relevant vulnerability code snippets from
original write-ups and establish their mapping to the extracted tech-
nical knowledge trunks. During the online testing, when the LLM
solving the problem accesses code files via command-line tools,
RAG-Understanding automatically retrieves the vulnerable code
snippets based on the content of the code using cosine similarity
ranking and returns the corresponding technical knowledge trunks
as hints to the LLM. This process effectively informs the LLM about
potential vulnerabilities in the current code, aiding in understand-
ing the problem and facilitating the next steps for exploitation.
RAG-Exploiting focuses on the Exploit phase, where the LLM has
already recognized potential vulnerabilities in the CTF scenario. At
this stage, our goal is to assist it in retrieving knowledge on how
to exploit these vulnerabilities. Since the CTF knowledge trunks
contain both the CTF scenario and exploit methods, retrieval is
directly based on the similarity of the trunks themselves. Whenever
the LLM outputs a potential exploitation idea (“Exploit Idea” in
Figure 7), we use this output to retrieve more specific and effective
2Prior research [69, 70] indicates that as the context for LLMs increases, issues such
as incoherence and forgetting may arise.

strategies for exploiting the vulnerability, using relevant CTF tools,
writing Python scripts, and more.
4.3 Interactive Environmental Augmentation

As mentioned in the second design principle in §4.1, providing a
more potent CTF environment is as important as, if not more impor-
tant than, technical knowledge. However, previous work on CTF
environments [69, 70, 87] provided only static command-line access
in sandboxed Linux machines and non-specialized, general-purpose
tools. Thus, in the Environmental Augmentation (EA) module of
CTFAgent, we aim to provide a more interactive CTF environment
by integrating interactive command lines and advanced CTF tools.
Interactive Commands. This represents our enhancement to
command-line tools. Replicating previous work, we observed nu-
merous difficulties LLMs faced while interacting with the accom-
panying static command-line tools. For example, without timely
prompts, LLMs may fail to solve a problem because they cannot
read a CTF attachment due to insufficient user permissions; or they
cannot interact in real-time with remote servers using the netcat
tool, which only accepts results after the pipeline outputs EOF,
preventing LLMs from testing payloads and receiving immediate
feedback, significantly impacting problem-solving. Based on these
observations, we made substantial adjustments to the Command
Line environment as follows.

First, we provided targeted hints based on potential issues LLMs
might encounter when using different commands, which we refer
to as tool use hints. We manually collected common issues encoun-
tered by LLMs during the interaction, such as difficulties in using
decompilation tools, and crafted specific hints. When LLMs invoke
related tools, timely prompts are provided to enhance their ability
to use various tools and commands.

For example, we observed that when CTFAgent involved in
some Reverse challenges, after it has read the disassembled code
of a given attached binary executable, it may start writing solving
scripts immediately, without reading the discompile code, even if
that is far easier to understand. In that case, if CTFAgent tries to
use the disassemble function call, a prompt saying “Don’t rush to
analyze, try looking at the decompiled results.” would be given. All
tool use hints are included in a json file, making it easily scalable.

Second, we upgraded the Command Line from “static” to “dy-
namic,” meaning that we enable LLMs to receive real-time feedback
from the CTF environment, akin to human interaction. Through
our adjustments and alignment between LLMs and CTF environ-
ment subprocesses, LLMs can now use netcat in a line-by-line
input manner. We implemented this functionality by providing
three additional function calls to CTFAgent:
• start_nc_session. CTFAgent can create a new netcat session
using this tool with ip and port passed as parameters. This tool
will return the initial response of the session to CTFAgent.

• nc_send_line. After a session been created, CTFAgent can in-
teract with it via this tool. By adjusting the stdout pipe to non-
blocking, CTFAgent can receive the result of sending some data
immediately, the session would still be retained unless broken.

• close_nc_session. If a session is broken or no more needed,
CTFAgent can close it using this tool.
With each output from LLM, our augmented Command Line

immediately presents the results of this interaction.

9

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

Description:Huff, puff, and blow that buffer over.
Flag: csawctf{....}

CTF Challange

Calling run command, args: command=ls ~/ctf_files

CTFAgent

puffin
CTF Environment

Calling decompile, args: binary=puffin, function=main

CTFAgent

Use IDA to decompile ...
int __fastcall main(int argc, const char **argv, const char **envp)....

CTF Environment

Given the security features of the binary and the observed behavior, the
challenge likely involves exploiting a buffer overflow vulnerability....

CTFAgent

To successfully exploit a buffer overflow vulnerability, you should..

DB-Understanding

Example payload to the overflow and read the flag: \"A\"x16 . \"B\"x4 . \"C\"x108'

DB-Exploiting

Calling new_nc_session, args: ip=puffin, port=31140
CTFAgent

The penguins are watching:> (Waiting input...)

CTF Environment

Calling nc_send_line, args: command=AAAAAAAABBBBCCCC......

CTFAgent

casw{...}

CTF Environment

Figure 8: An example illustrating the working progress of CTFAgent.

Advanced CTF Tools. These are essential for solving CTF chal-
lenges, just as they are for human CTF players. For instance, with-
out sophisticated code auditing tools and code editors, it can be
nearly impossible to track and examine vulnerable code or locate
vulnerabilities within a large project. To address this, we have pro-
vided LLMs with a more powerful toolkit for CTF challenges. For
example, in previous work [69, 70], the decompiler used was the
community edition of Ghidra [15], which struggled with issues like
failing to correctly identify arrays and producing poorly readable
decompiled code. This impacted the performance of LLMs in CTF
scenarios that heavily rely on decompilers, such as Reverse and Pwn.
Therefore, we upgraded the decompilation tool available to LLMs
to IDA Pro [21], which offers more readable and understandable
decompiled code.
4.4 An Illustrative Example

To demonstrate the workflow of CTFAgent and how its modules
are coordinated, we present an example in the form of a CTF chal-
lenge from the NYU CSAW called “puffin,” categorized under the
Pwn type. The challenge provides a binary executable file, whose
simplified code is given below:

int main() {
char buffer[0x20]; int secret_value = 0;
printf("The penguins are watching: ");
fgets(buffer, 0x30, stdin);
if (secret_value) system("cat /flag.txt");
else printf("penguins\n");
return 0;

}

In this challenge, the binary file (compiled from the above source
code) is deployed on a remote server. Players must connect to
the remote server using tools like nc from their local machines to
interact with the remote service and capture the flag. Players first
need to use appropriate tools to decompile the given binary program
and, based on the decompiled code, identify that the challenge’s
vulnerability is a buffer overflow. They must overflow the buffer in
such a way as to modify the value of secret_value out-of-bounds,
ultimately capturing the flag.

Figure 8 illustrates the process of CTFAgent solving this chal-
lenge. Upon completing the decompilation of an attachment within

EA and accessing the core code, RAG’s DB-Understanding performs
a vector similarity search based on the vulnerable code. It identifies
that the code most closely aligns with technical knowledge regard-
ing buffer overflow and thus returns this piece of knowledge as a
hint to the LLM. Upon reviewing this hint, the LLM generates an
exploit idea targeted at buffer overflow. When RAG’s DB-Exploit re-
ceives this idea, it searches its database for the most closely related
piece of technical knowledge, which includes an example payload
for buffer overflow. This is returned as a hint to the LLM too. Lever-
aging this example payload, the LLM successfully executes the
exploit and captures the flag.

5 Evaluation of CTFAgent

Following § 3.3, this section evaluates CTFAgent in response to
the following research questions:
• RQ3 (Performance): How does CTFAgent perform in auto-
mated CTF challenge solving compared to the methods proposed
in previous work?

• RQ4 (Ablation): What roles do the two modules of CTFAgent
play in the process of solving CTF challenges?

• RQ5 (Practicality): Is CTFAgent effective in recent real CTF
competitions?

• RQ6 (Failure): In cases where CTFAgent fails to solve a chal-
lenge, what are the reasons behind these failures, and what in-
sights do they provide for future research?

5.1 Evaluation Settings

In the evaluations that follow, we primarily use the advanced GPT-4
model, due to its peak performance during benchmark phases, as
our test subject. We use Intercode-CTF [87] and NYU-CTF [70] as
our evaluation datasets and baselines, respectively. These datasets
are chosen because each comes with its corresponding environ-
ment, allowing us to directly use the built-in environments of these
datasets as our baselines. To clarify, we do not use CTFKnow here,
as it is designed for measuring LLMs’ knowledge acquisition ability
(and it is already maintained in CTFAgent’s RAG system), not for
evaluating their end-to-end CTF solving ability.

The Intercode-CTF dataset comprises 100 CTF challenges col-
lected from the picoCTF [25] platform. The Intercode-CTF dataset
contains 100 challenges from picoCTF [25]. Since picoCTF lacks
a Misc category but has General Skills, we use Misc to denote

10

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

General Skills for consistency. As for the NYU-CTF Dataset, it
includes 200 CTF challenges from the CSAW competition. We use
these two dataset to test the overall performance of CTFAgent.

Our code is developed based on the environment provided by the
NYU-CTF Dataset [70] To ensure the stability and reproducibility of
our results, we set the temperature parameter of the GPT-4-Turbo
model to 0 and for each CTF challenge in the two datasets, we
conduct a single test iteration. However, regarding the maximum
number of interaction rounds forCTFAgent to solve each challenge,
we use 30 rounds for both datasets.

5.2 Performance Evaluation (RQ3)

Table 2: Performance of CTFAgent, CTFAgent-w/o-RAG,

CTFAgent-w/o-EA, and Baseline on Intercode-CTF Dataset.

Model CTFAgent Intercode

CTFAgent

-w/o-RAG

CTFAgent

-w/o-EA

Pwn
✔✗ 100% (4) 25% (1) 75% (3) 0% (0)
✔ 50% (2) 25% (1) 50% (2) 0% (0)

Reverse
✔✗ 78% (21) 30% (8) 74% (20) 74% (20)
✔ 70% (19) 26% (7) 48% (13) 59% (16)

Misc
✔✗ 91% (30) 70% (23) 94% (31) 85% (28)
✔ 91% (30) 61% (20) 91% (30) 82% (27)

Crypto ✔✗ 79% (15) 53% (10) 58% (11) 63% (12)
✔ 58% (11) 26% (5) 32% (6) 53% (10)

Forensics
✔✗ 67% (10) 33% (5) 60% (9) 47% (7)
✔ 60% (9) 33% (5) 40% (6) 40% (6)

Web
✔✗ 100% (2) 50% (1) 100% (2) 100% (2)
✔ 100% (2) 50% (1) 100% (2) 100% (2)

Total
✔✗ 82% (82) 48% (48) 76% (76) 69% (69)
✔ 73% (73) 39% (39) 59% (59) 61% (61)

Table 3: Overall performance of CTFAgent, CTFAgent-w/o-

RAG, CTFAgent-w/o-EA, and Baseline on the NYU CTF

Dataset. We obtained experimental data of NYU CTF directly

from the paper by Shao et al. [70].

Model CTFAgent NYU CTF

CTFAgent

-w/o-RAG

CTFAgent

-w/o-EA

Pwn 7.89% (3) 5.08% 5.26% (2) 5.26% (2)
Reverse 11.76% (6) 9.80% 11.76% (6) 5.88% (3)
Misc 16.67% (4) 0% 12.5% (3) 8.33% (2)

Crypto 3.77% (2) 0% 1.89% (1) 1.89% (1)
Forensics 20% (3) 5.26% 6.67% (1) 0% (0)

Web 0% (0) 1.92% 0% (0) 0% (0)

Total 9% (18) 4% 7.5% (13) 4% (8)

Table 2 presents the test results on the Intercode-CTF dataset.
We meticulously documented the performance of CTFAgent and
the Intercode framework on each challenge. If the LLM successfully
submitted the correct flag, we denoted this outcome with ✔, indi-
cating that the LLM fully solved the challenge. If the LLM failed to
solve the challenge correctly but generated a valid approach during
the attempt, correctly identifying the vulnerability associated with
the CTF challenge, we considered this a partial completion and
marked it with a combination of ✔ and ✗. Otherwise, the result
was recorded as ✗. Based on these data, we observe that, overall,
the CTFAgent framework has enhanced the capability of LLMs
in automatically solving CTF problems by 85%, improving from
the original 39 out of 100 to 73 out of 100. Moreover, CTFAgent

Table 4: Performance of CTFAgent-o1-preview in Intercode-

CTF Dataset. The number of challenges solved is presented

as (GPT-4-Turbo solved + o1-preview newly solved).

Model CTFAgent-o1-preview

Pwn 50% (2+0)
Reverse 85% (19+4)
Misc 94% (30+1)
Crypto 68% (11+2)

Forensics 87% (9+4)
Web 100% (2+0)

Total 84% (73+11)

0 5 10 15 20 25 30
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CD
F

CDF of Round Counts

CTFAgent
Intercode Framework

Figure 9: Cumulative distribution function for the number

of rounds taken by CTFAgent (GPT-4-Turbo) and Intercode

framework to complete the solved tasks.

outperforms the Intercode-CTF baseline across every category of
CTF challenge. We interpret the results as highly encouraging.

Furthermore, to fully harness the potential of CTFAgent, we
conducted an additional evaluation using OpenAI’s newly released
SOTA o1 model (version o1-preview) [22]. Due to the high cost as-
sociated with this model, our evaluation focused on challenges from
the Intercode-CTF Dataset that remained unsolved by CTFAgent
using GPT-4-Turbo. Our preliminary observations suggest that chal-
lenges solved by GPT-4-Turbo can be readily addressed by the o1
model. Given that the o1-preview model lacks function-calling
capabilities, we adapted the ReAct [89] prompt template.

As illustrated in Table 4, CTFAgent-o1-preview successfully
solved an additional 11 challenges compared to CTFAgent with
GPT-4-Turbo. This finding indicates that CTFAgent’s performance
can be significantly enhanced by employing more powerful LLMs.

We compiled statistics on the cumulative distribution function
for the number of rounds needed to solve challenges in the Inter-
code CTF Dataset for both the baseline and CTFAgent. As shown
in Figure 9, the baseline averaged 3.9 rounds, with no problems
solved beyond the fourth round. In contrast, CTFAgent averaged
5.6 rounds, solving some challenges in over 20 rounds. This demon-
strates that CTFAgent effectively maintains context throughout
the process, significantly enhancing the LLM’s ability to tackle
more complex CTF problems requiring lengthy rounds interaction.

We present the evaluation results of CTFAgent on NYU CTF
Dataset in Table 3. Although NYU CTF Dataset has notably higher
difficult challenges, CTFAgent also gains remarkable progress. To-
tally 18 of 200 challenges solved,CTFAgentmakes an improvement
of 120% compared with the NYU CTF Baseline (8 challenges solved).

11

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

Table 5: Performance of CTFAgent and NYU Framework in

picoCTF2024.

Type CTFAgent NYU CTF

Misc(8) 575’(7) 225’(4)
Pwn(9) 100’(1) 0’(0)
Web(7) 200’(3) 200’(3)

Forensics(8) 400’(4) 400’(4)
Crypto(6) 300’(2) 0’(0)
Reverse(7) 300’(2) 100’(1)

Total 1875’(19) 925’(12)
Rank Top 23.6% Top 47.2%

Which indicates CTFAgent has huge advantages in more challeng-
ing CTF challenges as well.

5.3 Ablation Study (RQ4)

To investigate the individual contributions of the two modules
within CTFAgent, we conduct ablation experiments using the fol-
lowing two variants of CTFAgent:
CTFAgent-w/o-RAG: In this variant, the LLM solves problems
without any hints, relying solely on its own CTF knowledge and
knowledge matching abilities.
CTFAgent-w/o-EA: Here, the LLM can only use a native static
command-line environment identical to the baseline, equipped with
only the most basic CTF tools.

The evaluation results of these three variants on the Intercode
CTF Dataset and the NYU Dataset are listed in Table 2 and Table 3.
It is evident that the performance of both CTFAgent-w/o-RAG and
CTFAgent-w/o-EA is significantly inferior to that of CTFAgent.
We observe the following phenomena: In Intercode CTF Dataset, the
number of challenges where CTFAgent-w/o-RAG cannot correctly
identify vulnerabilities increases from 18 challenges in the case
of CTFAgent to 24, and the number of challenges it could solve
entirely decreases by 14. Meanwhile, the number of challenges
CTFAgent-w/o-EA could solve entirely decreases significantly as
well, from 73% to 61% compared to CTFAgent. This indicates
that the RAG module aids CTFAgent both in correctly identifying
potential vulnerabilities in challenges and in exploiting them, while
the EA module primarily plays a role during the Exploiting phase
of CTFAgent, which aligns perfectly with the design motivations
and principles of CTFAgent. We can draw the same conclusion
from the experimental results of the NYU CTF Dataset.

Simultaneously, we observe that the performance of CTFAgent-
w/o-RAG and CTFAgent-w/o-EA on some challenges is even worse
than the baseline, which indicates that in certain CTF challenges,
the RAG system and the interactive environment play critical roles.
Without either of them, the overall system performance quickly
drops under the CTFAgent framework.

5.4 Practicality Study (RQ5)

To assess the practicality of CTFAgent, we opt for an evaluation
beyond standardized datasets by selecting the picoCTF2024, held in
May 2024[26], to evaluate CTFAgent. picoCTF, hosted by Carnegie
Mellon University, is a CTF competition renowned internationally.
The picoCTF2024 featured 46 challenges, with 6,957 valid partici-
pants. The challenges, varying in difficulty, were assigned points

Misc

Pwn

Web

Forensics

Crypto

Reverse

Human
CTFAgent
NYU Framework

300

600

900

Figure 10: Average score distribution of all teams with 1,875

points, CTFAgent, and NYU Framework in picoCTF 2024.

ranging from 25 to 500. We conduct a practicality analysis using
CTFAgent and NYU Framework, with the results detailed in Ta-
ble 5. The competition outcomes reveal that CTFAgent successfully
solved 19 CTF challenges, amassing 1,875 points, thereby ranking
in the top 23.6% of all participating teams, significantly outperform-
ing NYU Framework. This indicates that CTFAgent can achieve
promising results in real CTF competitions.

We conduct an in-depth analysis of the performance disparities
between CTFAgent and human CTF participants of comparable
skill levels across various challenge categories. This comparison is
intended to reveal differences in problem-solving characteristics
between CTFAgent and human participants of similar overall profi-
ciency across different types of challenges. We compile the average
scores of all human teams who scored the same as CTFAgent, with
the results presented in Figure 10. We observe that in the Forensics
and Pwn categories, the performance gap between CTFAgent and
human contestants is minimal, which is encouraging as CTFAgent
manifests a human CTF player-level proficiency. More promisingly,
CTFAgent demonstrates superior performance in the Crypto and
Reverse categories compared to its human counterparts.

This superiority can be attributed to the challenges in these cate-
gories primarily requiring the understanding of source code and the
identification of vulnerabilities therein, areas where the capabilities
of LLM, augmented by RAG, have a considerable advantage. Con-
versely, CTFAgent underperforms relative to human participants
in the Misc and Web categories. This underperformance is due to
these challenges necessitating the extensive use of cybersecurity
tools, such as Burp Suite, which involve multi-modal capabilities
that CTFAgent’s current environment does not yet support. Ad-
dressing this requires further research; see §6 for further discussion.
5.5 Failure Analysis (RQ6)

Table 6: Reasons for Failure of CTFAgent in the Intercode-

CTF and the NYU CTF Dataset Subset.

Type of Failures Intercode CTF Dataset NYU CTF Dataset

Give up 3.57% (1) 36.81% (67)
Max rounds 82.13% (23) 43.41% (79)
Context length exceeded 14.30% (4) 15.38% (28)

We analyze the reasons why CTFAgent cannot correctly complete
the entire problem-solving process on the two tested baselines,
with the results shown in Table 6. It is evident that exceeding the

12

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

maximum number of attempts is the primary reason for failure
across both datasets. Based on a manual analysis of these instances,
we believe this may primarily be due to two observations:
• The setting of Interactive Cmd leads CTFAgent to receive many
rounds of command-line outputs, and each time, it can only
process a limited amount of information, which increases the
consumption of attempts.

• After CTFAgent’s initial solving approach proves incorrect, even
if it identifies the next vulnerability to attempt, it does not con-
tinue trying but instead outputs a lot of irrelevant content, such
as the significance of CTF competitions, etc.
These observations shed light on future work: we anticipate

to further enhance CTFAgent’s performance by employing tech-
niques like Tree of Thought (ToT)[88] or Graph of Thought (GoT) [36],
which may presumably enhance the LLM’s ability to persist in at-
tempting more possible solutions.
6 Discussion

6.1 CTF Automation for Education & Research

The automation of CTF challenge solving through LLMs carries sig-
nificant implications for both cybersecurity education and cutting-
edge research. From an educational perspective, LLM-powered
automation can serve as an intelligent “copilot” for cybersecurity
learners [31, 69, 77], helping them rapidly identify attack surfaces
across diverse CTF challenges by observing and learning from auto-
mated solving processes. This addresses a critical need in security
training where the volume and complexity of modern vulnerabili-
ties often outpace traditional teaching methods.

At the research frontier, CTF automation represents a crucial
stepping stone toward more advanced AI-powered offensive secu-
rity capabilities, as evidenced by major initiatives like DARPA’s
Cyber Grand Challenge [10] and the recent AI Cyber Challenge
(AIxCC) [2] with its multi-million dollar prize pool. As noted in [38],
the accelerating pace of software development has made automated
vulnerability discovery and remediation not just desirable but im-
perative — with CTF environments serving as ideal testbeds for
developing and evaluating these capabilities. The successful au-
tomation of CTF solving would directly contribute to addressing
fundamental challenges in automated vulnerability mining and ex-
ploit generation, subsequently enhancing the security of real-world
systems before real attacks occur [32–34].
6.2 Comparing With Prior Work

While prior studies such as Intercode-CTF [87] and NYU CTF
Bench [70] have made valuable contributions by evaluating LLMs’
end-to-end CTF problem-solving capabilities, our work makes three
distinct advances. First, we pioneer a knowledge-centric measure-
ment paradigm through CTFKnow, enabling granular analysis of
LLMs’ technical mastery—an aspect overlooked by previous bench-
marks that treated CTF challenges as mostly “black-box” missions.
Second, unlike prior tools that focused primarily on command-line
automation, CTFAgent’s two-stage RAG and Environmental Aug-
mentationmodules are explicitly designed to address the knowledge
application gaps (see Finding 3 in §3.5) identified by our measure-
ment study. Third, our empirical results demonstrate both quanti-
tative and qualitative improvements: CTFAgent not only achieves
85–120% performance gains over baseline approaches on estab-
lished benchmarks but also shows superior human-competitive

performance in real-world CTF competitions, validating that our
knowledge-focused approach translates into practical advantages
beyond incremental automation improvements.

6.3 Future Work

We discuss several potential directions for future research and
extend CTFKnow and CTFAgent.
RAGMisguidance. Our dataset CTFKnow incorporates approach-
ing 2,000 entries serving as the database for the RAG system. How-
ever, during evaluation, we observed instances where the RAG
system, due to inaccurate retrieval, produced CTF Knowledge that
is deviated from the scenario. This inadvertently misguides the
LLM’s solving approach and reduces both efficiency and accuracy.
Enhancements to mitigate this limitation could primarily focus on
expanding the dataset size and further improving dataset quality.
Lack of Multi-modal Capabilities. In real-world competitions,
certain categories of CTF challenges, such as OSINT and social
engineering, are closely linked with images, necessitating the ex-
traction of substantial information from visual data. As a research
prototype, CTFAgent does not exploit the multi-modal capabili-
ties of LLMs, leading to a deficiency in addressing these types of
challenges. Additionally, the inability to employ multi-modal func-
tionalities restricts the use of various sophisticated CTF tools, such
as Burp Suite [30], which are conveniently accessible through GUIs,
thereby limiting the tool’s applicability in these scenarios. We an-
ticipate that future research will focus on integrating multi-modal
capabilities [63] to address these limitations.
Further Strengthening CTFAgent’s Reasoning Ability. In
this work, although we adopt two-stage RAG to guide CTFAgent
through multi-turn interactions in CTF scenarios, we do not en-
hance its reasoning capabilities at the fundamental model level.
How to effectively strengthen the base model’s reasoning ability
in CTF scenarios involving multi-tool integration and multi-turn
interaction remains a meaningful direction for future research. A
potentially effective approach is to incorporate o1-like long CoT
models [61], enabling the agent to solve CTF challenges through
a reasoning process. Reinforcement learning methods like Tool-
Integrated RL [58] or LLM Agent RL [41] can also be introduced to
further improve the agent’s reasoning in complex CTF scenarios.

6.4 Ethics Concerns

We posit that, disregarding misuse—namely, when CTFAgent
is solely employed for solving CTF challenges—it aligns fully with
ethical standards. The rationale is as follows:
• The data used to construct CTFAgent is derived entirely from
publicly available vulnerability technical reports, negating con-
cerns related to disclosure or privacy breaches.

• In CTF competitions, the challenges and their environments
typically involve specific vulnerabilities and are thus thoroughly
isolated from production systems. Therefore, when CTFAgent
is used for CTF challenges, it does not engage in unauthorized
attacks on external systems.

• Upon obtaining the flag within a CTF environment, CTFAgent
ceases its operation, precluding any further malicious activities.
Should CTFAgent be misused inappropriately, it could indeed

encounter ethical dilemmas, such as being used to attack unau-
thorized web applications or crack software. Mitigating such risks

13

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zimo Ji, Daoyuan Wu, Wenyuan Jiang, Pingchuan Ma, Zongjie Li, and Shuai Wang

requires concerted community efforts. To minimize potential mis-
use, CTFAgent will be released by review only, while CTFKnow
will remain open source. We also advocate for continued research
and safeguards on the use of LLMs in offensive security contexts.

7 Related Work

Recently, LLMs have become increasingly relevant in cybersecu-
rity domains. CyberSecEval 2 [37], SecBench [54] and CyberMet-
ric [78] have built benchmarks for evaluating the overall cybersecu-
rity knowledge of LLMs. In downstream cybersecurity tasks, Fuz-
zGPT [46], Fuzz4all [84], and CHATAFL [67] introduced LLMs for
fuzzing tasks; Happe et al. [50] employed LLMs as partners in pene-
tration testing, while PentestGPT [44] and PenHeal [52] developed
tools driven by LLMs for penetration testing; PropertyGPT [64]
built an LLM agent for formal verification. Since Thapa et al. [76]
started testing LLMs’ capacity in vulnerability detection, many
benchmarks and systems including VulBench [49], GPTScan [74],
TitanFuzz [45], LLM4Vuln [73], and works by Khare et al. [55]
and Ullah et al. [79] have been devoted to this direction. In con-
trast, Pearce et al. [68] and ACFix [91] focus on using LLMs for
vulnerability repair.

Efforts have been made to benchmark LLMs for solving CTF
challenges [69, 70, 75, 86, 87]. Besides LLMs, other neural network
systems like AutoPwn [85] have also been introduced for CTF
solving progress. Furthermore, AutoCTF [53] employed AI systems
in CTF challenge design. Significant efforts have also been made to
enhance the quality and educational significance of CTF challenges,
including Git-based CTF [83] and Pwnable-Sherpa [56].

8 Conclusion

This work has conducted a systematic measurement and augmenta-
tion on LLM’s capability in CTF challenges. We create a novel and
targeted benchmark, CTFKnow, to evaluate LLMs’ performance
in mastering CTF technical knowledge. With findings obtained
from the measurement study, we design an enhancement frame-
work, CTFAgent, to improve LLM performance in this domain.
Our evaluation results demonstrate the effectiveness of CTFAgent
in enhancing LLM in CTF challenges. We believe this work lays
a solid foundation for future in-depth evaluations, understanding,
and enhancements of LLMs’ abilities in CTF.

9 Acknowledgement

We thank the anonymous reviewers and the shepherd for their
valuable suggestions and feedback.

References

[1] 2020. Cybercrime To Cost The World $10.5 Trillion Annually By
2025. https://cybersecurityventures.com/cybercrime-will-cost-the-world-16-4-
billion-a-day-in-2021/

[2] 2023. AI Cyber Challenge Opens Registration, Adds $4 Million in Prizes, Shows
Scoring Algorithm and Challenge Exemplar. https://www.darpa.mil/news/2023/
ai-cyber-challenge-opens

[3] 2023. DEF CON® 27 Hacking Conference Contests & Events. https://defcon.
org/html/defcon-27/dc-27-ce.html

[4] 2024. 0CTF 2024. https://ctf.0ops.sjtu.cn/. https://ctf.0ops.sjtu.cn/
[5] 2024. All about CTF. https://ctftime.org/. https://ctftime.org/
[6] 2024. Assistants API Overview. https://platform.openai.com/docs/assistants/

overview?context=with-streaming. https://platform.openai.com/docs/assistants/
overview?context=with-streaming

[7] 2024. BUUCTF. https://buuoj.cn/. https://buuoj.cn/
[8] 2024. Capture the Flag. https://www.csaw.io/ctf . https://www.csaw.io/ctf

[9] 2024. Capture the Flag for Empowered Cybersecurity Training. https://ine.com/
blog/capture-the-flag-for-empowered-cybersecurity-training

[10] 2024. CGC: Cyber Grand Challenge. https://www.darpa.mil/research/programs/
cyber-grand-challenge

[11] 2024. Claude 3.5 Sonnet. hhttps://www.anthropic.com/news/claude-3-5-sonnet.
https://www.anthropic.com/news/claude-3-5-sonnet

[12] 2024. DeepSeek. https://www.deepseek.com/
[13] 2024. DEFCON. https://defcon.org/. https://defcon.org/
[14] 2024. Function calling. https://platform.openai.com/docs/guides/function-calling.

https://platform.openai.com/docs/guides/function-calling
[15] 2024. Ghidra. https://ghidra-sre.org/. https://ghidra-sre.org/
[16] 2024. Google CTF. https://capturetheflag.withgoogle.com/. https://capturetheflag.

withgoogle.com/
[17] 2024. gpt-3-5-turbo. https://platform.openai.com/docs/models/gpt-3-5-turbo.

https://platform.openai.com/docs/models/gpt-3-5-turbo
[18] 2024. gpt-4. https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
[19] 2024. gpt-4o. https://platform.openai.com/docs/models/gpt-4o. https://platform.

openai.com/docs/models/gpt-4o
[20] 2024. HITCON. https://hitcon.org/2024/CMT/. https://hitcon.org/2024/CMT/
[21] 2024. IDA. https://hex-rays.com/ida-pro/
[22] 2024. Learning to Reason with LLMs | OpenAI. https://openai.com/index/

learning-to-reason-with-llms/
[23] 2024. Meet Llama 3.1. https://llama.meta.com/. https://llama.meta.com/
[24] 2024. Mixtral of experts | Mistral AI | Frontier AI in your hands. https://mistral.

ai/news/mixtral-of-experts/. https://mistral.ai/news/mixtral-of-experts/
[25] 2024. picoCTF - CMU Cybersecurity Competition. https://picoctf.org/. https:

//picoctf.org/
[26] 2024. picoCTF2024. https://play.picoctf.org/events/73/scoreboards. https://play.

picoctf.org/events/73/scoreboards
[27] 2024. Top 10 Cyber Hacking Competitions - Capture the Flag (CTF). https://www.

geeksforgeeks.org/top-cyber-hacking-competitions-capture-the-flag-ctf/
[28] 2024. UIUCTF 2024. https://2024.uiuc.tf/. https://2024.uiuc.tf/
[29] 2024. VicOne & Block Harbor Spearhead Biggest Automotive Cap-

ture the Flag Competition for Cybersecurity Enthusiasts World-
wide. https://vicone.com/company/press-releases/vicone-and-block-
harbor-spearhead-biggest-automotive-capture-the-flag-competition-for-
cybersecurity-enthusiasts-worldwide

[30] 2025. Burp Suite - Application Security Testing Software. https://portswigger.
net/burp

[31] 2025. Microsoft Security Copilot Blog. https://techcommunity.microsoft.com/
blog/securitycopilotblog/advancing-security-copilot-with-magic-automating-
self-correction-in-nl2kql-and-b/4390932

[32] 2025. Proactive Defense: The Role of Offensive Security in Cybersecurity. https:
//cloudsecurityalliance.org/artifacts/using-ai-for-offensive-security

[33] 2025. Using AI for Offensive Security. https://cloudsecurityalliance.org/artifacts/
using-ai-for-offensive-security

[34] 2025. What is Automated Vulnerability Remediation? https:
//www.sentinelone.com/cybersecurity-101/cybersecurity/what-is-automated-
vulnerability-remediation/

[35] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv:2303.08774 (2023).

[36] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,
Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr
Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large
language models. In Proc. AAAI.

[37] Manish Bhatt, Sahana Chennabasappa, Yue Li, Cyrus Nikolaidis, Daniel Song,
ShengyeWan, Faizan Ahmad, Cornelius Aschermann, Yaohui Chen, Dhaval Kapil,
et al. 2024. Cyberseceval 2: A wide-ranging cybersecurity evaluation suite for
large language models. arXiv preprint arXiv:2404.13161 (2024).

[38] David Brumley. 2018. The cyber grand challenge and the future of cyber-
autonomy. USENIX Login 43, 2 (2018), 6–9.

[39] Tanner J Burns, Samuel C Rios, Thomas K Jordan, Qijun Gu, and Trevor Un-
derwood. 2017. Analysis and exercises for engaging beginners in online CTF
competitions for security education. In USENIX Workshop on Advances in Security
Education.

[40] Daihang Chen, Yonghui Liu, Mingyi Zhou, Yanjie Zhao, Haoyu Wang, Shuai
Wang, Xiao Chen, Tegawendé F Bissyandé, Jacques Klein, and Li Li. 2024. LLM
for Mobile: An Initial Roadmap. arXiv preprint arXiv:2407.06573 (2024).

[41] Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Fan Yang,
Zenan Zhou, Weipeng Chen, Haofen Wang, Jeff Z Pan, et al. 2025. Learning
to Reason with Search for LLMs via Reinforcement Learning. arXiv preprint
arXiv:2503.19470 (2025).

[42] Kevin Chung and Julian Cohen. 2014. Learning obstacles in the capture the flag
model. In USENIX 3GSE.

[43] Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare
Campagnano, Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. 2024. The

14

https://cybersecurityventures.com/cybercrime-will-cost-the-world-16-4-billion-a-day-in-2021/
https://cybersecurityventures.com/cybercrime-will-cost-the-world-16-4-billion-a-day-in-2021/
https://www.darpa.mil/news/2023/ai-cyber-challenge-opens
https://www.darpa.mil/news/2023/ai-cyber-challenge-opens
https://defcon.org/html/defcon-27/dc-27-ce.html
https://defcon.org/html/defcon-27/dc-27-ce.html
https://ctf.0ops.sjtu.cn/
https://ctf.0ops.sjtu.cn/
https://ctftime.org/
https://ctftime.org/
https://platform.openai.com/docs/assistants/overview?context=with-streaming
https://platform.openai.com/docs/assistants/overview?context=with-streaming
https://platform.openai.com/docs/assistants/overview?context=with-streaming
https://platform.openai.com/docs/assistants/overview?context=with-streaming
https://buuoj.cn/
https://buuoj.cn/
https://www.csaw.io/ctf
https://www.csaw.io/ctf
https://ine.com/blog/capture-the-flag-for-empowered-cybersecurity-training
https://ine.com/blog/capture-the-flag-for-empowered-cybersecurity-training
https://www.darpa.mil/research/programs/cyber-grand-challenge
https://www.darpa.mil/research/programs/cyber-grand-challenge
hhttps://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.deepseek.com/
https://defcon.org/
https://defcon.org/
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://ghidra-sre.org/
https://ghidra-sre.org/
https://capturetheflag.withgoogle.com/
https://capturetheflag.withgoogle.com/
https://capturetheflag.withgoogle.com/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://hitcon.org/2024/CMT/
https://hitcon.org/2024/CMT/
https://hex-rays.com/ida-pro/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://llama.meta.com/
https://llama.meta.com/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://picoctf.org/
https://picoctf.org/
https://picoctf.org/
https://play.picoctf.org/events/73/scoreboards
https://play.picoctf.org/events/73/scoreboards
https://play.picoctf.org/events/73/scoreboards
https://www.geeksforgeeks.org/top-cyber-hacking-competitions-capture-the-flag-ctf/
https://www.geeksforgeeks.org/top-cyber-hacking-competitions-capture-the-flag-ctf/
https://2024.uiuc.tf/
https://2024.uiuc.tf/
https://vicone.com/company/press-releases/vicone-and-block-harbor-spearhead-biggest-automotive-capture-the-flag-competition-for-cybersecurity-enthusiasts-worldwide
https://vicone.com/company/press-releases/vicone-and-block-harbor-spearhead-biggest-automotive-capture-the-flag-competition-for-cybersecurity-enthusiasts-worldwide
https://vicone.com/company/press-releases/vicone-and-block-harbor-spearhead-biggest-automotive-capture-the-flag-competition-for-cybersecurity-enthusiasts-worldwide
https://portswigger.net/burp
https://portswigger.net/burp
https://techcommunity.microsoft.com/blog/securitycopilotblog/advancing-security-copilot-with-magic-automating-self-correction-in-nl2kql-and-b/4390932
https://techcommunity.microsoft.com/blog/securitycopilotblog/advancing-security-copilot-with-magic-automating-self-correction-in-nl2kql-and-b/4390932
https://techcommunity.microsoft.com/blog/securitycopilotblog/advancing-security-copilot-with-magic-automating-self-correction-in-nl2kql-and-b/4390932
https://cloudsecurityalliance.org/artifacts/using-ai-for-offensive-security
https://cloudsecurityalliance.org/artifacts/using-ai-for-offensive-security
https://cloudsecurityalliance.org/artifacts/using-ai-for-offensive-security
https://cloudsecurityalliance.org/artifacts/using-ai-for-offensive-security
https://www.sentinelone.com/cybersecurity-101/cybersecurity/what-is-automated-vulnerability-remediation/
https://www.sentinelone.com/cybersecurity-101/cybersecurity/what-is-automated-vulnerability-remediation/
https://www.sentinelone.com/cybersecurity-101/cybersecurity/what-is-automated-vulnerability-remediation/

Measuring and Augmenting Large Language Models for Solving Capture-the-Flag Challenges CCS ’25, October 13–17, 2025, Taipei, Taiwan

power of noise: Redefining retrieval for rag systems. In Proc. ACM SIGIR.
[44] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,

Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2024. PentestGPT:
Evaluating and harnessing large language models for automated penetration
testing. In Proc. USENIX Security.

[45] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[46] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2024. Large language models are edge-case
generators: Crafting unusual programs for fuzzing deep learning libraries. In
Proc. IEEE/ACM ICSE.

[47] Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, and Daniel Kang. 2024.
Teams of LLM Agents can Exploit Zero-Day Vulnerabilities. arXiv preprint
arXiv:2406.01637 (2024).

[48] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[49] Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and Chao Zhang. 2023. How
far have we gone in vulnerability detection using large language models. arXiv
preprint arXiv:2311.12420 (2023).

[50] Andreas Happe and Jürgen Cito. 2023. Getting pwn’d by ai: Penetration testing
with large language models. In Proc. ACM FSE.

[51] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300 (2020).

[52] Junjie Huang and Quanyan Zhu. 2024. PenHeal: A Two-Stage LLM Framework
for Automated Pentesting and Optimal Remediation. arXiv:2407.17788 (2024).

[53] Patrick Hulin, Andy Davis, Rahul Sridhar, Andrew Fasano, Cody Gallagher, Aaron
Sedlacek, Tim Leek, and Brendan Dolan-Gavitt. 2017. {AutoCTF}: Creating
diverse pwnables via automated bug injection. In WOOT.

[54] Pengfei Jing, Mengyun Tang, Xiaorong Shi, Xing Zheng, Sen Nie, Shi Wu, Yong
Yang, and Xiapu Luo. 2024. SecBench: A Comprehensive Multi-Dimensional
Benchmarking Dataset for LLMs in Cybersecurity. arXiv:2412.20787 (2024).

[55] Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and
Mayur Naik. 2023. Understanding the effectiveness of large language models in
detecting security vulnerabilities. arXiv preprint arXiv:2311.16169 (2023).

[56] Sung-Kyung Kim, Eun-Tae Jang, Hanjin Park, and Ki-Woong Park. 2023. Pwnable-
Sherpa: An interactive coaching system with a case study of pwnable challenges.
Computers & Security 125 (2023), 103009.

[57] Stela Kucek and Maria Leitner. 2020. An empirical survey of functions and
configurations of open-source capture the flag (ctf) environments. Journal of
Network and Computer Applications 151 (2020), 102470.

[58] Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025. Torl: Scaling tool-integrated rl.
arXiv preprint arXiv:2503.23383 (2025).

[59] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu,
Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, et al. 2024. Personal llm agents:
Insights and survey about the capability, efficiency and security. arXiv preprint
arXiv:2401.05459 (2024).

[60] Zongjie Li, Wenying Qiu, Pingchuan Ma, Yichen Li, You Li, Sijia He, Baozheng
Jiang, Shuai Wang, and Weixi Gu. 2024. On the Accuracy and Robustness of
Large Language Models in Chinese Industrial Scenarios. In Proc. ACM/IEEE IPSN.

[61] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu,
Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. 2025.
From system 1 to system 2: A survey of reasoning large language models. arXiv
preprint arXiv:2502.17419 (2025).

[62] Bang Liu, Xinfeng Li, Jiayi Zhang, JinlinWang, Tanjin He, Sirui Hong, Hongzhang
Liu, Shaokun Zhang, Kaitao Song, Kunlun Zhu, et al. 2025. Advances and Chal-
lenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary,
Collaborative, and Safe Systems. arXiv preprint arXiv:2504.01990 (2025).

[63] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024. Visual instruc-
tion tuning. Advances in neural information processing systems 36 (2024).

[64] Ye Liu, Yue Xue, Daoyuan Wu, Yuqiang Sun, Yi Li, Miaolei Shi, and Yang Liu.
2025. PropertyGPT: LLM-driven Formal Verification of Smart Contracts through
Retrieval-Augmented Property Generation. In Proc. ISOC NDSS.

[65] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. 2023.
InsightPilot: An LLM-empowered automated data exploration system. In EMNLP:
System Demonstrations.

[66] Wei Ma, Daoyuan Wu, Yuqiang Sun, Tianwen Wang, Shangqing Liu, Jian Zhang,
Yue Xue, and Yang Liu. 2025. Combining Fine-Tuning and LLM-based Agents for
Intuitive Smart Contract Auditing with Justifications. In Proc. IEEE/ACM ICSE.

[67] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Proc. ISOC NDSS.

[68] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339–2356.

[69] Minghao Shao, Boyuan Chen, Sofija Jancheska, Brendan Dolan-Gavitt, Siddharth
Garg, Ramesh Karri, and Muhammad Shafique. 2024. An empirical evaluation of
llms for solving offensive security challenges. arXiv:2402.11814 (2024).

[70] Minghao Shao, Sofija Jancheska, Meet Udeshi, Brendan Dolan-Gavitt, Haoran
Xi, Kimberly Milner, Boyuan Chen, Max Yin, Siddharth Garg, Prashanth Krish-
namurthy, et al. 2024. NYU CTF Dataset: A Scalable Open-Source Benchmark
Dataset for Evaluating LLMs in Offensive Security. arXiv:2406.05590 (2024).

[71] Teotino Gomes Soares, Azhari Azhari, Nur Rokhman, and E Wonarko. 2021. Edu-
cation question answering systems: a survey. In Proceedings of The International
MultiConference of Engineers and Computer Scientists.

[72] Nicholas Springer and Wu-chang Feng. 2021. Thunder CTF: Learning Cloud
Security on a Dime. arXiv preprint arXiv:2107.12566 (2021).

[73] Yuqiang Sun, DaoyuanWu, Yue Xue, Han Liu, Wei Ma, Lyuye Zhang, Miaolei Shi,
and Yang Liu. 2024. LLM4Vuln: A Unified Evaluation Framework for Decoupling
and Enhancing LLMs’ Vulnerability Reasoning. arXiv:2401.16185 (2024).

[74] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei
Xie, and Yang Liu. 2024. Gptscan: Detecting logic vulnerabilities in smart contracts
by combining gpt with program analysis. In Proc. IEEE/ACM ICSE.

[75] Wesley Tann, Yuancheng Liu, Jun Heng Sim, Choon Meng Seah, and Ee-Chien
Chang. 2023. Using large language models for cybersecurity capture-the-flag
challenges and certification questions. arXiv preprint arXiv:2308.10443 (2023).

[76] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef
Pieprzyk, and Surya Nepal. 2022. Transformer-based language models for soft-
ware vulnerability detection. In Proc. ACM ACSAC.

[77] Alba Thaqi, Arbena Musa, and Blerim Rexha. 2024. Leveraging AI for CTF
Challenge Optimization. In Proc. IEEE CIEES.

[78] Norbert Tihanyi, Mohamed Amine Ferrag, Ridhi Jain, and Merouane Debbah.
2024. Cybermetric: A benchmark dataset for evaluating large language models
knowledge in cybersecurity. arXiv preprint arXiv:2402.07688 (2024).

[79] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond Pearce, Ayse Coskun, and
Gianluca Stringhini. 2023. Can large language models identify and reason about
security vulnerabilities? not yet. arXiv preprint arXiv:2312.12575 (2023).

[80] U.S. Department of Health and Human Services. 2018. Federal Policy for the
Protection of Human Subjects (’Common Rule’). https://www.ecfr.gov/current/
title-45/subtitle-A/subchapter-A/part-46#p-46.104(d)(2) Title 45 Code of Federal
Regulations Part 46.104(d)(2).

[81] Jan Vykopal, Valdemar Švábenskỳ, and Ee-Chien Chang. 2020. Benefits and
pitfalls of using capture the flag games in university courses. In Proceedings of
the 51st ACM Technical symposium on computer science education. 752–758.

[82] Liwen Wang, Yuanyuan Yuan, Ao Sun, Zongjie Li, Pingchuan Ma, Daoyuan Wu,
and Shuai Wang. 2024. Benchmarking Multi-Modal LLMs for Testing Visual
Deep Learning Systems Through the Lens of Image Mutation. arXiv preprint
arXiv:2404.13945 (2024).

[83] SeongIl Wi, Jaeseung Choi, and Sang Kil Cha. 2018. Git-based {CTF}: A Simple
and Effective Approach to Organizing {In-Course}{Attack-and-Defense} Secu-
rity Competition. In 2018 USENIX Workshop on Advances in Security Education.

[84] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4all: Universal fuzzing with large language models. In Proceed-
ings of the IEEE/ACM 46th International Conference on Software Engineering.

[85] Dandan Xu, Kai Chen, Miaoqian Lin, Chaoyang Lin, and Xiaofeng Wang. 2023.
Autopwn: Artifact-assisted heap exploit generation for ctf pwn competitions.
IEEE Transactions on Information Forensics and Security (2023).

[86] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. 2024.
Intercode: Standardizing and benchmarking interactive coding with execution
feedback. Advances in Neural Information Processing Systems 36 (2024).

[87] John Yang, Akshara Prabhakar, Shunyu Yao, Kexin Pei, and Karthik R Narasimhan.
2023. Language agents as hackers: Evaluating cybersecurity skills with capture
the flag. In Multi-Agent Security Workshop@ NeurIPS’23.

[88] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
large language models. NeurIPS (2024).

[89] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022).

[90] Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and
Dong Yu. 2023. Chain-of-note: Enhancing robustness in retrieval-augmented
language models. arXiv preprint arXiv:2311.09210 (2023).

[91] Lyuye Zhang, Kaixuan Li, Kairan Sun, Daoyuan Wu, Ye Liu, Haoye Tian, and
Yang Liu. 2024. Acfix: Guiding llms with mined common rbac practices for
context-aware repair of access control vulnerabilities in smart contracts. arXiv
preprint arXiv:2403.06838 (2024).

[92] Li Zhong, Zilong Wang, and Jingbo Shang. 2024. Ldb: A large language
model debugger via verifying runtime execution step-by-step. arXiv preprint
arXiv:2402.16906 (2024).

15

https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-A/part-46#p-46.104(d)(2)
https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-A/part-46#p-46.104(d)(2)

	Abstract
	1 Introduction
	2 Background
	2.1 Capture the Flag (CTF)
	2.2 Large Language Models (LLMs)

	3 Measuring LLM Capability for CTF
	3.1 LLM4CTF: Understanding and Exploiting
	3.2 CTFKnow Design
	3.3 Measurement Settings
	3.4 Knowledge Measurement (RQ1)
	3.5 Comparative Analysis (RQ2)

	4 Augmenting LLMs for CTF with CTFAgent
	4.1 Reflection from Measurement Findings
	4.2 Two-stage RAG for CTF Knowledge
	4.3 Interactive Environmental Augmentation
	4.4 An Illustrative Example

	5 Evaluation of CTFAgent
	5.1 Evaluation Settings
	5.2 Performance Evaluation (RQ3)
	5.3 Ablation Study (RQ4)
	5.4 Practicality Study (RQ5)
	5.5 Failure Analysis (RQ6)

	6 Discussion
	6.1 CTF Automation for Education & Research
	6.2 Comparing With Prior Work
	6.3 Future Work
	6.4 Ethics Concerns

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

