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The popularity of smartphones has led to the growth of mobile app markets, creating a need for enhanced
transparency, global access, and secure downloading. This paper introduces AGChain, a blockchain-based
gateway that enables trustworthy app delegation within existing markets. AGChain ensures that markets
can continue providing services while users benefit from permanent, distributed, and secure app delegation.
During its development, we address two key challenges: significantly reducing smart contract gas costs and
enabling fully distributed IPFS-based file storage. Additionally, we tackle three system issues related to security
and sustainability. We have implemented a prototype of AGChain on Ethereum and Polygon blockchains,
achieving effective security and decentralization with a minimal gas cost of around 0.0028 USD per app upload
(no cost for app download). AGChain also exhibits reasonable performance with an average overhead of 12%.

CCS Concepts: • Security and privacy→ Domain-specific security and privacy architectures.

Additional Key Words and Phrases: Blockchain, Smart contract, Ethereum, IPFS, App security

ACM Reference Format:
Mengjie Chen, Xiao Yi, Daoyuan Wu, Jianliang Xu, Yingjiu Li, and Debin Gao. 2024. AGChain: A Blockchain-
based Gateway for Trustworthy App Delegation from Mobile App Markets. Distrib. Ledger Technol. 1, 1
(December 2024), 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The increasing popularity of smartphones worldwide is driven by the wide range of feature-rich
mobile apps available in various app markets. In addition to official marketplaces like Google
Play and the App Store, third-party app markets such as Amazon AppStore and Baidu Market
have emerged as significant supplements to official app markets. These third-party markets offer a
greater variety of app options for Android users and have gained popularity, particularly in China
due to restrictions imposed by the Great Firewall. However, users’ growing concerns regarding
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security and privacy have created a demand for permanent, distributed, and secure app access in
both official and third-party app markets (more details are available in §2):
D1: Permanent or more transparent app access. Firstly, there is a need for enhanced transparency

and permanence in app access. Currently, app markets often lack access to older versions
of apps, and developers have the freedom to delist apps at their discretion. For example,
our analysis of 8,359 popular apps downloaded in November 2018 and November 2019 [51]
demonstrates that 13.7% (1,146) of these apps were no longer available after just one year.
This emphasizes the demand for permanent or more transparent app access. Presently, users
must resort to ad-hoc backup solutions [19, 20] to address this issue.

D2: Global and distributed access. Secondly, there is a growing demand for global and distributed
access to mobile apps. Currently, many apps on Google Play and the App Store are limited
to certain countries, hindering their availability worldwide. Moreover, Google Play itself is
subject to censorship in certain regions, resulting in restricted app access for users in those
affected areas.

D3: Secure access. Thirdly, our measurement shows that a considerable number of third-party
Android app markets lack secure app downloading mechanisms. For instance, half of the
top 14 Chinese app markets, including popular platforms like Baidu and 360, download
apps through insecure HTTP connections. Furthermore, even in markets where secure
downloading is available, they generally lack app repackage checking [34, 36, 59]. This poses
a significant risk to users’ apps, as their integrity and security could be compromised.

While individual measures such as VPN usage (for D2) and HTTPS implementation (for D3)
may1 address some of the demands, they do not adequately resolve the fundamental limitation
in terms of scientific research: the lack of trustworthy app access. In this paper, we present a
novel architecture that integrates the strengths of traditional IT infrastructure with decentralized
blockchain technology. Our proposed solution is AGChain (App Gateway Chain), a blockchain-
based gateway that connects end users with existing app markets. AGChain provides users with a
secure, permanent, and distributed method of app delegation, ensuring trustworthy app downloads.
With AGChain, users can opt for indirect app downloads, mitigating concerns related to direct
downloads from existing markets. While existing markets continue to provide services, with the
exception of delisted apps2, users can delegate app downloads by inputting themarket or custom app
URL into AGChain. AGChain then securely retrieves the app from its original market, uploads the
raw app file to decentralized storage, and stores the app file index and metadata on the blockchain
for future direct downloads through AGChain. Once delegated, the app can be permanently and
distributedly downloaded from AGChain by the user and other users.

We utilize smart contracts [26] for implementing our logic on the blockchain and leverage IPFS
(Interplanetary File System) [25] for decentralized storage. However, rather than employing them
in a conventional manner like other blockchain- and IPFS-based systems [38, 41, 42, 47], we address
and overcome two previously neglected challenges:

• Firstly, we significantly reduce gas costs by introducing a series of design-level mechanisms,
in contrast to code-level gas optimizations [22, 28, 30, 48]. These mechanisms ensure efficient
app storing and retrieval on the blockchain while minimizing gas consumption. Notably, we
achieve this by transitioning from conventional in-contract data structures to transaction

1Considering that the majority of general users do not have access to paid VPN services and the security status of Chinese
app markets is unlikely to change quickly, relying on these technical means may not be as effective as initially assumed.
2In addition to the apps available on existing markets, AGChain allows users to upload custom apps through a GitHub URL,
such as https://github.com/agchain/agchain/blob/main/Test/A.apk. This feature is specifically designed to accommodate
apps that may require payment or could potentially be delisted in the future.
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log-based contract storage, resulting in a gas reduction by a factor of 53 per operation (20,000
vs. 375 Gas).

• Secondly, we surprisingly found that IPFS is not inherently distributed. By default, files are
only stored in the original IPFS node and cached at IPFS gateways when there are requests. To
achieve true distribution in IPFS, we establish an IPFS consortium network that periodically
caches app files at IPFS gateways and performs timely backups of apps at crowdsourced
server nodes. Additionally, we propose a mechanism to identify fast and uncensored IPFS
gateways for the distributed downloading of apps.

To make AGChain secure and sustainable, we further address three AGChain-specific system
issues. Firstly, to securely retrieve apps from existing app markets without a network security
guarantee, we extract and validate checksums that may be embedded in apps’ market pages. In
cases where checksums are unavailable, we implement alternative security measures. Secondly, to
prevent repackaged apps from polluting our market, we propose a lightweight yet effective app
certificate field mechanism to detect such apps. We validate this mechanism experimentally using
15,297 pairs of repackaged apps. Lastly, to incentivize crowdsourced server nodes, we design a
mechanism that charges upload fees, ensuring the self-sustainability of the platform.

We have implemented a prototype of AGChain using the widely-used Ethereum blockchain [26]
and its layer-2 network, Polygon [16]. The implementation comprises 2,485 lines of code written in
Solidity, Python, Java, and JavaScript. In our evaluation, we empirically demonstrate the security
effectiveness of AGChain, successfully preventing man-in-the-middle and repackaging attacks on
our app delegation. We also assess its decentralization by discovering IPFS gateways in over 21
different locations worldwide. Additionally, we conduct experimental measurements of performance
and gas costs. On average, AGChain introduces a 12% performance overhead in tests involving 200
apps from seven app markets. The cost of app upload is approximately 0.002821 Matic (equivalent
to 0.0028 USD when one Matic is valued at around 1 USD). We also introduce a batch upload
mechanism that reduces gas costs by a factor of 2.02 (for a batch of 10 uploads) to 2.65 (for a batch
of 100 uploads). Notably, AGChain does not require any gas for app downloads as they do not alter
the contract state.

To summarize, this paper presents the following contributions:

• A novel blockchain-based gateway design (§3): We introduce a gateway that facilitates
trustworthy app delegation, providing permanent, distributed, and secure access to the apps
stored in existing markets (and custom apps upload via GitHub URLs). Our idea of combining
traditional IT infrastructure with decentralized blockchain technology opens a new door for
future advancements in blockchain systems.

• Addressing previously neglected challenges (§3 and §4): We propose mechanisms to achieve
gas-efficient smart contracts and a distributed IPFS design. Furthermore, we overcome three
specific system issues unique to AGChain.

• Implementation and extensive evaluation (§5 and §6): We implement a prototype of AGChain
on the Ethereum blockchain and its layer-2 network, Polygon. Through extensive evaluation,
we assess the performance, gas costs, security, and decentralization of AGChain, validating
its effectiveness in these areas.

Availability. The source code of AGChain has been released on https://github.com/VPRLab/
AGChain, facilitating its reuse by future blockchain systems.
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2 MOTIVATION AND BACKGROUND
In this section, we motivate the need of permanent, distributed, and secure app access by measuring
the status quo of existing app markets from §2.1 to §2.3. We also provide the necessary background
information in §2.4 to comprehend our blockchain-based design.

2.1 On the Need of Permanent Access by Measuring Delisted Apps on Google Play
It is unclear howmany uploaded apps were once delisted. To estimate this percentage, we conducted
a specific measurement on a set of 8,359 popular apps collected from Google Play in November
2018 [51]. These apps had one million installs each. After one year, in November 2019, we re-crawled
the apps in the same country and discovered that a significant portion, as high as 13.7% (1,146
apps), had been delisted during that time period. This highlights the seriousness of delisted apps
in existing app markets and emphasizes the need for a permanent app access mechanism to cater
to users who require access to those delisted apps. AGChain provides users with the ability to
leverage its delegation to permanently store an app on the blockchain before it is delisted.

2.2 On the Need of Distributed Access by Analyzing Apps with Limited Global Access
An easy observation is that many apps on Google Play and the App Store are limited to specific
countries. For example, the TVB media app [7] is restricted to Hong Kong, while the popular Hulu
app [10] is available only in the US and Japan. Additionally, there are limitations in accessing
English-based apps in Chinese app markets, and vice versa. Although these restrictions may be
reasonable from the developers’ perspective, many users, particularly those traveling or seeking
foreign apps, actively search for methods to bypass these limitations. They resort to online tutorials
that involve switching their iTunes accounts to different countries [2] or using VPNs to circumvent
Google Play’s restrictions [4]. It is important to note that the problem of limited global app access
is further compounded by network-based censorship, where certain regions impose restrictions on
Google Play [9], denying access to affected users. While we acknowledge the legitimacy of these
various controls, it is essential to develop a mechanism for distributed app access as an alternative
solution for users to choose.

2.3 On the Need of Secure Access by Measuring Insecure App Downloads in
Third-Party App Markets

An unexpected observation is that not all app markets provide secure app downloads as Google
Play and the App Store. Surprisingly, we discovered that half of the top 14 Chinese Android app
markets still utilize insecure app downloading via HTTP. This opens the door for potential injection
of repackaged apps [59], particularly when users connect to public Wi-Fi networks [6] or fall victim
to network hijacking [32]. This poses a severe security risk, especially considering that around one
billion Internet users in China rely on third-party app markets due to the ban on Google Play.

Table 1 presents our measurement results for the top 16 Chinese Android app markets, as identi-
fied by a recent study on app markets [45]. Specifically, we examined whether these markets employ
HTTPS as the medium for hosting app downloads. It is important to note that while some market
websites may use HTTPS for hosting web content, they may still provide app downloads exclusively
through insecure HTTP. To distinguish this situation, we focused solely on app downloading traffic.
As indicated in Table 1, half of the 14 Chinese app markets (excluding two markets that do not
offer web-based app downloading) utilize insecure HTTP downloading. These markets include
prominent Internet giants (e.g., Baidu) and smartphone hardware vendors (e.g., Meizu and Lenovo),
as well as specialized app markets (e.g., Anzhi and App China).
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Table 1. The measurement result of app downloading security in the top 16 Chinese Android app markets [45].

Market Name Company Type Secure App Downloading?
Tencent Myapp Web Co. HTTPS ✔
Baidu Market Web Co. HTTP ✗
360 Market Web Co. HTTP ✗

OPPO Market HW Vendor No Website Download
Huawei Market HW Vendor HTTPS ✔
Xiaomi Market HW Vendor HTTPS ✔
Meizu Market HW Vendor HTTP ✗
Lenovo MM HW Vendor HTTP ✗

HiApk Specialized Cannot Find the Website
Wandoujia Specialized HTTPS ✔
PC Online Specialized HTTPS ✔

LIQU Specialized HTTPS ✔
25PP Specialized HTTPS ✔

App China Specialized HTTP ✗
Sougou Specialized HTTP ✗
AnZhi Specialized HTTP ✗

2.4 Relevant Technical Background
To facilitate permanent, distributed, and secure app access, we propose a novel architecture based on
Ethereum/Polygon and IPFS. In this subsection, we provide the necessary background information
to better understand our proposed solution.
Blockchain. A blockchain is typically a public and distributed ledger. It records transactions

that are immutable, verifiable, and permanent [44]. Therefore, blockchain can be utilized as a
decentralized database. The trust among different nodes is guaranteed by the so-called consensus
(e.g., Proof of Work) instead of the authority of a specific institution. Consensus is the key for
all nodes on a blockchain to maintain the same ledger in a way that the authenticity could be
recognized by each node in the network.
Ethereum [26] is the second largest blockchain system and the most popular smart contract

platform [55, 56]. A smart contract is a contract that has been programmed in advance with a
sequence of rules and regulations for self-executing. Solidity is the primary language for pro-
gramming smart contracts on Ethereum. In particular, it is a Turing-complete language, which
suggests that developers could achieve arbitrary functionality on smart contracts theoretically. To
prevent denial-of-service attacks, users need to consume gas fees to send transactions on Ethereum.
The gas fees are paid in Ethereum’s native cryptocurrency called Ether (or ETH). Recently, Poly-
gon [16], Ethereum’s layer-2 network, has been emerging as a result of the expensive gas fee and
low throughput in Ethereum.

IPFS (Interplanetary File System) [25] is a peer-to-peer file sharing system, where files are stored
in a distributed way and routed using the content-addressing [29]. IPFS was proposed because
the storage of large files on blockchain is inefficient and with high costs. Specifically, all nodes
in a blockchain network need to endorse the entire ledger and synchronize the files stored. As
a result, unnecessary redundancy will lead to a huge waste of storage, and the latency of ledger
synchronicity will also be significantly increased. To address this limitation, we can store data only
in the IPFS storage nodes and keep the unique and permanent IPFS address (called IPFS hash) in
the blockchain.
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3 THE CORE DESIGN OF AGCHAIN
In this section, we present the core design of AGChain, including its objectives, threat model,
overall design, and the two key challenges we tackled.

3.1 Design Objectives and Threat Model
Design objectives. Our goal is to develop a trustworthy blockchain-based gateway that enables
permanent, distributed, and secure app delegation from existing app markets. It is worth noting
that our intention is not to replace these existing markets, as the apps on AGChain ultimately
originate from them. Instead, our aim is to provide an additional option for users with security
concerns or those who wish to back up their apps. They can utilize AGChain as a secure proxy to
download apps from third-party markets or store them permanently on the blockchain. Therefore,
AGChain functions more as a gateway to existing app markets rather than a standalone market. To
achieve this, we have identified the following key design objectives:

• Permanent delegation. To achieve the permanent storage and delegation of apps on AGChain,
we utilize the immutability of blockchain technology. In doing so, we make two specific
choices. Firstly, instead of developing our own blockchain infrastructure like Infnote [57],
we leverage existing and well-established blockchains such as Bitcoin and Ethereum. These
mainstream blockchains have a large network of nodes, accumulated over time, making them
robust against various attacks. Secondly, to implement our logic on the blockchain, we opt
for writing a smart contract rather than creating a virtualchain as seen in [23, 37, 42]. Smart
contracts are lightweight yet powerful in terms of their Turing-completeness. Note that only
apps accessed through AGChain can benefit from permanent access.

• Distributed delegation. Due to the high storage and gas costs associated with directly storing
raw files on the blockchain (as discussed in §2.4), we need an efficient and distributed
file storage solution. In this paper, we utilize IPFS for its distributed and permanent nature,
unlike centralized cloud services that cannot guarantee continuous availability (some are even
subject to censorship, such as Google Drive andDropbox). The basic idea behind incorporating
IPFS into AGChain is to store raw app files on IPFS while keeping their corresponding IPFS
indexes on the blockchain. However, we discovered an unexpected behavior of IPFS, where
files are not duplicated to other IPFS nodes unless there is a request for them. To truly
achieve distribution, we establish a consortium network by leveraging IPFS gateways and
crowdsourced server nodes.

• Secure delegation.A practically desirable objective is to enable secure app download delegation
for apps obtained from markets that do not support HTTPS downloading (referred to as
unprotected markets hereafter). This objective has significant implications for millions of
Chinese market users (as discussed in §2.3). Specifically, we aim to securely retrieve apps from
existing app markets without relying on a dedicated and trusted network path. In addition to
ensuring download security, we also need to prevent repackaged apps [59] being uploaded
to AGChain.

Besides the core objectives, we also aim for sustainable delegation to ensure AGChain’s self-
sustainability by providing monetary incentives to crowdsourced server nodes. The implementation
details of secure delegation and sustainable delegation will be explained in §4. In this section, our
focus is on achieving permanent and distributed delegation for AGChain.
Threat Model. In this section, we formally define the threat model by specifying the adversary’s
capabilities and the system’s security assumptions. The formalization is structured as follows:

Notation and Definitions.
• LetU denote the set of all potential adversaries.
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• Let S = {𝐹, 𝑆,𝐶, 𝐼 } represent the system components (see Fig. 1; to be introduced in §3.2):
– 𝐹 : Front-end
– 𝑆 : Server Nodes
– 𝐶: Smart Contract
– 𝐼 : IPFS Network

• Define C𝐴 as the set of capabilities of an adversary 𝐴 ∈ U.
• Define A as the set of assumptions about the system’s security.

Adversary Capabilities. For any adversary 𝐴 ∈ U, the capabilities C𝐴 are defined as:
C𝐴 = {Intercept(𝐹 ↔ 𝑆),UploadRepackagedApp,Compromise(𝐹 ),Access(𝐶),Access(𝐼 )}

Where:
• Intercept(𝐹 ↔ 𝑆): Ability to intercept unprotected network traffic between the front-end 𝐹

and server nodes 𝑆 .
• UploadRepackagedApp: Capability to upload repackaged or malicious applications to legiti-
mate app marketplaces.

• Compromise(𝐹 ): Potential to compromise or replace the front-end code 𝐹 since it operates
on the user side.

• Access(𝐶): Ability to access and interact with the smart contract 𝐶 .
• Access(𝐼 ): Ability to access and interact with the IPFS network 𝐼 .

Security Assumptions. The following assumptions A constrain the adversary’s capabilities to
ensure system security:
A = {¬BreakTLS,¬BreakHash,¬CompromiseChain,¬CompromiseIPFS,¬Exploit(𝐶),¬Exploit(𝑆)}
Where:

• ¬BreakTLS: Adversary 𝐴 cannot break the Transport Layer Security (TLS) protocol.
• ¬BreakHash: Adversary 𝐴 cannot break cryptographic hash functions such as SHA-256.
• ¬CompromiseChain: Adversary 𝐴 cannot compromise the underlying blockchain infrastruc-
tures.

• ¬CompromiseIPFS: Adversary 𝐴 cannot breach the security of the IPFS storage mechanisms.
• ¬Exploit(𝐶), ¬Exploit(𝑆): Adversary 𝐴 cannot exploit the smart contract 𝐶 , nor the server
nodes 𝑆 because we can leverage the recent advances on verification of smart contracts [43]
and write SGX-enabled3 server code [46] to enhance our contract and server code’s security,
although this is out of the scope of this paper.

3.2 The Overall System Design
Architecture. Fig. 1 presents AGChain’s high-level design. As highlighted in the green color, it
has four components as follows:

- Smart contract. The most important component is a novel (gas-efficient) smart contract, which
stores all app metadata on chain and duplicates them on most of the Ethereum nodes worldwide.
With these data (including IPFS file indexes) and their programmed storing and retrieving logic,
this smart contract is the actual control party of AGChain’s entire logic.
- IPFS network. Another core component is an IPFS (consortium) network, which stores raw

app files in a distributed manner. The stored apps then can be automatically routed and retrieved
through IPFS’s content-addressing [17]. Note that with the smart contract and IPFS components,
we guarantee the permanent and decentralized app access in AGChain.
3SGX (Software Guard eXtension) is a TEE (trusted execution environment) technique developed by Intel to protect selected
code and data.
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Fig. 1. A high-level workflow of AGChain, which consists of four components marked in the green color.

- Server nodes. To achieve app download security and repackaging checking, we also need server(s)
to retrieve apps from existing markets, inspect their security, and schedule their uploading as these
tasks cannot be performed in blockchain. Since any machine with our server code could be a server
node, we propose an incentive mechanism (details in §4.3) to motivate servers to join AGChain.
These crowdsourced server nodes further enhance the decentralization.

- Front-end. Finally, we provide a front-end web interface to help uploaders and downloaders
interact with AGChain. Note that for app downloading, our front-end directly communicates with
smart contract and IPFS without the server.
Upload workflow. Fig. 1 also shows the overall workflow of AGChain. As shown in the left part,
Alice wants to securely download an app (e.g., Alice is a security-sensitive user) or permanently
store an app on chain for future usage (e.g., Alice is a developer or a user who wants to backup the
current version of an app). She then acts as an app uploader:

1. Alice just needs to input the original app page URL and clicks the “upload” button in the
front-end. AGChain automatically finishes all the remaining steps.

2. The front-end transfers the URL to one server node.
3. After knowing the URL, the server analyzes the corresponding app page to obtain the

download URL that points to the actual APK file (the file format used by Android apps), and
retrieves it from its original market.

4. For the app markets using insecure app downloading (e.g., those seven markets in Table 1),
AGChain performs one more step to check whether the retrieved file has been tampered with
during network transmission.
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5. For all third-party markets, we conduct repackaging checks to prevent repackaged apps [59]
from polluting AGChain. We propose a lightweight yet effective certificate ID-based mecha-
nism; see details in §4.2. During this process, we also parse the APK file to extract its package
name and version (besides the certificate ID).

6. The server then uploads the raw APK file to IPFS and obtains its corresponding IPFS hash
(i.e., the file index).

7. Finally, the server invokes the smart contract to store all app metadata and IPFS hash on
chain. We choose the widely-used Ethereum and its layer-2 network Polygon (see §2.4) as
our underlying blockchain.

8. To avoid Alice from waiting a long time for blockchain transaction confirmation (typically
9∼13 seconds, according to our tests), AGChain simultaneously returns the result of package
name, app version, and IPFS hash.

Download workflow. As shown in the right part of Fig. 1, Bob acts as an app downloader to
download apps (e.g., the app uploaded by Alice) that are already in AGChain:

a) Bob inputs (or browses) the package name and version of the app that he wants to download
in the front-end.

b) The front-end then automatically invokes the smart contract to retrieve the corresponding
IPFS hash.

c) The front-end further locates the nearest IPFS network node to download the APK file and
returns it to Bob.

Major challenges. In the course of developing AGChain, we identify two previously neglected
challenges:
C1: How to minimize gas costs in the smart contract? As each app upload requires a blockchain

transaction and incurs gas fees, it is crucial to minimize these costs in our smart contract.
Although there have been some code-level gas optimizations [22, 28, 30, 48], they are still
insufficient. In §3.3, we introduce design-level optimizations that significantly reduce gas
costs by a factor of 16.

C2: How to enable fully distributed IPFS storage? As discussed in §3.1, we discovered that IPFS
files are only stored in the original IPFS node and cached at IPFS gateways upon request.
If the original node goes offline, the file becomes inaccessible to the entire IPFS network
(availability is restored when another node adds the same content). To achieve distributed
IPFS storage, we establish an IPFS consortium network (§3.4) that proactively requests IPFS
gateways and crowdsourced server nodes to back up files.

3.3 Gas-Efficient Smart Contract for App Metadata Storing and Retrieving
The smart contract is a core component of AGChain and also serves as a control entity. On one
hand, the server invokes this contract to store app metadata on-chain (see step 7 in Fig. 1). On
the other hand, the front-end relies on this contract to retrieve the IPFS hash (see step b in Fig. 1).
The most important contract function is storeApp(). By sending Ethereum transactions to invoke
this function, we not only store app metadata on-chain but also replicate this data across most
Ethereum nodes worldwide.
In this subsection, we introduce a series of mechanisms aimed at reducing gas costs for app

metadata storage (i.e., app uploads), eliminating gas costs for metadata retrieval (i.e., app downloads),
and implementing a whitelist mechanism to prevent misuse of our contract functions. These design-
level optimizations are significantly more efficient than code-level optimizations [22, 28, 30, 48]
and provide valuable guidance for future smart contract designs.
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Minimizing gas costs via log-based contract storage. We found that a major source of
gas inefficiency comes from data storage in the smart contract. Like many other smart contracts,
AGChain needs to store app metadata as a structure defined in the contract. However, such data
storage operation, via the SSTORE instruction in Ethereum Virtual Machine (EVM), changes the
internal block states and Ethereum’s world state [3]. Therefore, it is expensive, costing 20,000 Gas4
per operation [50]. Since numerous app metadata records will be stored in AGChain, it would cost
a large amount of gas fees if we use the traditional contract structure. Fortunately, we identify a
logging interface in the EVM, which can be used to permanently log data in transaction receipts
via the LOG instruction [50]. Since it changes only the block headers and does not need to change
the world state, only 375 Gas is consumed per operation. The underlying logging mechanism is
complicated, and we refer interested readers to the Ethereum yellow paper [1, 50] for more details.
While log-based contract storage dramatically reduces gas fees, it has no structure information.
We thus ask our server nodes to recover the app metadata structure, which includes the app
package name, app package version, app certificate serial number, the original market page URL,
the repackaging detection result, and the important IPFS hash.
Offloading on-chain duplicate check to server nodes. Another major source of gas costs

originates from the duplicate check, which checks duplicated appmetadata before storing it on chain.
Originally, we deployed such a check in the smart contract, but we found that it is costly since each
check needs to iterate over the entire app metadata structure. Moreover, an in-contract structure
has to be maintained, which causes the first log-based optimization unadoptable. Therefore, we
offload this on-chain duplicate check to server nodes, which query the latest app metadata from
the smart contract before uploading any records. If a duplicate exists, the uploading will stop.
Further reducing gas costs via batch uploads. With the above two default optimization

mechanisms, we significantly reduce gas costs by a factor of 15.75 (0.001347 v.s. 0.0000855 Ether,
before and after the optimization). We further reduce the costs by providing a back-end interface of
batch uploads. Our experiment shows that by batching 10 uploads together, we save gas by a factor
of 2.02 (compared with 10 times of normal uploads). This factor increases to 2.65 for a batch upload
of 100 records. These suggest that for a large number of app uploads (e.g., a company uploads all
its apps), we can use batch uploads to minimize gas costs.
Eliminating gas costs for all app downloads.While app uploading certainly consumes gas,

we find a way to eliminate gas costs for all app downloads. For a normal contract data structure, we
originally used the view function modifier to describe the data retrieving contract function since it
does not change any contract state. Invoking such a view-only function (even by external parties)
will not initiate any blockchain transaction, and thus no gas fee is needed. However, since we have
switched to log-based contract storage, we create a bloom filter [1, 5] to quickly locate the block
headers containing our data logs, regenerate the original logs, and extract IPFS hashes from them.
Since this task is performed only at the server side via the web3 Python APIs, the contract side will
not cost any gas.
Comparative analysis with traditional methods. To summarize the efficiency gains of our

proposed mechanisms, we compare them against traditional smart contract storage and operation
methods in Table 2. These comparisons highlight the substantial gas savings achieved through our
optimized smart contract design. By leveraging EVM features and offloading certain operations
off-chain, we provide a more cost-effective and scalable solution for app metadata management on
the blockchain. However, offloading operations like duplicate checks and data retrieval to server
nodes requires stringent security measures to prevent unauthorized access or manipulation, which
we assume is handled by the SGX-enabled server code in our threat model; see §3.1.

4The gas cost/fee is the product of gas price (or Gwei) and the Gas consumed.
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Table 2. Comparative Gas Costs of Traditional and AGChain’s Optimized Methods.

Mechanism Traditional Gas Cost AGChain’s Gas Cost Efficiency Gain

Log-Based Storage 20,000 Gas per SSTORE 375 Gas per LOG ∼15.75× reduction+ 895 additional Gas
Batch Uploads (10 records) 200,000 Gas (10 × 20,000) 6,286 Gas ∼31.8× reduction
Batch Uploads (100 records) 2,000,000 Gas (100 × 20,000) 47,918 Gas ∼41.7× reduction
Duplicate Checks (On-Chain) Variable (high) Off-Chain (negligible) Significant reduction

Data Retrieval (view Functions) 0 Gas externally, 0 Gas via off-chain logs Complete eliminationvariable in contract call

Achieving a whitelist mechanism for access control. Since smart contract has no access
control mechanism, a contract function can be invoked by anyone. This implies that an adversary
can invoke our storeApp() function to upload any app in our scenario. To present malicious
uploads from interfering AGChain’s data, we implement a lightweight whitelist mechanism that
consists of two function modifiers, onlyOwner(address caller) and onlyWhitelist(address
caller), where the parameter address is the invoking party’s Ethereum account address. By
enforcing the onlyWhitelist (msg.sender) modifier to check the caller of storeApp(), we can
guarantee that only an account in the whitelist can upload apps. We also implement two contract
functions to add or delete an account address from the whitelist, and they are enforced by the
onlyOwner(msg.sender) modifier. Note that the owner is our contract creator, and we gradually
add each authorized server node into the whitelist. By designing such a hierarchical whitelist, we
can achieve effective access control to avoid malicious data injecting into AGChain.

3.4 IPFS Consortium Network for Distributed File Uploading and Downloading
To overcome challenge C2, AGChain utilizes IPFS gateways and crowdsourced server nodes to
cache or backup apps, ensuring their true distribution within the IPFS network. By establishing
these gateways and servers, AGChain effectively creates an IPFS consortium network, enabling
distributed app access.
Periodically caching app files at IPFS gateways. As described in challenge C2, an IPFS file

is only accessible through the original IPFS node and is distributed via content-addressing [17].
However, if the original node becomes offline, the file becomes inaccessible to the entire IPFS
network. Fortunately, our experiment revealed that an IPFS gateway caches files for a certain
durationwhen accessed through the gateway. Leveraging this observation, we intentionally simulate
user requests to cache apps at IPFS gateways. To achieve this, we deploy a script on the server that
sends periodic file requests through various IPFS gateways. These requests are sent before the IPFS
garbage collector cleans our app files, ensuring that copies of the app files are always available in
IPFS gateways.
Timely backing up apps at crowdsourced server nodes. To achieve fully distributed app

storage, we utilize each crowdsourced server as an IPFS storage node and ensure timely backups of
apps in our IPFS consortium network. Each server node initializes by running the ipfs daemon
command to function as an IPFS node. It then executes a consortium synchronization script, which
obtains a list of IPFS hashes for the apps in AGChain and retrieves the corresponding raw app files
from the IPFS network. To prevent the IPFS garbage collection from removing these files, the script
locally pins the raw apps using the ipfs pin command. This approach enhances data redundancy
in AGChain and enhances the distribution of app storage.

Identifying fast IPFS gateways for app downloading. In addition to distributed app uploads,
we introduce a mechanism to enable distributed and fast app downloading in AGChain. The
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front-end of AGChain performs RTT (Round-Trip Time) tests on public IPFS gateways and selects
the gateway with the lowest RTT for downloading the raw app file. This approach enhances the
performance of app downloading in IPFS while also mitigating the risk of potential censorship by
certain IPFS gateways.

Based on the above design, we clarify how the proposed IPFS consortium network maintains its
operational logistics, maintenance, scalability, and performance as follows.
Operational Logistics and Maintenance of the IPFS Consortium Network: The IPFS consortium

network utilizes a combination of IPFS gateways and crowdsourced server nodes for file distribution.
Each crowdsourced server acts as an independent IPFS node, running the ipfs daemon to maintain
a connection to the IPFS network. Periodic synchronization of app files is carried out by a dedicated
script, which retrieves the latest IPFS hashes and pins these files locally using the ipfs pin
command. This ensures that each app file is replicated across multiple nodes, increasing redundancy
and mitigating the risk of file loss if a node becomes unavailable. Additionally, the script actively
monitors the availability of files to minimize maintenance overhead and prevent files from being
removed by the IPFS garbage collector.

Scalability of the Consortium Network: The scalability of the IPFS consortium is achieved through
the use of both IPFS gateways and crowdsourced nodes that provide caching and file backup. The
system can easily scale by adding more crowdsourced nodes or leveraging additional IPFS gateways
to handle increased load. This distributed approach ensures that file availability and redundancy
grow alongside the number of contributing nodes. The system can adapt to the varying storage
demands of the network by dynamically pinning files across different locations, making it highly
flexible and scalable as more nodes join the consortium.

Performance and Availability Across Varying Loads: To ensure consistent performance, AGChain
periodically tests the RTT of available IPFS gateways and dynamically selects the gateway with the
lowest RTT to improve download speeds. By utilizing geographically distributed gateways, AGChain
can handle regional variations in access and mitigate network congestion. The combination of
periodic caching at multiple gateways and distributed backups at crowdsourced nodes allows
the system to maintain high availability and fast file access across varying loads and geographic
distributions. Moreover, the use of multiple nodes helps in load balancing, ensuring that no single
gateway is overwhelmed by requests, thereby enhancing overall network resilience.

4 MAKING IT SECURE AND SUSTAINABLE
So far, we have designed AGChain to be permanent and distributed through contract-based distri-
bution and IPFS-based storage. However, to make it secure and sustainable, we still need to address
three AGChain-specific system issues:

C3: How to securely retrieve apps from the app markets without a network security guarantee? Recall
that our server needs to retrieve apps from existing markets before uploading them to IPFS.
This process is relatively simple for markets that use HTTPS, but it becomes challenging for
those that rely on insecure HTTP (as discussed in §2.3) since there is no inherent network
security guarantee. To tackle this issue, we propose two modes of secure app retrieval in §4.1.

C4: How to avoid repackaged apps from polluting our market? By addressing challenge C3, we ensure
that the retrieved app is identical to the one available in its original app market. However,
in the case of a third-party app market, there is a possibility that the app has already been
repackaged before our secure retrieval. Consequently, we require a mechanism, as proposed
in §4.2, to detect repackaged apps [59] that may differ from their official versions on Google
Play.
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C5: How to make AGChain self-sustainable? As stated in §3.2, each server node in the crowdsourced
network consumes computer resources and incurs gas fees for app uploading in AGChain.
This becomes unsustainable without a monetary mechanism to incentivize these nodes.
Considering that uploaders benefit from AGChain by advertising their apps or securely
storing them for security research purposes, it is reasonable to impose an upload fee on
them to compensate the crowdsourced servers. We will introduce this mechanism in §4.3. By
implementing upload fees, we can also deter spammers from abusing AGChain.

4.1 Secure App Retrieval from (Existing) Unprotected Markets
In this subsection, we present two methods that collectively achieve secure app retrieval even for
those unprotected markets, e.g., seven markets using HTTP downloading in Table 1.
Secure app downloading via checksums. We find that although those seven markets use

HTTP to download apps, most of them allow users to browse app pages via HTTPS (e.g., https:
//zhushou.360.cn/detail/index/soft_id/95487). Additionally, we can extract app APK file checksums
(e.g., MD5) from the HTML source code of these pages. For instance, three app markets (Baidu,
360, and AppChina) directly embed the checksums in their app download URLs. In the case of
Lenovo MM, the checksum is embedded in the <script> data section of the app’s HTML page. By
analyzing the HTML pages of these markets, we can securely obtain app checksums and compare
them with the calculated checksums of the app APK files we retrieve via HTTP. If they match, we
conclude that the retrieved app has not been tampered with by adversaries. Furthermore, although
Sogou market does not provide checksum information, we discover that its HTTP download URL
can be converted into an HTTPS version. Consequently, we can ensure guaranteed app download
security for five out of the total seven unprotected markets.

Alternative security with no checksums. To address the lack of checksums in the remaining
app markets such as Meizu and Anzhi, we propose an alternative mechanism to ensure download
security. The fundamental concept is to cross-check each downloaded app with its Google Play
counterpart. This can be achieved by utilizing the AndroZoo app repository [24], which houses a
vast collection of over ten million apps sourced from Google Play. By comparing a downloaded
app with the apps in the AndroZoo repository, we can determine whether it is present. If it is, we
conclude that the downloaded app from a third-party market has not been compromised during
the download process. Additionally, even if an app is not found in the repository, we can extract its
developer certificate and verify if it belongs to a Google Play developer. Given the dynamic nature
of the AndroZoo repository, which continuously updates to reflect changes in Google Play, we
have a high level of confidence in covering most apps through either app-level or developer-level
checking. For the rare cases where some apps are not adequately covered, AGChain will issue a
warning indicating that these apps might not have been securely retrieved.

4.2 Exploiting App Certificate Info for Repackaging Detection
In this subsection, we present a mechanism of exploiting app certificate to accurately detect
repackaged apps that might be uploaded to AGChain from third-party app markets.
In contrast to traditional app repackaging detection methods [34, 36, 59], the identifier of apps

uploaded to AGChain, namely the app package name, remains fixed. This fixed package name
identifier allows us to locate the corresponding official app on Google Play. The challenge lies
in differentiating between these two versions of apps and specifically determining whether they
originate from the same developer. To address this challenge, we examine the data structure of the
app certificate, which includes essential fields such as the certificate serial number, issuer, subject,
and X509v3 extensions. Among these fields, we identify the serial number (e.g., 0x706a633e) as the
most lightweight metric that adversaries cannot manipulate since they lack access to the developers’
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app signing key. On the other hand, fields like issuer and subject are susceptible to manipulation,
and X509v3 is more complex compared to the serial number.
We further experimentally validate our detection idea by utilizing a dataset [34] consisting of

15,297 pairs of repackaged Android apps. Each pair consists of an original app and its corresponding
repackaged version. This dataset serves as our ground truth. To facilitate our analysis, we developed
a script that automatically extracts the package name and serial number from any given app APK
file. This script utilizes the widely used Androguard library [14] for parsing APK files. It is worth
noting that we have integrated this script into AGChain’s server code. By running our script on
the 15,297 app pairs, we discover a total of 2,270 pairs that share the same package name, while
none of the pairs have the same serial number. Moreover, for the remaining 13,027 repackaged
pairs, each pair has distinct package names. This experiment provides compelling evidence that
our serial number-based mechanism achieves 100% accuracy in detecting repackaged apps.

4.3 Charging Upload Fees to Maintain the Platform Self-Sustainability
In this subsection, we design a mechanism of charging app upload fees to pay crowdsourced server
nodes in AGChain so that the entire AGChain platform is sustainable.
We thus revise the original design of AGChain to charge upload fees just before each server

node invokes (IPFS and) smart contract. More specifically, we add two more steps between step
5 and 6 in Fig. 1. The first step is to send an estimated transaction fee to our smart contract,
for which we add one more function called DonateGasFee() in our smart contract. We set this
function payable so that the user side (in the form of our JavaScript code) can invoke it with a fee,
e.g., DonateGasFee().send(from: userAccount, value: fee). After this call is successfully
executed in blockchain, the user side will receive a transaction ID. In the second step, our JavaScript
code automatically sends this transaction ID (and a few other metadata) to the server for verification.
We now explain how our JavaScript code estimates the gas fee and how the server verifies the

payment transaction. To calculate a gas fee at the user side, we invoke a web3 JavaScript function
called estimateGas() to estimate the required gas of executing the transaction in the EVM. For
the transaction verification at the server, we first query the transaction according to its ID, and
then determine (i) whether the destination address of this transaction is our smart contract, (ii)
whether the upload fee exceeds our estimated gas, and (iii) whether this transaction is never used
before. Only when the three conditions are all satisfied, the server then continues the actual app
uploading to IPFS and Ethereum/Polygon.

5 IMPLEMENTATION
We have implemented a prototype of AGChain, utilizing Ethereum smart contract and IPFS. Fig. 2
shows a screenshot of the front-end homepage. In this section, we summarize the implementation
details of AGChain. The current prototype consists of 2,485 LOC (lines of code), excluding all the
library code used. Table 3 lists a breakdown of LOC across different components and programming
languages.

Front-end. We implement the front-end user interface using the React web framework. Hence,
the HTML and CSS code is minimal, and some HTML contents are also dynamically generated using
JavaScript. Besides user interfaces, we write 302 JavaScript LOC on top of the web3.js library [12]
to query our smart contract for retrieving IPFS hashes. To execute IPFS commands in JavaScript for
app downloading, we write additional 80 JavaScript LOC based on the js-ipfs library [11]. Overall,
the front-end implementation consists of approximately 862 lines of code.
Server node. We implement our server code in a total of 1,572 LOC and run it on the AWS

(Amazon Web Services). Specifically, we write 849 Java LOC to handle requests from the front-end,
securely download apps from existing markets, perform repackaging checks, and upload APK
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Table 3. A breakdown of LOC (lines of code) in AGChain.

Front-end Server Contract IPFS AGChain(F) (S) (C) (I)
JavaScript 781 (302 in F)∗ (80 in F) 781

Java 849 (36 in S) 849
Python 723 (445 in S) 723
Solidity 51 51
CSS 81 81
Sum 862 1,572 51 + (747) (116) 2,485
∗This means that 302 lines of code in front-end are related to smart
contract. Other brackets, such as (445 in S) and (80 in F), are similar.

Fig. 2. A screenshot of AGChain’s front-end homepage (cutted). Besides uploading and downloading apps,
users can click the “Explore App” button to browse the apps stored in AGChain. The bottom part will output
the metadata of each new upload, which can help users immediately download the app from AGChain using
the “Download APK” button.

files to IPFS. Moreover, we write 445 Python LOC to leverage web3 Python APIs [13] to interact
with smart contract. Lastly, for APK file parsing (used in repackaging checks), we leverage the
Androguard library [14] and write 278 Python LOC on top of it.

One of the main tasks of the server node is to retrieve apps from the market URLs provided
by users. However, these URLs often only consist of page URLs, such as https://shouji.baidu.com/
software/11569169.html, instead of direct download URLs. In order to automatically extract the
download URLs, we utilize the understanding that each market follows a distinct pattern when
transitioning from a page URL to a download URL. As a result, we conduct pre-analysis of these
markets to obtain their respective download URL patterns. For the majority of markets, their
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download URLs can be directly extracted from the HTML tags, similar to the aforementioned Baidu
market example. However, a few markets, such as Meizu and AnZhi, require the calculation of
URLs from their JavaScript code. Currently, our prototype has analyzed the download patterns of
all seven markets that require AGChain’s secure app download delegation.

Smart contract. We implement the smart contract with 51 LOC in the Solidity language, which
was reduced from 128 LOC in the earlier version sincewe no longer define in-contract data structures
(see §3.3). Therefore, our smart contract mainly describes a list of functions, e.g., storeApp() for
uploading appmetadata to the blockchain. In particular, to avoid the smart contract beingmisused by
unauthorized parties, we set that only whitelisted server nodes can invoke the storeApp() function
by adding a function modifier to check the transaction sender. However, this also prevents the
front-end’s estimateGas()web3 API from estimating gas (see §4.3). To address this issue, we create
an additional function called storeApp_estimate() that duplicates storeApp()’s functionality
but does not execute data push operations. This function will be executed by the EVM instead of
AGChain transactions.

IPFS module. As we do not make any modifications to the IPFS network, the implementation of
IPFS-related code is carried out in other components. For instance, we have developed 80 JavaScript
LOC for the front-end to facilitate the downloading of apps from IPFS. Similarly, the server node is
responsible for uploading apps to IPFS, and we have implemented this functionality using 36 lines
of Java code (excluding file operation code). To activate the IPFS node on the server, we simply run
the ipfs daemon command.

6 EVALUATION
In this section, we first experimentally evaluate the performance and gas costs of AGChain, then
empirically demonstrate its security effectiveness and decentralization. We have deployed AGChain
to the Ethereum blockchain (tested in the Ethereum Rinkeby environment) in 2021 and further
deployed it to Polygon (a widely-used Ethereum layer-2 network; see §2.4) in 2022 for a real-world
use.

6.1 Performance
To fairly evaluate the additional time introduced by AGChain, we use our server code to record
both normal downloading time (part of step 3 in Fig. 1) and AGChain’s processing time (the rest of
step 3 and steps 4 to 6). Note that we do not count step 8 as part of AGChain’s overhead, because
we simultaneously return results to users without waiting for the transaction to be confirmed.
Totally, we conduct 200 app tests from seven markets (one market, Sogou, is no longer available in
2022 when we test in Polygon) that require secure delegation. Moreover, we perform these tests in
different days to minimize the impact of different network conditions.

Table 4 lists the average results of each tested market for the Ethereum Rinkeby environment and
the layer-2 Polygon network. Note that the normal downloading time simply relies on the network
quality between app markets and our AWS server instead of APK file sizes. On top of the normal
downloading time, AGChain introduces three steps of additional processing times, including
(i) about one second (or 1s) for extracting and validating checksums; (ii) ∼0.4s for performing
repackaging checks; and (iii) ∼0.4s for uploading apps to IPFS. With these, the overall overhead
introduced by AGChain is from 2.16% to 20.56%, with the median and average of 12.05% and 11.39%,
respectively. We thus conclude that AGChain’s performance overhead is around 12%, a reasonable
performance cost for a blockchain-based system.
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Table 4. Average processing time introduced by AGChain.

Market ID Market Name
APK Normal Additional Processing Time (ms)
Size Download Checksum Repackaging IPFS Upload Overall %
(Mb) Time (ms) E* P* E P E P E P

1 Baidu Market 20.09 71063.2 820.1 1324.9 377.1 557.8 340.7 599.5 2.16% 3.49%
2 360 Market 27.26 10105.5 917.0 1333.8 433.8 393.0 429.1 351.2 17.61% 20.56%
3 Lenovo MM 20.87 14819.2 1203.3 1245.3 408.6 391.9 415.8 277.5 13.68% 12.92%
4 APP China 20.63 20090.9 1328.0 1263.6 355.8 380.5 387.4 271.7 10.31% 9.54%
5 Sougou 30.52 13854.8 990.1 - 444.9 - 393.2 - 13.20% -
6 Meizu Market 25.29 21875.8 1870.7 1406.2 369.8 398.1 396.1 330.1 12.05% 9.76%
7 AnZhi 23.86 17345.3 1013.0 1596.1 414.3 398.5 432.7 352.4 10.72% 13.53%

*: E and P represent the Ethereum Rinkeby environment and the layer-2 Polygon network, respectively.
-: this market is no longer available in 2022.
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Fig. 3. CDF plots of gas fees per app uploading in AGChain.

6.2 Gas Costs
Throughout the 200 performance tests, we also collected the corresponding gas fees in Ether (for
the Ethereum Rinkeby environment) and in Matic (for the layer-2 Polygon network). As of 31
December 2023, the value of one Ether is approximately 2,300 USD, while one Matic is around 1
USD.

Fig. 3 shows the CDF (cumulative distribution function) plot per app uploading in AGChain, for
both Ethereum and Polygon. We can see that for the Ethereum Rinkeby environment, over 95% gas
fees are in the range of 0.00008245 Ether (0.1896 USD) and 0.00008773 Ether (0.2018 USD). Only
four tests consumed a gas fee over 0.0001 Ether, ranging from 0.00010374 and 0.00012461 Ether. The
average of all the gas fees of AGChain in the Ethereum Rinkeby environment is 0.00008466 Ether
(0.1947 USD). In contrast, the gas fees of AGChain in the Polygon network is even much smaller,
with an average of only 0.002821 Matic (0.0028 USD). Since only uploads in AGChain cost gas and
one upload can serve all future downloads, we believe that such gas costs are quite acceptable for
real-world deployment.

6.3 Security
Since there are no real-world attacks against AGChain, we mimic a MITM (Man-In-The-Middle)
attack and a repackaging attack to demonstrate AGChain’s security effectiveness.
Preventing a MITM attack. To mimic the MITM attack, we originally tried to control the

network traffic of our AWS server using the mitmproxy tool [15] (since we cannot redirect app
markets’ traffic as real adversaries). However, it turned out that AWS disallows this. Hence, we
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Package Name Version Certificate Issuer Organization Certificate Serial No. Original App Page URL Download Check

Fig. 4. A screenshot (with the surrounding table) to demonstrate a repackaged app successfully detected by
AGChain.

Fig. 5. A screenshot of AGChain defending against a MITM attack.

have to redirect the target app page URL directly in our server code. Specifically, when a user
inputs this particular Tudou Video URL (http://www.appchina.com/app/com.tudou.android) in AGChain,
the actual app download URL will become the URL of a similar yet fake app (https://github.com/
apkchain2020/RepackagedAPK/blob/master/com.tudouship.android_4159.apk) we prepared. During this
process, AGChain finds that theMD5 retrieved from the original app page is f5580d6a58bb9d97c27929
f1a9c585f1while theMD5 calculated from the downloadedAPKfile is a05e5187f4e9eb434bc3bbd792e35c54.
Since these two checksums are different, AGChain shows an alert like Fig. 5 to the user, and does
not allow this app to be uploaded.

Detecting a repackaged app. To mimic the repackaging attack, we first select a target repack-
aged app that has ground truth as in [34] and also appears in Chinese app markets. Our choice is
the SuperSu rooting app on the Baidu market (https://shouji.baidu.com/software/11569169.html). We
then upload this original app to AGChain and find that it “passes” the repackaging check, as shown
in Fig. 4. We further upload the repackaged app via the URL of https://github.com/apkchain2020/
RepackagedAPK/blob/master/eu.chainfire.supersu_repack.apk. This time AGChain finds that the certifi-
cate serial number is different from that in our pre-generated certificate ID database using apps.
Indeed, Fig. 4 also shows that the two serial numbers are different. Hence, for the repackaged app,
it “fails” the check.

6.4 Decentralization
During the 200 performance tests in different timings, we also identify IPFS gateways in over 20
different locations worldwide, which demonstrate the decentralization of AGChain.
Table 5 provides a comprehensive list of the identified IPFS gateways. We can see that these

gateways are distributed across 21 different locations around the globe. Around a half, ten, gateways
are located in the United States (US). This is probably because many IPFS nodes run in cloud servers,
which are mainly provided by the US companies. Other than the US, Europe holds seven gateways
out of the remaining 11. Compared with the US and Europe, there are only three gateways in Asia
(with the remaining gateway in Canada). However, we anticipate that as FinTech gains popularity
in Asia [35], more IPFS nodes will be deployed locally, resulting in faster connections. Additionally,
according to the RTT result in Table 5, nearby IPFS gateways usually have shorter RTTs, which
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Table 5. The IPFS gateways identified in 21 different locations.

Gateway Domain IP Address Location RTT (s)
ipfs.jbb.one 47.52.139.252 Hong Kong SAR 0.04

ipfs.smartsignature.io 13.231.230.12 Tokyo, Japan 0.07
10.via0.com 104.27.129.45 San Francisco, U.S.A 0.13

ipfs.kavin.rocks 104.28.5.229 Dallas, U.S.A 0.14
ipfs.runfission.com 34.233.130.24 Ashburn, U.S.A 0.25

ipfs.k1ic.com 39.101.143.85 Beijing, China 0.51
ipfs.2read.net 195.201.149.81 Gunzenhausen, DE 0.55
ipfs.drink.cafe 98.126.159.6 Orange, U.S.A 0.56

gateway.pinata.cloud 165.227.144.202 Frankfurt, Germany 0.56
ipfs.telos.miami 138.68.29.104 Santa Clara, U.S.A 0.57
hardbin.com 174.138.8.194 Amsterdam, NL 0.57
ipfs.fleek.co 44.240.5.243 Portland, U.S.A 0.57
ipfs.greyh.at 35.208.63.54 Council Bluffs, U.S.A 0.69

gateway.temporal.cloud 207.6.222.55 Surrey, Canada 0.70
ipfs.azurewebsites.net 13.66.138.105 Redmond, U.S.A 0.72
ipfs.best-practice.se 193.11.118.5 Eskilstuna, Sweden 0.73
ipfs.overpi.com 66.228.43.184 Cedar Knolls, U.S.A. 0.74
jorropo.net 163.172.31.60 Paris, France 0.76
jorropo.ovh 51.75.127.200 Roubaix, France 0.76

ipfs.stibarc.com 74.140.55.163 Delaware, U.S.A 0.81
ipfs.sloppyta.co 51.68.154.205 Warsaw, Poland 0.83

suggests the value of identifying the fast IPFS gateways in AGChain for efficient app downloading
(see §3.4).

7 DISCUSSION
In this section, we discuss several potential improvements AGChain could integrate with in the
future and a few other potential extensions.

Deployment challenges. One particular challenge in the real-world deployment of AGChain is
inviting developers to participate in the platform. Although AGChain currently supports real-time
app delegation for users, it would be more advantageous if a wider range of apps could be stored on
the platform in advance to improve user convenience. However, engaging developers to contribute
their apps to AGChain requires proactive outreach efforts, such as using publicly available contact
information on Google Play to send invitation emails. Moreover, incentivizing developers, such
as offering to cover uploading gas fees, is necessary to reduce barriers to adoption, which adds
complexity and cost to the deployment process.
More secure. Although AGChain has implemented repackaging checks to detect repackaged

apps, it currently lacks the ability to detect general Android malware. To address this limitation,
we have devised a plan to integrate the malware scan feature of VirusTotal [18]. By utilizing
VirusTotal APIs, we will scan each uploaded app on the server side, and the results of these
scans will be stored as part of the app metadata within our smart contract, including a URL link
to the scan report. This enhancement will allow users to verify the security of apps during the
downloading process by reviewing the scan reports. Additionally, explicit warnings for suspicious
apps will be provided to enhance user security and trust. Although these measures offer significant
protection, we acknowledge that advanced threats like Advanced Persistent Threats (APTs) require
a broader approach involving multiple defensive mechanisms and continuous monitoring, which is
beyond the scope of this work. Our contribution focuses on strengthening app integrity through
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repackaging detection and integration of well-established malware scanning tools, providing a
secure environment for typical threat scenarios that users might encounter.
More user-friendly. In our current AGChain prototype, users are required to download apps

by specifying package names and version numbers, which may be cumbersome for individuals
with limited technical expertise. To enhance user experience, we plan to develop a more intuitive
interface that allows users to input or search for app names directly. We could achieve this by
crawling app page information from existing app markets and maintaining a server-side table
that maps app names (in different languages) to their corresponding package names, ensuring
users can easily find desired apps without needing to remember complex identifiers. Since app
names are not unique identifiers like package names, there is no need to store them in the smart
contract. This enhancement will benefit both app uploaders and downloaders: for app uploaders,
a guided uploading process will provide step-by-step assistance to reduce errors and facilitate
easier onboarding; for app downloaders, improved search functionality will make app discovery
more accessible while also enhancing security by mitigating the risk of adversaries using deceptive,
slightly different package names to distribute fake apps. Overall, these improvements will contribute
to a more user-friendly and secure ecosystem for all users.

Other potential extensions. In this paper, we implemented AGChain on the current Ethereum
ecosystem, but it could be further extended in terms of supporting legacy blockchains [52] and
concurrent smart contract execution [53]. Moreover, our crowdsourced server nodes could be
enhanced by integrating TEE SGX [54] and becoming more serverless [21]. Additionally, the
security and upgradeability of AGChain’s smart contract could be protected by some of the state-
of-the-art Ethereum protection techniques [39, 40, 58].

8 RELATEDWORK
In this section, we present some other works that are closely related to AGChain.

AGChain is mostly related to several recent works [31, 33, 38, 41, 42, 47, 49, 60] that also leveraged
the blockchain and IPFS technology to construct decentralized systems in various domains. For
example, PubChain [47] is a decentralized publication platform that stored paper metadata in
the blockchain layer and raw paper files in IPFS. It introduced an incentive mechanism called
PubCoin, which rewarded participants through a process referred to as “publishing or reviewing as
mining”. Another paper on arXiv, DClaims [41], presented a censorship-resistant service that utilized
decentralized web notations to disseminate information on the Internet. Similar to AGChain, it used
Ethereum as the blockchain platform and integrated IPFS as the backend data storage. Considering
the frequency of web notations among numerous users, DClaims established a small network
of nodes to aggregate multiple blockchain transactions and broadcast them collectively, thereby
reducing the average transaction cost. Apart from these works, Shafagh et al. [42] published a
pioneer study on integrating blockchain and IPFS, drawing inspiration from the four-layer design
of the Blockstack [23] system: blockchain, virtualchain, routing, and storage layers. Furthermore,
Wei et al. [49] proposed a scalable and trustworthy infrastructure for collaborative container
repositories, which is highly pertinent to our work on distributed infrastructures. Klaine et al. [33]
presented a privacy-preserving blockchain platform designed for data marketplaces, offering
valuable insights into secure data sharing mechanisms. Zieglmeier et al. [60] discussed decentralized
inverse transparency using blockchain technology, which complements our focus on enhancing
transparency and trust in distributed systems. In comparison to these related studies, AGChain
stands out due to its unique characteristics in the following four aspects:

Firstly, unlike other blockchain systems that require users to choose between existing IT infras-
tructure and their own, our goal with AGChain was not to replace existing app markets. Instead,
we designed AGChain as a gateway that not only provides permanent app delegation to end users
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but also leverages the vast number of apps available in existing markets. We believe that this design
approach offers a unique opportunity to combine the benefits of traditional IT infrastructure with
decentralized blockchain technology.
Secondly, we dramatically reduced gas costs in AGChain by proposing a set of design-level

mechanisms. In contrast, no aforementioned related works [38, 41, 42, 47] tried to do that. While
there have been other works focusing on gas optimization, they primarily focused on language-level
optimizations. Specifically, GASPER [28] identified gas-costly smart contract coding patterns and
summarized them into two categories, loop-related and useless codes. MadMax [30] leveraged
control- and data-flow analysis of smart contracts’ bytecode to detect the gas-related vulnerabilities,
including unbounded mass operations, non-isolated external calls, and integer overflows. Addi-
tionally, GASOL [22] introduced a gas optimization approach by replacing multiple accesses to
the global storage data with several single accesses to the data in local memory. Accessing local
memory incurs significantly fewer gas costs (3 Gas per access) compared to accessing storage data
(each write access costing 20 Gas in the worst case and 5 Gas in the best case). However, these
optimizations are still limited to the code level and are specifically designed for particular gas-costly
patterns.
Thirdly, to the best of our knowledge, none of the existing studies on IPFS [27, 38, 41, 42, 47]

explicitly mentioned the undistributed problem of IPFS, where IPFS files are cached in other nodes
only when the node requests that file. In addition to our attempt to this problem in §3.4, the IPFS
designers themselves also tried to address this issue. Recently, they have launched Filecoin [8],
which is an incentive token mechanism aimed at encouraging peers in the IPFS network to remain
online and take responsibility for storing files. However, Filecoin requires users to pay for file
storage, and the process of storing a 1MB file currently takes five to ten minutes in the Filecoin
network [8]. Due to these limitations, we built our own IPFS consortium network that leveraged
IPFS gateways and crowdsourced server nodes to periodically backup files.

Lastly, we encountered three context-specific challenges that are unique to AGChain, as explained
in §4.

9 CONCLUSION AND FUTUREWORK
In this paper, we proposed AGChain, a blockchain-based gateway for trustworthy – permanent,
distributed, and secure – app delegation from existing app markets. We addressed challenges
in significantly reducing smart contract gas costs and enabling fully distributed IPFS-based file
storage. Additionally, we resolved three specific system issues for security and sustainability.
We implemented an AGChain prototype on Ethereum and Polygon blockchains, evaluating its
performance, gas costs, security, and decentralization. The results showed a 12% performance
overhead and a cost of around 0.0028 USD per app upload (no cost for app download). Further
improvements include making AGChain more developer-friendly and secure.
Future work could explore integrating AGChain with other blockchain platforms to enhance

interoperability and expand its reach beyond existing app markets. This integration could allow
for broader use cases, such as cross-chain app delegation and support for diverse application
ecosystems. Additionally, extending the functionalities of AGChain beyond app markets, such
as facilitating secure software updates or supporting decentralized content distribution, presents
promising avenues for further research and development in the blockchain space. We will also
consider incorporating user feedback analysis and additional benchmarks in the future.
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