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Abstract—Fully homomorphic encryption (FHE) is a promising
cryptographic primitive that enables secure computation over
encrypted data. A primary use of FHE is to support privacy-
preserving machine learning (ML) on public cloud infrastructures.
Despite the rapid development of FHE-based ML (or HE-ML), the
community lacks a systematic understanding of their robustness.

In this paper, we aim to systematically test and understand
the deviation behaviors of HE-ML models, where the same
input causes deviant outputs between FHE-hardened models and
their plaintext versions, leading to completely incorrect model
predictions. To effectively uncover deviation-triggering inputs
under the constraints of expensive FHE computations, we design
a novel differential testing tool called HEDIFF, which leverages
the margin metric on the plaintext model as guidance to drive
targeted testing on FHE models. For the identified deviation
inputs, we further analyze them to determine whether they
exhibit general noise patterns that are transferable. We evaluate
HEDIFF using three popular HE-ML frameworks, covering
12 different combinations of models and datasets. HEDIFF
successfully detected hundreds of deviation inputs across almost
every tested FHE framework and model. We also quantitatively
show that the identified deviation inputs are (visually) meaningful
in comparison to regular inputs. Further schematic analysis
reveals the root cause of these deviant inputs and allows us to
generalize their noise patterns for more directed testing. Our
work sheds light on enabling robust HE-ML for real-world usage.

I. INTRODUCTION

In recent years, there has been rapid growth in fully
homomorphic encryption (FHE) algorithms [1–3]. As one of
the most exciting cryptographic breakthroughs, FHE enables
privacy-preserving machine learning [4–6] that allows normal
users to encrypt their data locally and then directly upload the
ciphertext data to a remote server for processing. The server
performs computation on the encrypted data and returns the
encrypted results to the users. Thus, users can protect their
confidential data without compromising the convenience of
machine learning as a service (MLaaS). Commercial vendors
like Intel and IBM are actively developing and promoting their
HE-ML frameworks [6, 7], greatly spurring real-world ML
applications with privacy considerations [8, 9].

Despite the prosperous development of HE-ML, there is still
a lack of systematic understanding of the quality of HE-ML
applications. In general, the design of FHE primitives is often
subtle and complex [3, 10]. Even worse, FHE protocols are
well-known for their slow speed, and we find that modern
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HE-ML frameworks often aim to extensively support complex
DNN operators, tensor computations, and imperative program-
ming [5–7]. Hence, various optimization and approximation
schemes [11, 12] are involved in converting standard floating-
point computations into FHE-supported forms. While these
efforts substantially reduce the hurdle of employing FHE
primitives in MLaaS applications, they may increase the burden
on developers to deliver bug-free HE-ML applications. In fact,
our preliminary studies in §III have shown that HE-ML models
may yield specious outputs under certain inputs.

In this paper, we aim to systematically test and understand
the deviation behaviors in FHE-hardened ML models. We
target deviations where the same input causes deviant outputs
between FHE models and their plaintext versions, leading
to completely incorrect model predictions. Inspired by the
widely used differential testing (DT) [13] technique in the
software engineering (SE) community, which aims to find
bugs in similar software, a straightforward approach to finding
deviation behaviors is to conduct DT directly. This technique
will systematically explore the input space and detect inputs that
lead to differing outputs between the FHE and plaintext models.
However, directly using DT is expensive, as a prediction in
FHE model often requires several orders of magnitude more
computation than in the plaintext model (e.g., half a minute vs.
less than 0.1 millisecond). To deliver an efficient DT specific
to FHE models, this paper first conducts a preliminary study to
identify a proper metric, which serves as the feedback to drive
guided test input selection and mutation. Through empirical
analysis, we eventually choose margin, defined as the difference
between the largest and the second-largest prediction values in
the model’s inference result, as our metric. We present details
of this preliminary study in §III.

Based on the insights above, we design a novel differential
testing tool called HEDIFF, which leverages the margin metric
on the plaintext model as guidance to drive targeted testing
on FHE-hardened models. Specifically, HEDIFF first conducts
margin-based input filtering to identify only those promising
ones as candidate seeds for mutation. Then, HEDIFF adds a
small amount of noise to each seed and mutates them in ways
that could potentially cause deviant behaviors. Inspired by the
success of the Projected Gradient Descent (PGD) algorithm [14]
in finding adversarial examples (AEs) [15], we adapt PGD to
mutate seed inputs in a way that reduces the margin value
for our scenario of finding deviation behaviors. Furthermore,
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with detected deviation inputs on hand, we present a schematic
analysis to understand the root cause of deviant behaviors
in FHE models, and also generalize the noise patterns of
these deviation inputs. The generalized patterns can be treated
like weak Universal Adversarial Perturbations (UAPs) [16],
enabling further directed identification of deviation inputs. This
can be analogous to exploiting the correlations between similar
codes to find new defects by utilizing patterns of previously
discovered defects in traditional software.

Our evaluation encompasses three mainstream HE-ML
frameworks, including TenSEAL [4], Concrete-ML [5], and
HElayers [6]. These frameworks are developed and maintained
by industrial vendors such as OpenMined, IBM, and Zama.
We launch testing towards similar neural network architecture
to prominent FHE-friendly ML models [17] and multilayer
perceptron (MLP) trained for general and domain-specific
tasks with different activation functions. With real-world
datasets, including Bank [18], Credits [19], MNIST [20], and
DIGITS [21], we simulate scenarios where sensitive data of
different types are processed by HE-ML models. HEDIFF
generates about 45,500 mutated inputs in total to test HE-
ML models. During approximately 54 hours of testing, we
detected a total of 2,509 deviation inputs across almost all the
tested FHE frameworks and models. We show that these inputs
have high (visual) similarity compared with normal inputs,
thereby uncovering defects that may cause substantial confusion
for users of these FHE frameworks in their daily usage. Our
further study depicts the root cause of these defects. Looking
ahead, besides using standard test data for accuracy validation,
developers can use HEDIFF to test potential deviation behavior
in their HE-ML models before releasing them to end users. In
sum, we make the following contributions:

• We, for the first time, study flaws introduced in FHE, a
highly visible cryptographic primitive that enables secure
computation on encrypted data. We reveal flaws within
the context of HE-ML models, which can cause confusion
or adversarial manipulations during usage.

• We present HEDIFF, an automated testing tool designed
to uncover inputs that cause deviated outputs in HE-ML
models compared to their plaintext counterparts. HEDIFF
employs carefully designed margin-based feedback to
guide test input selection and mutation.

• Our large-scale evaluation of mainstream HE-ML frame-
works and models exposes a substantial number of flaws.
We also discuss the root causes and demonstrate the
potential consequences of exploiting these defects.

We maintain HEDIFF to benefit future research at [22].

II. BACKGROUND AND MOTIVATION

This section introduces the mechanisms and core components
that enable efficient FHE computation. We then illustrate
how FHE can be employed to enable privacy-preserving ML
inference and the significance of HE-ML in practice. Note that
we do not specifically distinguish FHE and HE in this paper,
and to ease the reading, we refer to FHE-based ML as HE-ML.

A. Homomorphic Encryption (HE)

HE is a cryptographic primitive that enables computation on
encrypted data. A major application scenario for HE is cloud
computing, where clients send their data to computationally
powerful but untrusted servers for computation. The servers
can compute the encrypted data and return encrypted results
to the clients, while learning nothing about the plaintext data
or results. Denote the encrypted data as c corresponding to a
plaintext message m, i.e., Encrypt(m) = c. The equivalence
of computation on encrypted data and plaintext data constitutes
the fundamental property of HE, as shown as follows:

Decrypt(f(c)) = Decrypt(f(Encrypt(m))) = f(m) (1)

where f is the function that the clients intended to compute on
their data. The function f is typically composed of addition
and/or multiplication operations. Depending on the type and
the number of supported operations, HE can be classified
into different categories, including partially homomorphic
encryption (PHE), somewhat homomorphic encryption (SHE),
and fully homomorphic encryption (FHE). PHE supports either
addition or multiplication operations, but not both, while
SHE supports both but is constrained by the total number
of operations. FHE supports an arbitrary number of addition
and multiplication operations. Due to its versatility, FHE is
generally referred to as cryptography’s holy grail [2, 23]. As
such, this paper focuses on FHE schemes. However, HEDIFF
is not limited to FHE and has high generality across different
HE algorithms by treating HE-ML frameworks as a black box.

The privacy guarantee of FHE is based on the hardness
of certain mathematical problems, particularly the Learning
with Errors (LWE) problem [24]. Given an n-element secret
vector s ∈ Fn

q , where Fq denotes a finite field, the client
samples a matrix A ∈ Fn×n

q from a uniform distribution
and a noise vector e ∈ Fn

q from a small-variance Gaussian
distribution. Based on the Lattice theory [24], it is nearly
impossible for the server to uncover the secret vector s from
the term As+e. Hence, the client can use s as a key to encrypt
its message m by computing b = As+ 2e+m, then sends
the ciphertext c = (A,b) to the server. The server can operate
on the ciphertext c by addition and multiplication operations
without learning the plaintext message m, and returns the final
computed ciphertext c′ to the client. The client can then decrypt
the ciphertext c′ to obtain the plaintext result m′.
Hurdles of Applying FHE to ML. Although FHE serves a
promising solution to enable privacy-preserving computation,
applying FHE to ML is non-trivial because:
Computation on Real Number. ML models typically work
with real numbers, while FHE can only naturally support integer
operations. One viable solution is to convert all real numbers
at the application level, in which the server rounds the real
numbers into integers before applying FHE, with techniques
such as model quantization [25]. Such an approach can yield
compatible accuracy with the real number counterpart [26].
Another solution is to support real numbers at the cryptographic
level, in which the FHE scheme natively supports real number
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operations. Many FHE schemes have been proposed to support
real number operations, the most prominent of which are
CKKS [3] and RNS-CKKS [27]. Such schemes are often
referred to as approximate FHE schemes, as they can only
support approximation of real number operations. The accuracy
of the approximation is related to the number of bits used to
represent the real number. The more bits used, the higher the
accuracy and the greater the computational cost.
Non-linear Functions. FHE requires the homomorphic function
f to be expressed in terms of addition and multiplication
operations or some other operations like bit-shift that the
underlying FHE schemes can support. However, in the machine
learning domain, many widely-used functions like ReLU
and Sigmoid are non-linear, which does not directly map
to FHE primitive operations. A plethora of works [28–30]
approximate non-linear functions with polynomials of the
form akx

k + . . . + a1x + a0, which can be expressed in
terms of addition and multiplication operations. Some HE-
ML frameworks like Concrete-ML provide built-in support
for non-linear function conversion, while others like TenSEAL
require users to manually convert the non-linear functions to
polynomial form. Besides conversion, the model can also be
trained directly with the approximated function in an FHE-
friendly format to avoid the noise introduced in the conversion
process. Our evaluation covered all these three scenarios.

B. FHE in MLaaS

To date, FHE is typically employed in MLaaS and com-
mercialized by platforms like Amazon AWS [31] and Google
Cloud [32]. Often, the cloud holds an ML model and provides
the ML inference service to a client. The client has sensitive
data and does not want to reveal it to the cloud, but wants to
use the cloud’s model for inference. Meanwhile, the cloud does
not want to reveal internal service implementations, particularly
the model architecture and parameter weights, to the client, as
designing the model architecture can cost considerable effort,
and the model might be trained on proprietary datasets.

To use FHE, the cloud first trains a plaintext model using
standard ML training techniques. The plaintext model is then
transformed into a FHE-compatible format with the help of
HE-ML frameworks like TenSEAL [4], finally encrypted and
deployed to the cloud. To use the deployed model, the client
first encrypts his sensitive data locally, then sends the encrypted
data to the cloud. The cloud runs ML inference on the ciphertext
from the client, and returns the encrypted result. After that, the
client decrypts it to obtain the result in plaintext. During the
process, the cloud learns nothing about client data due to the
security guarantee of FHE, while the client cannot either learn
the model architecture and parameter weights of the cloud.

C. Research Motivation and Position

Motivation. As aforementioned, there has been high interest in
commercializing and deploying FHE in practice. Several indus-
trial giants and startups are actively developing and promoting
their HE-ML solutions in the market [33–35]. HE-ML has also
been adopted in various highly-regulated sectors, including

healthcare [36], finance [37–40], and government [41, 42].
Overall, the market size of FHE has reached 190 million USD
in 2022 and is expected to hit 300 million by 2030 [43].

Despite the promising adoption of FHE in practice, the
correctness of HE-ML frameworks and corresponding FHE-
hardened models has not been systematically studied, and their
potential vulnerabilities have not been well understood. We
anticipate that the defects in HE-ML frameworks may lead
to severe consequences in FHE-hardened models, including
missed detections of tax evasion, credit fraud, or even mis-
diagnosis of patients. Even worse, our tentative explorations
show that defects in HE-ML frameworks are common and hard
to diagnose, given the algorithmic obscureness of FHE, the
complexity of HE-ML frameworks, and the high computational
cost of testing FHE. Hence, it is imperative to understand
the reliability of HE-ML frameworks and corresponding FHE-
hardened models, and to develop effective testing techniques
to uncover potential defects.
Position. We aim to develop automated testing to uncover
defects in the inference process of HE-ML models, denoting the
most common usage of HE-ML in practice. To our knowledge,
few HE-ML frameworks support HE-enabled model training,
given the prohibitive computation overheads. The training of
ML models is typically performed offline, where the training
data is assumed available in plaintext. The trained model is then
transformed by HE-ML frameworks into an FHE-compatible
format and deployed (e.g., on the cloud) to perform inference.
We also assume that the original model is well trained, i.e., it
has been trained on a large amount of high-quality data and has
achieved high accuracy on the validation set. Yet, we assume
the predictions of FHE-hardened, well-trained ML models may
be incorrect under certain inputs and aim to detect inputs that
cause these mispredictions in HE-ML models.

III. PRELIMINARY STUDY AND OBSERVATION

This section conducts a preliminary study to summarize
insights that guide the design of HEDIFF, which will be
presented in §IV.

A. Deviation Inputs and Preliminary Testing
Definition. Following the discussion in §II-C, the objective
of our preliminary testing is to analyze the characteristics of
deviation-triggering inputs (or simply called “deviation inputs”),
which are inputs i that can make the FHE-hardened model
Mf to predict the wrong label while its plaintext version Mp
to output the ground-truth label. Specifically, deviation inputs
need to satisfy the following constraints:{

Argmax(Mf (i)) ̸= Argmax(Mp(i))
Argmax(Mp(i)) = label

(2)

where Mf (i) and Mp(i) denote the logits output of the FHE-
hardened and plaintext models, respectively, and label is the
ground truth of input i. Argmax is used to choose the class
with the highest logits, i.e. the prediction class of the model.
Example. Table I depicts the logits output (the output without
Softmax) of the plaintext and FHE-hardened models using the
Concrete-ML framework [5]. The class prediction (i.e., the
class with the maximum value of the logits) of the plaintext
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TABLE I: Logits output of the same image from the plaintext
and FHE-hardened ten-class classification model. The class
predictions of the two models are bolded.

Label: 4
Class No. 0 1 2 3 4 5 6 7 8 9

Plain Logits -2.36 -0.39 -7.57 -6.56 2.95 -1.85 -3.31 2.14 -0.47 2.80
FHE Logits -2.26 -0.52 -7.53 -6.48 2.75 -1.85 -3.27 2.02 -0.49 2.89

TABLE II: Deviation inputs identified during preliminary
testing. The 2-4 columns show the number and ratio of deviation
inputs under three mainstream HE-ML frameworks.

Datasets, Models TenSEAL Concrete-ML HElayers
MNIST, Cryptonets-Square 27/5000(0.54%) 1/1000(0.10%) 1/5000(0.02%)
DIGITS, Cryptonets-Sigmoid 10/1437(0.70%) 2/500(0.40%) 4/1437(0.28%)
Credit, MLP-Sigmoid 367/10617(3.46%) 12/1000(1.20%) 367/10617(3.46%)
Bank, MLP-AppReLU 6/6174(0.10%) 11/1000(1.10%) 0/6174(0.00%)

model is 4, meaning the prediction of the fourth position was
selected. In contrast, the class prediction of the FHE-hardened
model is 9 (i.e., the prediction at the ninth position).
Preliminary Testing. We find that deviation inputs are not
rare. Rather, we observe such inputs across different encryption
schemes, HE-ML frameworks, models, and datasets. Here, we
launch a standard differential testing (DT) task — we iterate
through the training dataset to count deviation inputs with
respect to the objective in Eq. 2. This way, we measure the
ratio of deviation inputs residing in the standard training dataset
and study their characteristics for further efficient testing.

Table II shows the results of preliminary testing across
four datasets, four models, and three HE-ML frameworks,
including TenSEAL [4], Concrete-ML [5], and HElayers [6].
Specifically, we iterate through the whole training dataset for
DIGITS, Credit, and Bank datasets on TenSEAL and HElayers,
and randomly select several samples for testing from the
MNIST dataset and the datasets on Concrete-ML due to their
extremely time-consuming. Details of models and framework
configurations will be further introduced in §V.
Reflection and Challenge. While we find deviation inputs
across different settings, the ratio of deviation inputs existed in
the original training dataset is low. However, this does not mean
that this phenomenon is unimportant; on the contrary, we view
this problem as critical albeit difficult to detect, especially in
FHE-hardened models where the inference computation is time-
consuming and “blanket searching” is hardly feasible. Overall,
given the objective defined in Eq. 2 and the observations above,
one might expect to employ DT to drive automated testing,
where we compute and compare the predictions of both the
FHE-hardened and plaintext models. However, considering that
FHE computation is slow, directly applying DT techniques
to this scenario is less feasible. We need a highly targeted
approach to minimize computation on FHE-hardened models.
Below, in §III-B, we explore leveraging certain metrics to guide
the search of deviation inputs.

B. Explore Efficient Deviation Inputs Searching

To deliver efficient DT and uncover deviation inputs in FHE-
hardened models, the key is to minimize the expensive FHE
computation. As such, we attempt to identify a particular metric

TABLE III: The number and ratio of deviation inputs that cause
the predictions to change to the second most likely class. The
deviation inputs are collected from the results in Table II.

Datasets, Models TenSEAL Concrete-ML HElayers
MNIST, Cryptonets-Square 0/27(0.00%) 1/1(100.00%) 0/1(0.00%)
DIGITS, Cryptonets-Sigmoid 7/10(70.00%) 2/2(100%) 3/4(75.00%)
Credit, MLP-Sigmoid 367/367(100.00%) 12/12(100.00%) 367/367(100.00%)
Bank, MLP-AppReLU 6/6(100.00%) 11/11(100.00%) 0/0

Fig. 1: Statistics of margin value on deviation inputs and
normal inputs. The x-axis denotes margin values, and the y-
axis denotes the number of normal and deviation inputs.

of deviation inputs on the plaintext model that could be treated
as a “mirror.” By calculating and observing this “mirror” metric
solely on the plaintext model, we would have confidence that
the corresponding input is more likely to trigger deviant outputs
in the FHE models. Based on this insight, we now analyze
the characteristics of deviation inputs collected in §III-A and
explore possible metrics that satisfy the above conditions.
Observation. Through a detailed analysis of the identified
deviation inputs, we find that nearly all of them trigger the
model to predict the second most likely class in the plaintext
model. We thus measure and report the ratio of deviation
inputs that fall into this category. As shown in Table III, the
ratio is high across nearly all datasets and models. Moreover,
when comparing the logits of the plaintext model and the FHE-
hardened model for each normal/deviation input, the absolute
difference in logits for the prediction classes with the two
highest probabilities is almost the same. For instance, consider
the example in Table I, where the fourth and ninth classes have
the highest probabilities in the plaintext and FHE-hardened
model. The difference in the logits of the fourth and ninth
classes is about 0.20 and 0.09, respectively. In other words, if
the difference between the logits of the most likely and the
second most likely classes is marginal, deviation inputs may
be more likely to exist when the logits of these classes change
by approximately the same absolute values.
Margin. Through the above observation and analysis, it is
natural to consider the margin as our metric, given margin is
defined as the difference between the largest prediction value
and the second-largest prediction value in the model’s inference
result. Formally, given a model M and an input x, we have
Margin(x) = predi − predj , where i = Argmax(M(x)),
predi = M(x)i and j = Argmax(M(x)k ̸=i), predj =
M(x)j . In deep learning theory, margin is deemed the minimum
distance of an input to the decision boundary [44]. While
deviation behavior is due to the difference in the decision
boundaries between FHE-hardened and plaintext models, data
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that is close to the decision boundary of the plaintext model
is more likely to cause deviation, as a slight difference in the
decision boundary of FHE-hardened model near this data may
induce an altered prediction, i.e., deviation behavior. Thus,
margin, as a metric for the distance to the decision boundary,
should be a good choice to identify deviation inputs.
Empirical Validation. We conduct an experiment to validate
the effectiveness of the margin metric. Specifically, we compare
the margin of each deviation input and normal input from a
statistical perspective. We chose the deviation inputs found
from Credit dataset, as shown in Table II. We then count the
number of normal and deviation inputs within different margin
value ranges. As in Fig. 1, we observe a clear trend that most
deviation inputs (denoted with the blue bar) have small margin
values. We interpret that inputs with smaller margin values are
closer to the decision boundary, and therefore, are more likely
to reflect the boundary differences between the plaintext and
FHE-hardened models through subtle mutations.
Formalization. To further illustrate the effectiveness of the
margin metric, we formalize the relationship between margin
and deviation inputs. Let margin be ϕ(i) = top1(logitsp(i))−
top2(logitsp(i)), where top1 and top2 are used to get the
max and second-max value in logitsp(i), which means the
logits value of plaintext model given input i. Consider the max
error δ(i) introduced in FHE-hardened model’s prediction: for
each value of class j in logitsf (i) we have: |logitsf (i)j −
logitsp(i)j | ≤ δ(i), i.e.

logitsp(i)j − δ(i) ≤ logitsf (i)j ≤ logitsp(i)j + δ(i) (3)

For the difference of two classes j1 and j2, we have:

logitsp(i)j1−logitsp(i)j2 − 2δ(i) ≤
logitsf (i)j1 − logitsf (i)j2
≤ logitsp(i)j1 − logitsp(i)j2 + 2δ(i)

(4)

Suppose j1 and j2 correspond to the max and second max
value in logitsp(i), respectively, we have:

ϕ(i)− 2δ(i) ≤ logitsf (i)j1 − logitsf (i)j2 ≤ ϕ(i) + 2δ(i) (5)

As ϕ(i) ≥ 0 (by the definition of margin) and error δ(i) is
necessarily small (since large error would compromise both the
usability of FHE computations and the FHE-hardened model’s
accuracy), the smaller the ϕ(i), the higher probability that
ϕ(i)− 2δ(i) < 0 and logitsf (i)j1 − logitsf (i)j2 < 0, which
will make the prediction label in FHE-hardened model change.
In short, we consider margin to be a straightforward yet highly
effective metric to guide the search for deviation inputs.

IV. DESIGN OF HEDIFF

Margin’s effectiveness for exploring deviant outputs in an
FHE-hardened ML model (as illustrated in §III) motivates us
to design a novel margin-guided tool named HEDIFF to test
and understand deviation behaviors in FHE-hardened models.
Overview. Fig. 2 shows a high-level workflow of HEDIFF,
which consists of three main steps. ① Given a set of original
data inputs O from the given dataset, HEDIFF performs margin-
based seed filtering (§IV-A) to select inputs S with the lowest
margin values on the plaintext model as seeds. The insight is
that these seeds are more likely to trigger deviant outputs in the

FHE-hardened model. ② HEDIFF then conducts margin-guided
differential testing (§IV-B) aimed at mutating the inputs towards
lower margin values on the plaintext model and employs DT
as an oracle to identify seeds D that are deviation inputs. ③
HEDIFF does not stop at identifying individual deviation inputs
but also attempts to understand them by generalizing the noise
patterns of these deviation inputs (§IV-C). The generalized
patterns can be treated like weak UAPs and enable further
identification of deviant inputs. For example, for the S − D
seed inputs that originally do not produce deviant outputs in
the second step, we can further mutate them based on the noise
patterns generalized from the D deviant outputs.

A. Margin-based Input Filtering for Seeds

Not all data inputs from the given dataset are suitable to
be evolved into deviation inputs. We need to identify only
those promising ones as candidate seeds for further mutation
in §IV-B. Specifically, we found that inputs with lower margin
values of the prediction outputs on the plaintext model are more
likely to evolve into deviation inputs than those with higher
margins, making them more suitable as seeds. For example,
our experiment in §VI-B shows that if we use the top 200
inputs in the dataset with the lowest margin values as seeds, the
effectiveness of using them to find deviation inputs is greater
than that of using the randomly selected 200 inputs.

With this observation, HEDIFF sorts the training data inputs
O by their margin values on the plaintext model and selects
the samples S with the smallest margin values as seeds, which
have a higher potential to evolve into deviation inputs. We will
describe the concrete configuration of O and S in §VI.

B. Margin-oriented Differential Testing

With the selected seed inputs S, we need to mutate them
in a way that they can eventually cause deviant behaviors. To
achieve this, we add a small amount of noise to each seed and
observe whether such a mutated input evolves toward potential
deviation. According to insights obtained from §III, such a
mutation should evolve towards a decreased margin value of
the generated prediction output on the plaintext model, so that
the mutated inputs have a higher chance of causing deviant
behaviors in FHE-hardened models.

Toward this objective, a straightforward approach is to
use random mutation. For example, for each seed input, we
could randomly mutate it ten times and keep only those with
decreased margin values on the plaintext model. However, it
is hard for such a random approach to always identify suitable
mutated inputs. Moreover, it requires more computation due
to its blind testing nature. Therefore, we seek a more targeted
mutation method. Given that the PGD algorithm [14] has
demonstrated its effectiveness in finding AEs for subjects like
images, we explore how to customize PGD in our scenario
to target the mutation of seed inputs towards the direction of
lowering the margin value. To clarify, although we apply the
idea of well-known PGD in our work, we are not looking for
AEs, but rather deviation inputs that cause incorrect predictions
in FHE-hardened models. More discussions from conceptual,
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Fig. 2: A high-level workflow of HEDIFF.

Algorithm 1 Margin-Oriented Differential Testing.
1: function MarginPGD(Mp, i, Iteration noise bound ζ)
2: i′ ← i, stepSize← ζ/4
3: lossFunc(x) = − MARGIN(PREDICTVECTOR(Mp(x)))
4: for 1...steps do
5: i′ ← i′ + CLAMP(stepSize ∗ Sgn(∇lossFunc(i′)), ζ)
6: stepSize← stepSize/2

7: noise← i′ − i ▷ Obtain added noise from the mutation
8: return noise
9: function MarginDT(Mp,Mf , Corpus of seed inputs S, Max mutation

times Nmax, Iteration noise bound ζ, Total noise bound ϵ)
10: Q ← S, D ← ∅
11: cntmu ← 0
12: while cntmu < Nmax and Q ̸= ∅ do
13: i← Q.POP()
14: predp, labelp ← PREDICTVECTOR(Mp(i))
15: predf , labelf ← PREDICTVECTOR(Mf (i))
16: if labelp ̸= labelf and labelp = i.label then
17: Add i in D ▷ Collect deviation inputs
18: else
19: i′ ← i+ MarginPGD(Mp, i, ζ) ▷ Margin-oriented mutation
20: i′ ← CLAMPNOISE(i′, ϵ) ▷ Control cumulative noise scale
21: Add i′ in Q
22: cntmu ← cntmu + 1

23: return D

technical, and empirical perspectives on the difference between
AEs and deviation inputs are provided in §VII.

The standard form of PGD seeks to improve the loss function
value of specific data on the target model by adding multiple
steps of noise along the gradient. Similarly, we treat the loss
function as a negative indicator of the margin value and quickly
reduce the margin value according to the PGD algorithm with
random start. However, if we only modify the loss function,
the PGD algorithm will easily fall into localized perturbations,
thus failing to reduce the margin value, making this algorithm
even less effective than using random mutation. This issue does
not occur with the original PGD algorithm because the original
loss function does not have a bound and can be continuously
increased. However, the minimum value of the margin is 0, and
thus it is highly susceptible to falling into perturbations around
0 due to larger step sizes. Therefore, we use an adaptive step
size in place of the fixed step in the PGD algorithm, so that
we can continuously and rapidly decrease the margin value.

With the support of the margin-oriented PGD algorithm, we
now present the complete DT algorithm in Alg. 1. It consists
of a building block function MarginPGD to mutate the seed
inputs towards lower margin values on the plaintext model, and
a main function MarginDT that employs DT as an oracle to
eventually identify deviation inputs D from the given seeds S .

Specifically, in lines 1-8, MarginPGD takes the plaintext model
Mp, a normal input i and an iteration bound ζ as inputs, and
returns a noise that makes i+noise has a lower margin value
on the plaintext model. To achieve this, we define our loss
function as the negative margin in line 3; when we increase
the loss function with PGD, we decrease the margin value of
the corresponding data with respect to Mp. In lines 4-5, we
iteratively add noise to i′ in the direction of the gradient of
decreasing margin value. CLAMP constrains the noise in the
range of −ζ to ζ; if a value in the noise is less than −ζ (or
greater than ζ), it is set to −ζ (or ζ). Then, we use an adaptive
step size to avoid falling into localized perturbations in line 6.

In MarginDT , we first initialize the seed pool Q with the
filtered seed inputs S and the deviation inputs pool D as empty
in line 10. We then iteratively mutate the seed inputs in Q until
the number of mutations cntmu reaches a predefined threshold
Nmax or all seeds in Q are mutated to deviation inputs in line
12. For each iteration, we pop a least recently used seed input
i from queue Q in line 13, and predict the output vectors of
the plaintext model Mp and FHE-hardened model Mf in lines
14-15. If the prediction labels of Mp and Mf are different
and the prediction label of Mp is the same as the ground truth
label of i, we add i to the deviation inputs pool D in line 16.
Otherwise, we use MarginPGD to generate a mutated input
i′ from i in line 19. At line 20, CLAMPNOISE constrains the
cumulative noise of i′ within the range of −ϵ to ϵ, where ϵ is
the total noise bound (note ζ is the per iteration noise bound).
i′ will be added to the seed pool Q in line 21. Finally, we
return the deviation inputs pool D in line 23.

C. Generalizing and Leveraging Noise Patterns

As mentioned earlier, we not only identify individual
deviation inputs but also try to understand these inputs,
specifically whether they exhibit general noise patterns. The
generalized patterns can be treated like weak UAPs, enabling
further identification of deviation inputs. To this end, we first
conduct a theoretical analysis on how the noise pattern of a
deviation input could be generalized to other inputs. We then
use this understanding to further drive HEDIFF to identify
more deviation inputs from the seeds that originally do not
produce deviant outputs.
Theoretical Analysis. Fig. 3 shows the schematic view of
our theoretical analysis. Given an input x2 that cannot be
transformed into a deviation input during differential testing,
we can find its nearest input x1 that can be transformed into a
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Fig. 3: Illustrating how the noise pattern of a deviation input
x1 can be generalized and used to transform another input x2

that originally does not produce deviant outputs during DT.

Algorithm 2 Pattern-Based Mutation.
1: function PatternMutation(Mp,Mf , Corpus of non-deviant seed inputs
Snon, Corpus of deviation inputs P , Total noise bound ϵ)

2: Dp ← ∅
3: for si ∈ Snon do
4: n1, n2, ..., nK ← FINDNEARESTNOISE(si, P)
5: for ni ∈ {n1, n2, ..., nK} do
6: αi ← FINDSCALEFACTOR(Mp, si, ni)
7: if αi ̸= None then
8: s′i ← si + CLAMP(αi · ni, ϵ)
9: predp, labelp ← PREDICTVECTOR(Mp(s′i))

10: predf , labelf ← PREDICTVECTOR(Mf (s′i))
11: if labelp ̸= labelf and labelp = si.label then
12: Add s′i in Dp

13: BREAK
14: return Dp

deviation input with noise n1. As these two points, x1 and x2,
are close to each other, perturbed inputs with noise n1, x1+n1

and x2+n1, should also be similar. As we know x1+n1 is the
deviation input, i.e., x1+n1 is in the gap between the decision
boundary of the plaintext model and the FHE-hardened model,
as illustrated in Fig. 3. Therefore, x2 + n1, being close to
x1 + n1, has a high probability of also being in this gap.

However, if we directly use x2 + n1, this may not result
in a deviation input because the decision boundaries of the
plaintext and FHE models are non-linear. Therefore, instead
of directly applying n1, we consider it as a meaningful noise
direction, and we need to scale it to make it more effective.
With the observation in §III, we can still use the margin value
of x2 +α ·n1 on the plaintext model as a guide for finding an
appropriate scale factor, i.e., we can find the α that makes the
margin value of x2 + α · n1 on the plaintext model as small
as possible while keeping the prediction unchanged.
Using the Noise Patterns. As an application of the generalized
noise patterns, we further drive HEDIFF to identify more
deviation inputs from the seeds Snon := S −D that originally
do not produce deviant outputs during DT in §IV-B. We present
our pattern-based mutation algorithm in Alg. 2.

Specifically, for each non-deviant seed si ∈ Snon, we
can find the K nearest deviation inputs with the function
FINDNEARESTNOISE in line 4, which computes the L2
distance between si and each diviation input xi without noise,
and return K deviation noises n1, n2, ..., nK such that
SimL2(si, xj)j=1...K are the K lowest. Then, in lines 5-6,
for each noise ni, we find the corresponding scale factor αi

using the function FINDSCALEFACTOR. This function tries to
find an αi that makes the margin value of si + αi ·Ni on the
plaintext model low enough while the prediction still equals
si.label with binary search. In line 8, after finding a proper
αi, we constrain each value of noise αi · ni with the function
CLAMP to avoid any noise value exceeding the noise bound ϵ
(like what we did in Alg. 1). Finally, we compare the result
of si + αi · ni on the FHE-hardened model with si.label to
determine whether si + αi · ni is a deviation input in lines
9-13. If so, we add it to the deviation inputs pool Dp and then
break the loop.

V. IMPLEMENTATION AND SETUP

HEDIFF is written primarily in Python with about 2,000 lines
of code. To facilitate the reproducibility of results, we provide
the source code and the datasets used in the evaluation at [22].
We will maintain HEDIFF and update it with new features
and more documents to benefit future research. HEDIFF does
not require any modifications to the models or the HE-ML
frameworks, which makes it easy to launch on different settings.
There is no special configuration for seed filtering and margin-
guided mutation. As for noise patterns, when collecting them,
we only use the noise pattern of the nearest data to the input
data and do not consider if its label is the same as the input
data, for the seek of balancing time consumption and scalability.
Details will be discussed further in §VI-C. Below, we present
the evaluation setup in line with the statistics in Table IV.
HE-ML Frameworks and FHE Schemes Tested. HEDIFF
can test various HE-ML models implemented using different
HE-ML frameworks. As mentioned earlier in §III, we target
three mainstream HE-ML frameworks: TenSEAL, Concrete-
ML, and HElayers.

TenSEAL [4] is a library for tensor homomorphic encryption
operations based on Microsoft SEAL [45]. Based on the
encryption library SEAL, TenSEAL provides vector operation
support for BFV [46] and CKKS schemes. CKKS, which
supports real-number operations, is commonly considered the
most suitable FHE scheme for ML applications. Therefore,
we also use this scheme to encrypt the tested ML models.
Additionally, we select parameters to support the full depth of
multiplications to ensure that models’ errors do not arise from
decryption failures. To handle the non-linear function Sigmoid,
we follow TenSEAL’s recommendation [4, 47] to approximate
the non-linear function with a polynomial function.

Concrete-ML [5], provided by Zama, a cryptography com-
pany focusing on FHE, is built on their FHE compiler Concrete.
Concrete-ML supports the TFHE scheme [10]. TFHE is
a scheme for computations on integers and provides the
Programmable BootStrapping (PBS) mechanism [48], which
reduces noise with Bootstrapping and can compute arbitrary
functions using a lookup table. This way, we can avoid manually
approximating non-linear activation functions after quantizing
the model into an integer model. Instead, we can directly utilize
Concrete-ML’s functionality to implement activation functions.

HElayers [6], developed by IBM, bridges ML frameworks
(like PyTorch [49] and TensorFlow [50]) and basic FHE
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TABLE IV: The evaluation setup of HEDIFF and the overall statistics.

Framework Model Datasets Plaintext Encrypted Avg. Inference #Initial #Total #Deviation Input #Total Deviation
Accuracy Accuracy Time Per Input Seeds Mutations After Filtering Inputs

TenSEAL

Cryptonets-Square MNIST 98.37% 97.93% 2.30s 1000 5000 11 277
Cryptonets-Sigmoid DIGITS 90.56% 90.56% 1.99s 500 2500 13 90

MLP-Sigmoid Credit 71.86% 73.22% 0.32s 1000 5000 287 288
MLP-AppRELU Bank 86.20% 85.88% 0.43s 1000 5000 3 454

Concrete-ML

Cryptonets-Square MNIST 98.50% 98.40% 32.02s 500 2500 55 338
Cryptonets-Sigmoid DIGITS 90.56% 90.56% 28.38s 250 1250 3 52

MLP-Sigmoid Credit 71.90% 71.90% 19.41s 500 2500 109 337
MLP-AppRELU Bank 85.70% 85.80% 17.70s 500 2500 66 298

HElayers

Cryptonets-Square MNIST 98.66% 98.62% 0.83s 1000 5000 0 2
Cryptonets-Sigmoid DIGITS 91.11% 90.28% 0.58s 500 2500 4 78

MLP-Sigmoid Credit 71.86% 73.22% 0.13s 1000 5000 287 287
MLP-AppRELU Bank 86.20% 86.20% 0.12s 1000 5000 0 6

libraries (like HEaaN [3] and SEAL). Similar to the previous
two frameworks, HElayers depends on third-party libraries to
provide the FHE functionalities. However, unlike the previous
two, HElayers offers a more flexible way to customize the
low-level FHE library rather than just using the default one. In
the evaluation, we also choose SEAL as our underlying library
and test its CKKS scheme. As HElayers does not support
automatic conversion for Sigmoid, we use the same method
as in TenSEAL to approximate the Sigmoid function.
Datasets and Models. We assess HEDIFF across various
data types, such as images and tabular data, and choose
widely recognized ML tasks, including image classification,
credit score prediction, and deposit subscription prediction.
Specifically, we chose representative datasets: MNIST [20],
DIGITS [21], Credit [19], and Bank [18]. The MNIST dataset is
widely used for handwritten digits and consists of 28x28 pixel
grayscale images labeled from 0 to 9. The DIGITS dataset is
similar to MNIST but with smaller 8x8 pixel images. For these
two image datasets, we employ the neural network architecture
similar to a popular FHE-friendly model, Cryptonets [17], yet
with different activation functions. In particular, for MNIST,
we use the popular square activation function in the HE-ML
field, and for DIGITS, we use the activation function Sigmoid
to investigate the impact of non-linear activation functions.

The Credit dataset is a tabular dataset commonly used
for credit score prediction. It comprises various features
related to individuals’ credit profiles, such as age, income,
and credit history. The task is to predict whether a given
individual is likely to have good or bad credit based on these
features. The Bank dataset is another tabular dataset used
for predicting deposit subscriptions, containing information
about bank clients, including their demographic, economic,
and banking features. We use similar models for these two
tabular datasets. Specifically, we use undersampling to balance
these two datasets, and then use a two-layer MLP with Sigmoid
activation for the Credit dataset and a two-layer MLP with
an approximation of the ReLU activation [51] for the Bank
dataset to investigate the impact of training with polynomially
approximated non-linear activation functions.
Clarification on Datasets. One may wonder about the choice
of datasets in our evaluation, as contemporary DNN testing
works often use more complex datasets like ImageNet [52] or
traffic scenes [53]. We clarify that in practical FHE scenarios,
computation over sensitive tabular data is the mainstream. In

contrast, conducting FHE over complex media data like high-
resolution images or videos is not practical. Nevertheless, we
still use two image datasets (MNIST and DIGITS) to evaluate
HEDIFF and show its generality over different data types.

VI. EVALUATION

Our evaluation follows the setup noted in §V. All experi-
ments are conducted on a server with an AMD Ryzen 3970X
CPU and 256GB RAM. We aim to answer the following RQs.
RQ1: Can HEDIFF effectively find deviation-triggering inputs
for HE-ML models? RQ2: Does the margin-guided approach
outperform the random approach in seed filtering and mutation?
RQ3: Can noise patterns of the nearest data be effectively used
to find new deviation-triggering inputs?

A. RQ1: Effectiveness of HEDIFF

To answer RQ1, we present the evaluation results of HEDIFF
in Table IV with the configuration described above. In the
evaluation on TenSEAL and HElayers, for datasets like MINST,
Credit, and Bank, which have more than 3K data points
in training dataset, we set the seed number at 1K and the
maximum mutation number at 5K. For the small dataset
DIGITS, which has less than 2K data points, we set the seed
number at 500 and the maximum mutation number at 2.5K.
For the extremely time-consuming Concrete-ML, we halve
the seed and maximum mutation numbers. For comparison
between plaintext and encrypted models, we use the entire test
dataset for models on TenSEAL and HElayers, and sample 1K
test data for datasets except DIGITS on Concrete-ML.

The subtle differences between the prediction accuracy
of plaintext and encrypted models demonstrate the proper
configurations of evaluated FHE frameworks, indicating that
HE-ML models do not change the functionality of the plaintext
model and the deviation inputs found by HEDIFF are not
caused by incorrect security parameter configurations. This
is also illustrated by Table II, which shows the low ratio of
deviation inputs in the original training data.

As shown in Table IV, results suggest that although plaintext
and encrypted models have similar prediction accuracy, this
similarity does not equate to the robustness of the encrypted
models. HEDIFF can still filter and generate a large number
of deviation inputs from the seed data for most settings.
Cryptonets-Square and MLP-AppRELU are two linear models
that do not involve non-linear activation function conversion.
This way, the main root causes of deviations are imprecise
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Fig. 4: Examples of added noise.

TABLE V: Average L2 and maximum distance of noise. We
show the average L2 and maximum distance per pixel for
image datasets, and for tabular datasets, we show the average
L2 and maximum distance per column. A dash in the table
means that no deviation was found during the mutation process.

HE-ML MNIST DIGITS Credit Bank
Framework L2 Max L2 Max L2 Max L2 Max
TenSEAL 0.0008 0.0443 0.0036 0.0465 0.0037 0.0288 0.0025 0.0226

Concrete-ML 0.0004 0.0246 0.0033 0.0472 0.0006 0.0064 0.0011 0.0084
HElayers 0.0002 0.0100 0.0035 0.0468 - - 0.0022 0.0209

weights in the encrypted models introduced by encoding floats
to fixed-point real numbers in CKKS and model quantization
in TFHE, along with accumulated noise during encrypted
computation. As shown in the results of the table, HElayers
performs best, suggesting that HElayers may introduce the
least noise in encoding and computation for these two models.

Besides deviations localized by seed filtering, we also
observe that HEDIFF can generate many deviation inputs based
on non-deviation seeds. An outlier case is the MLP-Sigmoid
model on TenSEAL and HElayers, i.e., with CKKS. Although
we can localize a high ratio of deviation inputs during seed
filtering, nearly no deviation inputs are found in the mutation
process. This is likely because, with a rather conservative noise
threshold, it is difficult to move these data to the gaps between
the decision boundaries of the plaintext and encrypted models.

Although we found hundreds of deviation inputs with
HEDIFF, it is worth emphasizing that the noise introduced
to deviation inputs is generally mild and does not affect the
“visual” content of those deviation-triggering inputs. This is
made possible by our cumulative noise control introduced
in §IV-B. Such stealthily-tweaked deviation inputs can likely
cause high confusion of HE-ML frameworks and applications in
practice. Below, we present both quantitative and case studies.

Fig. 4 exhibits two deviation inputs with their original seeds
and added noise for MNIST with TenSEAL and DIGITS with
HElayers. As can be seen, the deviation inputs manifest high
visual similarity with the original inputs, yet these deviation in-
puts result in different outputs of TenSEAL/HElayers-hardened
models. Due to limited space, we present more examples online
in our repository [22]. Moreover, we quantify the scale of noise
generated by HEDIFF in Table V. Each column of data has
two values, representing the average L2 distance between the
original seed and generated deviation inputs, and the average
maximum noise value, respectively. Overall, we interpret the
average L2 and maximum distances are being reasonably low,
indicating that the produced deviation inputs are close to normal
inputs across different models and data types.

Answer to RQ1: Although FHE-hardened models show sat-
isfactory performance with a negligible accuracy downgrade
and within a reasonable testing time, HEDIFF effectively
finds plenty of deviation inputs that may mislead and
confuse users across nearly all scenarios.

B. RQ2: Effectiveness of Margin’s Guidance

In §IV, we proposed two margin-guided approaches for
seed filtering and mutation, and a method to generalize the
noise pattern of deviation inputs. In this section, to answer
RQ2, we investigate the effectiveness of two margin-guided
approaches across different datasets and HE-ML frameworks.
We will discuss the generalization of noise patterns in §VI-C.
Specifically, we compare the margin-guided approaches with
the random approaches in seed filtering and mutation. In the
mutation process, we further consider the standard form of the
PGD algorithm implemented by Torchattacks [54] as another
stronger baseline. We set the seed number at 200 (100) and the
mutation number at 1000 (300) for datasets on TenSEAL and
HElayers (Concrete-ML), with results reported in Table VI.

The results in Table VI show that margin-guided filtering can
localize many more deviation inputs in seeds in comparison
to random filtering. From another perspective, margin-guided
mutation can find more deviation inputs than random mutation
under either margin-guided or random filtering strategies.
While PGD mutation finds more deviation inputs than random
mutation, margin-guided mutation outperforms PGD in most
cases, especially when synergized with margin-guided seed
filtering. We also report that while random mutations are
slightly faster than the other two mutation strategies, PGD
mutation and margin-guided mutation take about the same
time to find deviation inputs. To clarify, the computation
of these mutation strategies only differ in plaintext models,
while the main time consumption comes from the encrypted
inference of the FHE-hardened models. In other words, the
choice of different mutation strategies has only a negligible
impact on the speed of our testing. Overall, we recommend
using margin-guided seed filtering and mutation together, which
can presumably yield the most effective testing results in a
satisfactory time frame.

Answer to RQ2: Compared with the random approach
and PGD mutation, HEDIFF’s margin-guided design signif-
icantly contributes to its effectiveness and can substantially
help users uncover more potential deviation inputs in FHE-
hardened models.

C. RQ3: Characteristics of Noise Patterns

In this section, we answer RQ3 by starting with validating
the assumption that close data will also have similarity in
the direction of the noise pattern, as illustrated in Fig. 3.
Specifically, we choose the TenSEAL framework as our testbed
and compare the approach of choosing K nearest data, i.e.,
the approach used in HEDIFF, with other three approaches:
selecting K random data and selecting K nearest/random
data with the same label. For each approach, denoted as A,
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TABLE VI: Filtering and Mutation Strategy Effectiveness.
Random Filter (Margin Filter) refers to random (margin-
guided) filtering, and Random (PGD, Margin) refers to random
(PGD, margin-guided) mutation. Numbers in the O. columns
denote #deviation inputs found during seed filtering, and
numbers in the T. columns denote #deviation inputs found after
mutation. We mark the largest #deviation inputs using blue
and yellow under random filter and margin filter, respectively.

HE-ML Datasets
Random Filter Margin Filter

Random PGD Margin Random PGD MarginFramework O. T. O. T. O. T. O. T. O. T. O. T.

TenSEAL

MNIST 0 7 1 6 1 3 4 6 3 16 5 88
DIGITS 1 7 2 7 0 15 6 9 5 39 6 66
Credit 8 22 2 16 8 41 69 70 69 69 69 70
Bank 1 3 0 0 0 31 3 12 3 3 3 135

Concrete-ML

MNIST 1 1 0 2 0 1 27 56 30 39 31 79
DIGITS 0 0 0 0 1 3 3 3 2 7 3 29
Credit 0 2 0 18 2 15 40 61 40 40 41 69
Bank 3 5 3 7 0 5 42 55 41 42 41 68

HElayers

MNIST 0 0 0 0 0 1 1 1 0 0 0 0
DIGITS 1 1 0 6 0 12 4 11 4 35 4 70
Credit 9 21 9 19 7 52 69 69 69 69 69 69
Bank 0 0 0 0 0 0 0 0 0 0 0 0

TABLE VII: Noise Pattern Similarity. TopK(Random)w(w/o)

means the similarity of K nearest(random) data with(without)
the same label consideration.

Metric Kmax MNIST DIGITS Bank

TopKw

1 0.6731 0.8861 0.9831
3 0.6260 0.8377 0.9730
5 0.5941 0.8090 0.9664

TopKw/o

1 0.6976 0.9022 0.9836
3 0.6604 0.8779 0.9741
5 0.6371 0.8594 0.9680

Randomw

1 0.4260 0.7527 0.7655
3 0.4346 0.7410 0.7662
5 0.4360 0.7497 0.7647

Randomw/o

1 0.3588 0.6993 0.7651
3 0.3599 0.6791 0.7620
5 0.3739 0.6847 0.7620

we measure its noise pattern direction similarity performance
SimA using the method described below.

Given a set of deviation inputs D, for each deviation inputs
xd + nd ∈ D, we choose K deviation inputs x1 + n1, ...
xK +nK ∈ D\{xd+nd} using approach A, and calculate the
average cosine similarity between n1∼nK and nd as Simd.
Then, SimA is defined as the average of Simd for all deviation
inputs. This can be formulated as:

SimA =
1

|D|
∑

xd+nd∈D

1

K

K∑
i=1

nd · ni

||nd|| · ||ni||
(6)

We compare the performance of K nearest data with and
without same label and random K data with and without same
label, and the results are shown in Table VII. We choose
K = {1, 3, 5} in the experiment.

Table VII shows that noise patterns of closer data are more
likely to be similar. This is consistent with our intuition in
Fig. 3. Also, we find that the similarity when K = 1 is higher
than when K = 3 or 5, meaning that the noise pattern of the
nearest data is also the most similar among the noise patterns

TABLE VIII: Noise Pattern Effectiveness. Numbers in the
#Dev. and #Q. columns mean #deviation inputs found and
#total queries to FHE-hardened models, respectively.

Metric Kmax
MNIST DIGITS Bank

#Dev. #Q. #Dev. #Q. #Dev. #Q.

TopKw

1 13 62 6 28 81 522
3 13 100 6 50 83 1393
5 14 114 6 62 85 1979

TopKw/o

1 11 57 4 26 81 513
3 11 96 6 51 85 1212
5 11 112 6 58 87 1571

Randomw

1 7 45 4 24 58 504
3 7 80 5 44 66 1374
5 8 89 5 55 67 2032

Randomw/o

1 3 35 4 15 56 471
3 3 65 4 30 60 1124
5 3 75 4 35 61 1451

of K nearest data. Moreover, when comparing data with and
without the same label (TopKw and TopKw/o), we find that
the similarity of noise patterns is not strongly affected by the
label of the data, suggesting that the noise pattern is more
likely to be determined by the data itself rather than the label.

We further compare the effectiveness of finding new noise
patterns with the approach described in §IV-C using noise
patterns from K nearest/random data with/without the same
label. The results are shown in Table VIII. Both TopKw/o and
TopKw perform similarly well in finding new deviation inputs
compared to random approaches, which is consistent with the
results in Table VII. Considering that TopKw/o has the best
similarity performance when K = 1 and good performance
in finding new deviation inputs when K is higher, we choose
TopKw/o with K = 1 as the noise pattern leveraging strategy
to make a trade-off between query times and scalability. In other
words, we use a small K to save on query times in the default
setting and use TopKw/o to keep the potential of finding more
deviation inputs with fewer queries as K increases.

Answer to RQ3: We show that normal input data with
a close distance are very likely to be transformed into
deviation inputs with similar noise patterns. This further
allows HEDIFF to mutate inputs in a directed manner,
improving its effectiveness in finding more deviation inputs.

VII. DISCUSSION

Deviation Inputs vs. AEs. Deviation inputs can mislead HE-
ML models from making correct predictions. Although similar
to adversarial examples (AEs), we clarify that they are distinct
from ML AEs found in prior works [14, 15].
Conceptually, conventional AEs specifically alter the predic-
tions of plaintext DNN models only. In contrast, according
to our definition in § III-A, deviation inputs cause the FHE-
hardened model and its plaintext version to produce different
predictions—typically, the plaintext version’s prediction is
correct while the FHE-hardened version’s prediction is incorrect.
In addition, conventional AEs are pervasive in DNNs and are
believed to stem from inadequate training and unsmooth clas-
sification boundaries [55]. Differently, HEDIFF’s findings are
specific to FHE frameworks, and detected deviation inputs are

10



primarily caused by the subtle differences between classification
boundaries of FHE-hardened and plaintext models.

Technically, HEDIFF uncovers inputs that trigger distinct
predictions in HE-ML models compared to plaintext models.
The deviation inputs retain the same prediction labels in the
plaintext models but alter the predictions in the HE-ML models.
Due to the extreme time-consuming of FHE computations,
HEDIFF considers plaintext models as “mirrors” and uses
information provided by plaintext models to guide the search
for deviation inputs. In contrast, AEs typically change plaintext
model predictions and are detected mainly with the information
from the plaintext model itself.

Empirically, while the community is alert to the risks from
AEs, we lack proper attention to potential deviations caused by
FHE. The gap between regular and FHE-hardened models can
mislead developers about their robustness, since a model that
performs well with plaintext may not maintain the same level
of robustness when adapted for FHE. Such a misunderstanding
can potentially introduce security risks in financial, medical,
and other sensitive areas.

Bug Localization and Mitigation. We envision the potential
feasibility of localizing certain root causes of the detected
deviations. As analyzed in §II-A, the HE-ML models may
yield deviant outputs due to approximations in the non-linear
functions and the conversion from floating-point to fixed-point
numbers or integers. This way, it may become possible to
localize the root neurons or layers in HE-ML models. Moreover,
with those localized root neurons/layers, we can fine-tune
them to increase accuracy and robustness. We deem this
interesting yet challenging for future work, primarily due to 1)
the contemporary HE-ML frameworks not offering fine-grained
control (e.g., neuron-level) over the FHE approximations, and
2) as a tradeoff, increasing accuracy and robustness may likely
lead to a decrease in the inference speed. We advocate for the
SE and HE-ML community to explore this direction based on
the insights from HEDIFF.

Alternative Testing Feedback. In this paper, HEDIFF gradu-
ally finds inputs to decrease the logits margin until the deviation
is large enough to flip model predictions. This design of testing
feedback abstracts the HE-ML model internals (e.g., orthogonal
to the types of approximations employed for the non-linear
functions), making the testing pipeline of HEDIFF more general
and applicable to various HE-ML settings. We also notice prior
DNN testing works [56, 57] that leverage the model internals
(layer-wise or neuron-wise outputs) to guide input mutation.
While this may offer finer-grained feedback (e.g., focusing on
the most critical neurons), speed is the primary concern when
applying such methods to test FHE-hardened models. Hooking
into model internals (e.g., every neuron) incurs unacceptable
overhead, particularly in the HE-ML setting, where substantial
computation resources are used for encrypted computations. We
believe that the feedback currently provided on model outputs
is sufficient and consider it an interesting area for future work
to explore finer-grained testing feedback.

VIII. RELATED WORK

Privacy-preserving machine learning. Besides HE-ML,
many other approaches have emerged to achieve privacy-
preserving machine learning. Secure multiparty computation
(MPC) [58, 59] is one of the promising solutions in which
multiple non-colluding parties privately complete computation
without revealing individual components. Early works have
explored MPC-based linear regression, logistic regression,
and neural networks [60–62]. Other existing works leverage
federated learning techniques to safely aggregate gradients
from multiple users [63–65]. Furthermore, recent research has
also studied using trusted hardware environments like ARM
TrustZone and Intel SGX to protect ML models [66, 67].
Testing Privacy-enhancing Technologies. Given the pros-
perous development of privacy-enhancing technologies, the
task of checking the correctness of these privacy-related
algorithms and protocols is demanding. Recent works propose
the use of symbolic execution, constraint solving, and fuzzing
to test and verify differential privacy (DP) programs [68–
71]. Besides DP, MPC compilers and their machine learning
applications have also been tested by the community [72, 73].
Zero-knowledge Proof (ZKP) compilers and applications, due
to their industry adoption in second-level blockchains [74],
are receiving extensive attention for testing and verifying their
correctness [75–78]. In contrast, this work initializes the first
effort to test and understand defects in HE-ML.
Testing Machine Learning Systems. Deep learning has
become the crux of many real-world applications, and the
reliability of deep learning systems has attracted increasing
attention. Some existing works have explored testing deep
learning models with the idea of coverage from traditional
software testing [56, 79–81]. Morever, some works have studied
the correctness of deep learning compilers and libraries [82–
85]. However, the testing of HE-ML has not been well studied.
This work fills this gap by proposing a novel testing approach
to efficiently detect defects in HE-ML systems.

IX. CONCLUSION

We present HEDIFF, a margin-guided DT framework for
HE-ML models. HEDIFF successfully uncovered thousands
of inputs that cause deviant outputs in commonly used HE-
ML models. We show that the uncovered defects can cause
great confusion in the daily usage of HE-ML models, and
the noise patterns generated by margin-oriented mutation
have the potential to be generalized to find more deviations.
We conclude by discussing the applications of HEDIFF and
possible mitigation strategies for the uncovered defects.
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