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Decompilers are widely used in reverse engineering (RE) to convert compiled executables into human-readable
pseudocode and support various security analysis tasks. Existing decompilers, such as IDA Pro and Ghidra,
focus on enhancing the readability of decompiled code rather than its recompilability, which limits further
programmatic use, such as for CodeQL-based vulnerability analysis that requires compilable versions of the
decompiled code. Recent LLM-based approaches for enhancing decompilation results, while useful for human
RE analysts, unfortunately also follow the same path.

In this paper, we explore, for the first time, how off-the-shelf large language models (LLMs) can be used
to enable recompilable decompilation—automatically correcting decompiler outputs into compilable versions.
We first show that this is non-trivial through a pilot study examining existing rule-based and LLM-based
approaches. Based on the lessons learned, we design DecLLM, an iterative LLM-based repair loop that utilizes
both static recompilation and dynamic runtime feedback as oracles to iteratively fix decompiler outputs.
We test DecLLM on popular C benchmarks and real-world binaries using two mainstream LLMs, GPT-3.5
and GPT-4, and show that off-the-shelf LLMs can achieve an upper bound of around 70% recompilation
success rate, i.e., 70 out of 100 originally non-recompilable decompiler outputs are now recompilable. We
also demonstrate the practical applicability of the recompilable code for CodeQL-based vulnerability analysis,
which is impossible to perform directly on binaries. For the remaining 30% of hard cases, we further delve into
their errors to gain insights for future improvements in decompilation-oriented LLM design.
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1 Introduction
In reverse engineering, decompilers play a vital role in helping analysts understand a binary. A
decompiler recovers source code by analyzing and converting low-level executable files. Due to the
pervasive use of C in the industry, its use by malware authors, and its unsafe nature, C decompilers
are widely used in software reverse engineering [32, 52, 78, 80, 111, 115]. For example, C decompilers
are often used to recover the source code of legacy software for security hardening [40, 41, 105, 106].
To date, many mature C decompilers are available on the market, including commercial tools

like IDA Pro [54], whose licenses cost thousands of US dollars, and free ones (e.g., Ghidra) actively
maintained by the open-source community or the National Security Agency (NSA) [84, 86]. Despite
the prosperous development and commercialization of C decompilers, it is widely acknowledged
that decompiler outputs are mainly intended for human consumption and are not suitable for
automatic recompilation [112, 113]. Software compilation is inherently a lossy process, with much
high-level information, such as variable names, type information, and data structures, no longer
existing in the binaries after compilation. Accordingly, decompilers are often designed in a prag-
matic and conservative manner, where the readability of the generated code is prioritized over
its recompilability [76]—the decompiled code can be recompiled into an executable with the same
functionality as the original.
Nevertheless, there is a growing emphasis on the importance of automatically recompiling

decompiler outputs in recent research [76, 96]. For example, the end goal of various software
cross-architecture migration techniques [23, 42, 46, 92] is to recompile the decompiler outputs into
a binary that can run on a different architecture. Also, to reuse legacy software, recompiling the
decompiler outputs into a binary that can run on a different operating system is often necessary.
More importantly, various security instrumentation and hardening tasks benefit from instrumenting
the decompiler outputs with security checks and recompiling them into a binary with the same
functionality [43]. Nevertheless, progress in enabling “recompilable” decompiler outputs has been
slow, with limited work focusing on manual effort [80] or rule-based approaches [76].

This work strives to address the gap by repairing decompiler outputs to make them recompilable.
We believe this is a timely study that tackles an emerging research problem and can benefit many
real-world applications, including enabling vulnerability analysis using CodeQL. However, this
task is non-trivial, even with recent advances in LLMs [88]. We first conduct a pilot study in
§3 that investigates the existing rule-based approach [76] and LLM-based approaches [55, 103]
using the outputs of the leading commercial decompiler—IDA Pro 8.3. Our results show that
manually defined heuristics are insufficient to address a wide range of compilation errors, and LLM-
based approaches also suffer from issues like attention degradation, shortcuts, and hallucination.
Despite these challenges, we observe potential in using LLMs to assist in recompilation, as the
recompilability rate increased to 25% with the LLM version when provided with the entire program
context, compared to 9% in the raw rule-based approach.
Further investigation of the pilot study results suggests that LLMs can repair decompiled code

when provided with compilation error messages and expected outputs. This motivates us to supply
both static recompiling and dynamic runtime feedback (i.e., compilation errors and mismatched
runtime outputs) to LLMs to enhance recompilation repair. Such feedback should be strategically
scheduled in an iterative loop, giving the LLM multiple chances to fix decompilation errors.
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Based on this intuition, we design DecLLM, an iterative LLM-based repair loop that utilizes both
static recompiling and dynamic runtime feedback as oracles to iteratively fix decompiler outputs.
Specifically, for static repair, DecLLM feeds the decompiler outputs under repair to the C compiler,
using any compiler error messages to guide LLMs in subsequent iterations. For dynamic repair,
DecLLM aligns the expected outputs with those obtained from running test cases on the original
executables and uses error messages from the address sanitizer (ASAN) [99] to guide LLMs in fixing
subtle defects that the static step cannot expose.
We first evaluate DecLLM on 300 test cases from a popular C benchmark, the Code Contest

dataset [67]. The results show that DecLLM can significantly increase the recompilation success
rate, raising the rate from only 8% in rule-based recompilation, 10% in a recent readability-oriented
LLM-based approach [55], 17.3% in a non-iterative LLM-based approach [103], to 74% for GPT-3.5
and 78.3% for GPT-4. Further evaluation shows that both the static and dynamic steps are necessary
to achieve a high success rate.

We also investigate the possibilities of using DecLLM to recompile 108 real-world binaries from
the Coreutils benchmark [1] on decompiler outputs. The results are slightly lower than those
for the Code Contest dataset, but still achieve 48.1% for GPT-3.5 and 55.5% for GPT-4. We also
demonstrate that while CodeQL cannot directly analyze binary or decompiled code, DecLLM
revives its capability with recompilable C code, achieving promising vulnerability detection results.
Considering both the results from the Code Contest and Coreutils benchmarks, we conclude

that with DecLLM, off-the-shelf LLMs can achieve an upper bound of recompilation success rate at
an average of around 70%. We further analyze the remaining 30% of hard cases, delve into their
errors, and obtain insights that could be useful for future decompilation-oriented LLM design.
Contributions. In sum, we make the following major contributions in this paper:
• Conceptually, we study the important topic of “recompilable decompilation” and explore the
feasibility of using LLMs to replace the previous rule-based approach for repairing decompiler
outputs; see our pilot study examining existing rule-based and LLM-based approaches in §3.

• Technically, we design an iterative LLM-based repair loop, DecLLM, to effectively harness
the potential of LLMs in repairing decompiler outputs; see §4. Our approach combines static
recompiling and dynamic runtime feedback, enabling LLMs to deliver recompilable decompilation.

• Our evaluation across different settings, datasets, and two decompilers (IDA Pro and Ghidra)
shows highly encouraging results; see §5, §6, and §7. We also demonstrateDecLLM’s applicability
in downstream tasks, such as bridging executable vulnerability analysis with CodeQL.

2 Background
2.1 C Decompilation

Input
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Fig. 1. The workflow of modern C decompilers.

Decompilation [36, 37, 51] refers to reconstruct-
ing pseudocode in a high-level programming
language based on low-level assembly instruc-
tions extracted from binaries. Despite decades
of research, modern C decompilation tech-
niques are still not perfect [76]. The difficulty
of decompilation is rooted in the loss of infor-
mation during compilation. High-level informa-
tion that programmers define in source code,
e.g., variables, types, and function prototypes, is
discarded by compilers. Compiled binary code

only operates low-level hardware resources like memory and registers. Recovering high-level
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abstracts from low-level assembly code is naturally undecidable [50]. As illustrated in Fig. 1,
decompilers typically solve this problem with the following steps.
Step 1: Disassembly. The disassembler module of the decompiler translates the binary into
assembly instructions by scanning the text section of the binary [24, 90, 91]. During disassembly,
function boundaries and prototypes are usually identified with control/data flow analyses [26, 101].
Step 2: IR Lifting. The decompiler will then lift the assembly instructions into an intermediate
representation (IR), which is deemed more analysis-friendly than assembly code since IR usually
contains more high-level information like types and variables [23, 38]. Further analysis will be
applied to the lifted IR for type inference and variable recovery [77]. While type information does
not exist in binary code, decompilers have to rely on context to infer types.
Step 3: Code Generation. The decompiler generates control flow graphs (CFGs) based on lifted
IR. Then, with pre-defined control flow templates, the code generation module will match against
the recovered CFGs and emit the pseudocode structures once a specific template is matched [30].
Challenges. As mentioned above, recovering high-level information is difficult. Specifically, since
x86 assembly instructions are not aligned, and data may be embedded with code, it is non-trivial
to distinguish data and code [113]. The disassembled code is thus usually not compilable and
non-executable unless all symbols (e.g., code and data labels) are correctly identified. Also, due to
complex compiler optimizations, e.g. different variables may share the same memory locations, and
the limited scalability of data flow analysis on binary code, variable recovery and type inference is
difficult [53, 94, 123]. Even state-of-the-art (SOTA) commercial decompilers tend to infer the wrong
types [76], leading to mal-functional and not recompilable decompilation output. Besides, indirect
jump instructions (e.g., jmp rax) are widely used by C compilers. Such indirect control flow can
hardly be recovered statically, and decompilers may miss part of the CFG or the whole function [63].
Accordingly, the decompiled code may be broken and cannot be compiled into a functional binary.
Due to the above challenges, modern decompilers do not guarantee functionality-preserving decom-
pilation [31], and therefore, decompiled output usually cannot be used for automatic recompilation,
let alone recompilation with the same functionality as the original executable.

Definition 1 (Recompilable Decompilation). Let ℬ be the set of all binary programs, 𝒟 be the set of
C decompilers, and 𝒞 be the set of standard C compilers. A decompilation 𝐷 ∈ 𝒟 is recompilable if:

∀𝐵 ∈ ℬ, ∃𝑂 ∈ ℒ𝐶 , ∃𝐶 ∈ 𝒞, ∃𝐵′ ∈ ℬ : (1)

𝑂 = 𝐷 (𝐵) ∧ 𝐵′ = 𝐶 (𝑂) ∧ (∀𝑖 ∈ ℐ,∀𝑠 ∈ Σ : 𝛿𝐵 (𝑠, 𝑖) � 𝛿𝐵′ (𝑠, 𝑖)) (2)

where ℒ𝐶 is the set of all valid C programs, ℐ is the set of all possible inputs, Σ is the set of all possible
program states, 𝛿𝐵 : Σ × ℐ → Σ is the state transition function for 𝐵, and � denotes state equivalence.

We clarify that recompilable decompilation remains a largely under-explored area due to its
inherent complexity. In contrast, recent advancements on reassembleable disassembly [27, 43,
81, 112–114] have shown promising results, enabling disassembled code to be reassembled into
functional binaries. Recompilable decompilation, on the other hand, offers a significant advantage
by allowing users to insert high-level language code directly, rather than writing assembly, largely
simplifying the process of modifying and redeveloping binaries. While reassembleable disassembly
has already demonstrated visible achievements in the field of binary security [43, 109, 114, 116],
recompilation decompilation is poised to become the superior alternative by obtaining higher-
quality reverse engineering results and, consequently, benefiting a wide range of security-related
applications, including binary instrumentation, hardening, and legacy software migration. For
instance, recompilable code can enable more efficient compiler-based instrumentation compared to
dynamic binary instrumentation tools, which often incur considerable overhead [29, 79, 82, 83].
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Furthermore, recompilable decompilation has the potential to bridge the gap between binary-
level and source-level analysis. This opens up the exciting possibility of analyzing obscure binary
code with well-established and powerful source code analyzers. By leveraging tools from traditional
compilation chains, recompiled binaries can be transformed and optimized more effectively. These
advancements hold the potential to significantly propel the field of binary analysis forward, paving
the way to new extensions and applications that were previously unattainable.

In this area, recent work has used rule-based methods to fix decompiler outputs and make them
executable [76] (see details in §3). [96] performs partial recompilation for binary patching, and
[80] recompiles binaries by manually fixing decompiler outputs. As highlighted by Mantovani et
al. [80], it takes experienced analysts 90 minutes to 8 hours to fix decompiler outputs, showing the
difficulty of recompilable decompilation.

2.2 LLMs and Their Current Role in Decompilation
LLMs have recently demonstrated superior performance in various software engineering tasks [57,
58, 69, 70, 98, 122]. Typical LLMs, such as GPT-4 [87] and Llama2 [104], are pre-trained and fine-
tuned on massive amounts of data. To interact with LLMs, users provide a prompt as input, and
the model outputs a probability distribution over its vocabulary for the next token. This process
continues until a special token indicates the end of the sequence, forming the response to the user.
With recent advances in LLMs for code synthesis and reasoning tasks [62, 71, 72, 98, 120],

researchers have also adopted LLMs for the binary decompilation domain. The basic paradigm is to
generate better, more semantically correct, and human-understandable decompiled code, without
necessarily requiring it to be compilable. Notably, DeGPT [55] is a pioneering work in this category,
utilizing off-the-shelf LLMs as multiple agents to refine decompiler outputs for better readability.
Nova [59] further pre-trains a series of dedicated LLMs based on DeepSeek-Coder [49] for various
binary tasks, including binary decompilation. Similarly, LLM4Decompile-Ref [103], fine-tunes
DeepSeek Coder [49] to directly generate decompiler outputs with better re-executability. Besides
these representative works, readers may refer to §8 for more details.

While existing LLM-based approaches are beneficial to human reverse engineering (RE) analysts,
our pilot study in §3 will show that they are not yet ready to achieve recompilable decompilation.
For example, both Nova and LLM4Decompile-Ref attempt to produce dedicated binary models to
directly generate reliable decompilation results in a one-time manner. However, our findings in §3
indicate that an iterative approach, as we propose in §4, is necessary for recompilable decompilation.
Given that off-the-shelf LLMs like GPT-4 and GPT-3.5 have better generic reasoning capabilities for
reflective tasks, this work explores to what extent they can enable recompilable decompilation.

3 A Pilot Study
In this section, we conduct a pilot study to demonstrate that recompilable decompilation is a
non-trivial task by examining existing rule-based (§3.1) and LLM-based (§3.2) approaches. We
further summarize their pitfalls and, based on the lessons learned, explore a vanilla LLM approach
in §3.3 to demonstrate the potential of using off-the-shelf LLMs for recompilable decompilation.

3.1 Limitations of the Rule-Based Approach
Existing efforts to enable automatic recompilation of decompiler outputs typically use the heuristic
rule-based approach, as demonstrated in the studies conducted by Liu et al. [76] and Reiter et
al. [96]. While decompilers usually support exporting output as source files, it is mostly impossible
to directly recompile these files due to issues such as undefined symbols, as outlined in [76]. To
facilitate the study, we extend the rules used by Liu et al. [76] to support the recompilation of
multiple functions. (We outline our changes at [22].)
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Dataset. We randomly selected 100 C/C++ samples from the Google Code Jam (GCJ) submissions
collected between 2009 and 2020 as the dataset for the pilot study. We then investigated the root
causes of failures when recompiling with (pseudo-)code derived from decompiler outputs. We
stripped symbols from binaries and excluded binaries with trivial decompilation errors, such as
stack pointer-related issues and failures in function symbolization.
Result. Eventually, only 9 out of the 100 samples could be recompiled. By checking the outputs of
recompiled executables, we observed that all 9 samples are functionally equivalent to the original
binaries. Nevertheless, the remaining 91 samples generated 2,677 compilation errors. Upon analyzing
these errors through error message parsing and rule-based classification, we identified the following
three root causes of compilation failures, with samples of each type of error available at [22]:

① Specification Error: This type of error usually occurs during the code generation phases of
the decompiler. While the decompiler may correctly identify function calls, the decompiled code
does not match API specifications. A typical error comes from calls to stdin and stdout. This can
potentially be attributed to errors in function signature recovery [95].

② Inference Error : Some information crucial for humans to understand the program is discarded
during compilation. Decompilers have to infer them from binaries. However, this process is error-
prone; decompilers may fail to infer syntactical information for recompilation. For example, a
const int array may be misinterpreted as uint32, triggering a “narrowing conversion” error.

③ Error from Decompiler Templates: As outlined in §2.1, decompiler output is generated based on
control flow templates. Some register loading patterns can induce false positives in the template
matching process, resulting in syntactical problems in the generated pseudocode.

Takeaway: Manually defined heuristics are insufficient to address a wide range of compila-
tion errors. To achieve full-scale recompilation, a system with the intelligence to identify
and fix defects is required.

3.2 Challenges of Existing LLM-Based Approaches for Recompilable Decompilation
One challenge with using the rule-based approach in §3.1 is its lack of flexibility in synthesizing
fixes for errors. Therefore, we assess the potential of recently proposed LLM-based approaches
that are orthogonal to our work, notably DeGPT [55] and LLM4Decompile-Ref [103] (see §2.2), in
enabling recompilable decompilation. To ensure a fair comparison with the rule-based approach,
we evaluate the same dataset used in §3.1. This dataset includes programs with an average of 110.7
lines of code and 1,082.1 tokens (see §5.2 for details on dataset selection).
Result. DeGPT and LLM4Decompile-Ref automatically recompiled 5 and 15 of the 100 test samples,
respectively. We analyze the failed samples to identify obstacles in these techniques.

① Lack of Inter-procedural Context: Both frameworks refine functions independently1, potentially
causing conflicts when combining the results, such as inconsistent global variable renaming.
Furthermore, LLM4Decompile-Ref erroneously redefines globals as locals, causing functional
deviations. While post-processing the result from DeGPT can mitigate some of these issues, we
cannot prevent LLM4Decompile-Ref from transforming global declarations to locals, even when
explicitly supplying declarations. This is likely due to the specialized fine-tuning [19].

② Hallucination: Hallucination in LLMs refers to generating non-factual content [56]. For ex-
ample, LLM4Decompile-Ref might mistakenly convert raw pointers to nonexistent struct types

1LLM4Decompile-Ref’s authors recommend refining in per-functions basis [20]. Our preliminary exploration reveals that
when multiple functions are supplied, it randomly returns only one of them.
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and misinterpret function calls as printf statements, treating all arguments as strings. Such
misinterpretations lead to compilation errors or incorrect behavior.

③ Attention Degradation: LLM4Decompile-Ref might occasionally produce malformed pseu-
docode, such as repeating the same tokens until it reaches the output limit. We attribute this to the
attention degradation problem, which occurs when LLMs processing long inputs [28, 61], regardless
of LLM configurations or training methodologies [15, 16, 73].

3.3 Potential of Using Off-the-Shelf LLMs for Recompilation
The results in §3.2 show that per-function refinement cannot fully address challenges in rule-
based recompilation. However, we observe that LLMs can flexibly transform decompiler outputs
and overcome the limitations of rule-based methods. Motivated by this, we designed a zero-shot
system [64] to assess the potential of vanilla LLMs when provided with the entire program context.
We design our system prompt by referring to open-source projects [10, 11] and the user guide

from OpenAI [9]. To be specific, the prompt is designed with three considerations. First, we provide
explicit requirements for the generated outputs to ensure the LLM does not generate outputs
for other programming languages or use Windows C conventions. Second, we re-emphasize the
repairing scope to the LLM to avoid neglecting the function entry point and resulting in compilation
failures. Third, we carefully defined constraints to guide the LLM’s responses to prevent LLM from
only returning explanations or directly copying the “goto” syntax from decompiler outputs. Given
the decompiler output, we leverage the system prompt below to query the LLM.

“Generate Linux compilable C/C++ code of the main and other functions in the supplied snippet
without using goto, and fix any missing headers. Do not explain anything.”

With above system prompt, we embed the decompilation outputs2 and query the LLM (GPT-3.5)
for a compilable version of the decompilation outputs.
Result. 25 out of the 100 samples were successfully recompiled using the zero-shot system. We also
explored the effect of using different wordings in the prompt but found no significant differences
in success rates, consistent with findings in [93]. An analysis of the failed samples shows that the
system still faces attention degradation and hallucination issues, despite being provided with inter-
procedural context. For example, due to attention degradation, the LLM “forgets” the instructions
given in the system prompt and generates explanations or malformed pseudocode. Additionally,
we encountered a new challenge:

④ Repairing with Shortcuts: We found that LLMs often abuse casting operators and cause memory
corruption. It may also remove code fragments instead of fixing them, resulting in context loss and
recompilation failures. This can be attributed to shortcut learning behavior [48].

Takeaway: The studies in §3.2 and §3.3 illustrate the challenges of performing automatic
recompilation using existing LLM-based approaches. Despite the hurdles, when provided
with the entire program context, off-the-shelf LLMs resolved a significant fraction of speci-
fication errors and header inferences within a single query, increasing the recompilability
rate to 25%. However, the vanilla LLM version is still insufficient for effective reasoning.

2We do not add information like headers or namespaces from source code.
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4 DecLLM for Recompilable Decompilation
Based on the preliminary exploration conducted in §3, we see both potential and challenges in
applying LLMs to assist in recompilation. In this section, we design a novel framework, DecLLM, to
unleash the full potential of off-the-shelf LLMs in enabling automatic recompilable decompilation.
Targeted Decompiler. DecLLM is designed to repair C decompiler outputs with LLMs, making
them recompilable by standard C compilers. We have clarified the design focus on C decompilers
in §2.1. This study focuses on the de facto commercial C decompiler—IDA Pro (Hex-Rays) [54], an
extensively used C/C++ decompiler that dominates both industrial and academic usage.
Targeted LLMs. In this study, we focus on exploring the potential of using off-the-shelf LLMs
to assist in the recompilation process. Our primary focus is on GPT-3.5 [14], the most accessible
LLM for its balance of cost and performance [102], as well as GPT-4 [87], the successor to GPT-3.5,
which is considered the most powerful LLM available in the wild [75]. Both models can be easily
accessed through their API interfaces and do not require specialized resources for deployment. We
further discuss the model settings in §5.1.

4.1 Intuition and Overview
Intuition.While automatic recompilation is challenging, experienced reverse engineers can still
achieve it manually [4, 31, 80]. In [80], compiler errors play a crucial role in guiding engineers,
resembling a typical software debugging process [121]. This insight motivates us to design a
framework that replicates this process, using both static and dynamic feedback (i.e., compilation
errors and mismatched runtime outputs) to guide LLMs in fixing decompiler outputs. Similar to the
typical software debugging process, we should not expect an LLM to fix all recompilation errors in
one attempt; instead, we could strategically schedule static and dynamic feedback in an iterative
loop, giving the LLM multiple opportunities to repair errors in the decompiler outputs.

Input
Binary
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LLMs

Crash &
Inconsistent Output

FuzzingCompiler

Crash detector
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Failure

Pseudo
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Output verifier
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Correct
Output

Fig. 2. The workflow of DecLLM.

Overview. Fig. 2 depicts the work-
flow of DecLLM. Given a binary, we
first use a decompiler to extract the
decompiled pseudocode for its func-
tions. Then, we launch an LLM-based
repair loop that leverages static re-
compiling and dynamic runtime feed-
back as oracles to iteratively fix de-
compiler outputs. Specifically, in §4.3,
DecLLM launches a static repairing

step to fix decompiler outputs and make them compilable by C compilers. After that, in §4.4, De-
cLLM launches a dynamic fixing step that not only aligns the expected outputs with those obtained
from running a set of test cases on the original executables but also employs the error messages
from the enabled ASAN to guide LLMs in fixing the memory errors. Finally, we use fuzzing to
ensure consistency between the original and repaired binaries. Before diving into the details of
these two components, we first introduce the prompt templates used by DecLLM in §4.2.

4.2 Prompt Design
Table 1 illustrates the prompt setting for DecLLM, corresponding to different scenarios during the
recompilation process in §4.3 and §4.4. For example, the compilation error prompt is for instructing
the LLM to fix compilation errors, the output error prompt is for functional errors, and the ASAN
error prompt is for handling memory corruptions.
Additionally, we observed that the LLM often generates explanations for the functionalities of

the given decompiler outputs, disregarding the instructions to generate a compilable version of
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Table 1. The prompt templates used by DecLLM.

Prompt

System Prompt

“Generate Linux compilable C++ code of the main and other functions in the supplied snippet without
using goto, fix any missing headers, and reduce the number of intermediate variables. Only reply with
the fixed source code. Do not explain anything and include extra instructions; only print the fixed
source code.”

Compilation Er-
ror “Please fix the following compilation errors in the source code: {compiler_error} {pseudocode}”

Output Error “The expected output of the program for input: {expected_input} is {expected_output}, but we got
{wrong_output}. Please fix the issue in the source code: {pseudocode}”

ASAN Error “Please fix the {type_of_memory_corruption} triggered in {statement}: {pseudocode}”

the code during the pilot study in §3.3. Therefore, we provide hints for the expected output and
specifically instruct the LLM to produce only the fixed code in the system prompt.

4.3 Static Repairing
Static repairing aims to fix the grammatical and inference errors in the decompiler outputs and
make the outputs compilable by standard C/C++ compilers. Given a piece of decompiler output 𝑜 ,
we first compile the output with a compiler 𝐶 (in our implementation, we use GCC). If 𝐶 fails to
compile 𝑜 , we then launch the static repairing process as follows:
① Initial Prompting. With a decompiler output 𝑜 , we launch the initial prompting step to
emphasize the expected output from the LLM and instruct the LLM to reduce redundant variable
assignments found in the decompiler outputs (illustrated as “System Prompt” in Table 1). This
helps reduce the length of the LLM’s outputs, avoiding input ballooning over iterations. With the
prepared prompt 𝑃 , we feed 𝑃 to the LLM and generate a revised version of the decompiler output.
② Processing Error Messages. With an output 𝑜 from the LLM, we compile it with the standard
compiler 𝐶 . If 𝑜 fails to compile, we collect the compiler error message 𝐸 during the compilation.
Compiler error messages often contain information about the nature of the errors but also include
irrelevant information such as line numbers and file paths. We remove this information from 𝐸.
Following that, we feed the preprocessed error message 𝐸, retaining only the lines that consist of
the errors, into the LLM to generate a new token sequence 𝑇 .
③ Repairing Decompiler’s Output. At this step, we tokenize 𝑜 into a sequence of tokens𝑇 . Then,
we prepare a prompt 𝑃 (i.e., the System Prompt) to instruct the LLM to fix the token sequence 𝑇
and generate a new token sequence 𝑇 ′.
④ Iterative Repairing. The fixed token sequence 𝑇 ′ is then fed into the compiler 𝐶 to recompile
the repaired output 𝑜 ′. If 𝐶 again fails to compile 𝑜 ′, we first iterate over each function in 𝑜 ′ and
check if the function body of any function is being stripped; if so, we revert the changes. This aims
to avoid the shortcut learning behavior observed in our pilot study while maintaining the integrity
of the decompiler outputs throughout the iterative repair process. Otherwise, we repeat the above
process until 𝐶 successfully compiles 𝑜 ′, or the number of iterations (denoted with 𝑁 ) exceeds a
pre-defined threshold 𝑁𝑀𝑎𝑥 (which is set to 15 based on our preliminary experiments).
The above static repairing aims to fix the grammatical and inference errors in the decompiler

outputs and make the outputs compilable by standard C/C++ compilers. However, the outputs
may still be functionally different from the original executables. In other words, even if the output
of this static repairing phase is “re-compilable,” its induced executable may still crash or produce
obviously incorrect results, thus not satisfying our Definition 1. This discrepancy arises because
static repairing focuses primarily on syntactical correctness rather than functional equivalence. To
address this issue, we launch the following dynamic repairing.
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4.4 Dynamic Repairing
Motivation and Design Consideration. Holistically, the dynamic repairing step aims to fix
the functionality deviations in the decompiler outputs. While it appears straightforward to cross-
compare the original executable and the recompiled executable (as we already covered recom-
pileable code in §4.3), our tentative exploration shows that precisely pinpointing and fixing various
functionality deviations in these two executables is challenging, if at all possible.

Nevertheless, our observation shows that various defects in the decompiler outputs can eventually
result in memory errors in recompiled executables. Thus, we leverage ASAN to detect these memory
errors by executing ASAN-instrumented recompiled binaries with test cases. When errors are
uncovered, we prompt the LLM to generate fixes. To further ensure semantic consistency between
the recompiled and the original binaries, we utilize coverage-guided fuzzing to synthesize extra
test cases with high-quality shipped test cases as seeds. This helps us detect potential functionality
deviations and ensure a high possible level of correctness of decompiled code.
Clarification. We clarify that our dynamic repairing should not be deemed as bug detection
in binary code analysis. Binary code could contain various subtle errors, and bug detection is a
well-known challenge in binary code analysis. We are not solving this hard problem. Instead, per
our observation, errors in decompiled code, though altering the functionality, often manifest fewer
variations and are not as “arbitrary” as those faced in binary code bug detection task. Locating
and fixing errors using ASAN can practically and effectively shave a large number of errors in
decompiled code. Moreover, unlike binary bug detection task, our context has a golden reference —
the original executable. Using the original executable to uncover functionality deviations in the
decompiler outputs further reduces the errors in the decompiler outputs.
Approach. At this step, we configure the C compiler to inject ASAN into 𝐸 and profile the compiled
executable 𝐸 with a set of supplied test cases 𝑇 . This way, whenever 𝐸 contains subtle memory
errors, ASAN shall faithfully detect and report them during the runtime profiling phase. With these
results, we then launch the following dynamic repairing step.
⑤ Collecting Memory Error Information. We first collect the memory error information 𝐼

when one of the sanitizer checks injected in 𝐸 alarms on the program input 𝑡 . The memory error
information 𝐼 includes the address, the erroneous instruction, the register values in the context,
and the stack trace. This information is well-formed by the ASAN, and can be easily parsed for
analysis using scripts.
⑥ Repairing Defects.We then prepare a prompt 𝑃 to be fed into the LLM. The prompt 𝑃 instructs
the LLM to fix the memory error information 𝐼 originated in the test case 𝑡 . The LLM then generates
a new token sequence 𝑇 ′.
⑦ Functionality Equivalence Testing. If test case 𝑡 does not result in an alarm, we will verify the
output of 𝐸 against the expected output. Specifically, given the same input 𝑡 and initial state 𝑠 , if 𝐸
produces a different output from the original executable, this indicates a deviation in the program
states between 𝐸 and the original executable according to Equation 2. When such an inconsistency
is detected, an inconsistency between 𝐸 and the original executable is confirmed. Thus, we prepare
a prompt 𝑃 and instruct the LLM to fix the functional defects at our best effort; again, we believe
directly fixing functional defects is a very challenging task; thus, our primary focus is fixing the
above memory error. Overall, we repeat the above process from step ⑤ until 𝐸 passes all the test
cases or fails any test cases in 𝑇 . Then, we extend the testing process with coverage-guided fuzz
to check potential inconsistencies with synthesized test cases and use LLM to fix them when the
budget is sufficient. Note that the purpose of fuzzing is to make the best efforts to find semantic
inconsistencies that fail to detect in previous steps, instead of vulnerability detection.
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5 Experimental Setup
DecLLM is primarily written in Python and C++, with about 2,504 lines of code, to support the
decompilation outputs for IDA Pro 8.3. All experiments are conducted on a Ryzen 3970X 32-core
server with 256GB of memory and an RTX A6000 GPU.

5.1 Model Setting
As mentioned in §4, our study aims to evaluate off-the-shelf LLMs for recompilation. Therefore, we
deliberately refrain from conducting specific LLM hyperparameter tuning throughout the study,
and interact with these models through the official OpenAI API. To prevent data leakage, we are
using older versions of GPT-3.5 and GPT-4, specifically gpt-3.5-turbo-0613 and GPT-4-0314
respectively. We also take similar precautions in the selection of test cases. We also limited our
selection of programs based on the maximum token length limit of our employed LLM model,
which is 4,096 for both of the models. Notably, this limit includes both the input and output parts
of the LLM. As such, to ensure that the model had enough capacity to generate outputs, we only
selected programs where the total number of tokens in the decompiled pseudocode and the system
prompt was less than half of the input token length limit.

5.2 Datasets
Weutilize 3 datasets in our evaluation: the Code Contest dataset [67], CGC binaries [6], and Coreutils-
9.5 [1], where the GCJ dataset (which we use in §3) and the Code Contest dataset are popular and
diverse C benchmarks for language model-oriented software engineering research [44, 118].

Specifically, for the Code Contest dataset, we selected programs with “AC” (Accepted) verdict in
our evaluation. Thus, we can use the supplied test cases to validate the correctness of the recompiled
binaries. To prevent data leakage, we only considered submissions made after knowledge cutoff for
ChatGPT [12] (September 2021). Additionally, context length plays a crucial role in the performance
of LLMs. To account for this, we divided the dataset into five equal intervals based on context
length and randomly selected 60 programs from each interval. We manually verified that no trivial
decompilation errors are present in these 300 programs, and we report that the average lines of
code and tokens are 112.9 and 1,110.4, respectively. We use this dataset to evaluate the effectiveness
of DecLLM in handling the recompilation challenges from §3.
To better understand the challenges of recompiling real-world software, we evaluate Coreutils-

9.5 [1] and CGC binaries [6]. Coreutils is a set of 108 unix utilities, and CGC is a set of diversified
binaries designed to replicate real-world vulnerabilities in the Cyber Grand Challenge [5]. For
CGC, after excluding binaries that fail to compile or validate functionality, we use a subset of 134
binaries for evaluation. We use all of the test cases supplied by these datasets for functionality
checking, followed by fuzzing as outlined in §4.4. We compiled both datasets with default con-
figuration settings without stripping symbols. This configuration reflects the practical scenario
of re-engineering and vulnerability research in large-scale software, where debug symbols are
usually provided by the vendor [124]. We used AFL++ [21] to fuzz the binaries. Depending on the
complexity of the dataset, we follow previous fuzzing research [68, 74, 100, 110] to configure the
time limit, with 0.5 CPU hours for Code Contest [68], 6 CPU hours for CGC [110], and 24 CPU
hours for Coreutils [74, 100, 110].

5.3 Evaluation Setting
Since the recompilation process enabled by DecLLM is iterative, we use the length of the conversa-
tion chain (denoted as 𝑁 ) required to correctly recompile the decompiler’s output as our different
evaluation settings. Due to cost considerations, we evaluated with 𝑁 values of 1, 5, 10, and 15. We
deem it a success if the recompiled binaries pass all test cases without errors.
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Table 2. Recompilation success rates for 3 settings with respective

to different conversation length (𝑁 ).

DecRule 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 DecLLM-GPT3.5 DecLLM-GPT4
𝑁 = 1 8% 32% 37% 40%
𝑁 = 5 8% 39% 54.3% 67%
𝑁 = 10 8% 42% 68% 73%
𝑁 = 15 8% 45% 74% 78.3%

Table 3. Failure cases by root cause.

DecLLM 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
Root Causes IO FR H IO FR H
200 - 560 2 11 2 7 15 3
560 - 920 5 25 7 12 59 13
920 - 1280 9 78 11 16 243 19
1280 - 1640 13 235 19 37 320 25
1640 - 2048 52 347 24 93 476 31

Total 81 696 63 165 1113 91

6 Evaluation
In this section, §6.1 reports DecLLM’s effectiveness in automatic recompilation, §6.2 demonstrates
DecLLM’s applications in recompiling real-world binaries and programmatic use of decompiled
code for vulnerability detection, and §6.3 provides an error analysis of those hard cases.

6.1 RQ1: Effectiveness of DecLLM
In this RQ, we evaluate the effectiveness of DecLLM in addressing the challenges identified in §3.
We benchmark DecLLM against four settings:

• DecRule: The rule-based approach evaluated in §3.1. To ensure a fair comparison with
DecLLM, we append the header extracted from the source code. Note that DecLLM is
expected to infer this information.

• 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: An extended version of the approach in §3.3. We modified it to be iterative,
using compilation and output errors, to assess its performance relative to DecLLM. In this
baseline, the integrity check (④ in §4.3) and ASAN (§4.4) are disabled during recompilation.

• DeGPT [55]: A readability-oriented refinement framework evaluated in §3.2. Since it operates
on a function-by-function basis, we exclude global variable renaming suggested by DeGPT
to prevent recompilation failures due to duplicated variable names.

• LLM4Decompile-Ref [103]: An end-to-end LLM for re-executability-oriented refinement,
which we evaluated in §3.23.

Result. The first three columns of Table 2 show the success rates for DecRule, 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , and
DecLLM concerning different conversation lengths (𝑁 ). Overall, DecLLM successfully recompiles
74% of the binaries from the testing dataset, outperforming 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 by 29% and DecRule
by 66%. This comparison highlights the effectiveness of DecLLM in addressing the challenges we
identified in §3. Moreover, DecLLM is capable of handling decompiler outputs with long context
compared to 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . We interpret the results as follows:
Effectiveness of the Extended System Prompt. The results for 𝑁 = 1 in Table 2 show the success
rates of decompiler outputs being successfully recompiled with one repairing query. Compared
to the results of 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , it is evident that there is an immediate increase in the success rate
from 32% to 37% when the system prompt is extended. In other words, by extending the system
prompt, DecLLM effectively imposes more constraints on the LLM and helps the LLM to focus
more on fixing decompiler outputs and align more closely with the desired output. This minimizes
the performance degradation problems of LLMs when handling long inputs and contributes to
improved performance without additional iterations.
Effectiveness of Static Repairing.We examine the intermediate cases in whichDecLLM and 𝐿𝐿𝑀-
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 failed to recompile to evaluate the contribution of static repairing. We categorize failures
into three types from §3.2 and §3.3: illegal outputs (IO), fixing by removal (FR), and hallucinations

3We also explored extending this model to be iterative, but the LLM returned an empty output, likely due to specialized
training as acknowledged by the authors [19].
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(H). Table 3 shows the distribution of these failures across different context lengths. The results
show that DecLLM can effectively handle these issues, particularly for the fixing by removal errors,
where static repairing prevents a total of 696 instances. Notably, in 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , none of these
samples could be repaired after the LLM removed functions from the input.
Besides, as discussed in §3.2, illegal outputs often stem from degraded instruction-following

capabilities, resulting in generating redundant explanations and fragmenting the pseudocode.
Table 3 shows that the number of illegal outputs in DecLLM is lower than that of 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ,
demonstrating the repairing ability of DecLLM. We observe that some fragmented functions can
be reintroduced back to the input by DecLLM, allowing for repair in the next iteration.
Effectiveness of Dynamic Repairing. Dynamic repairing addresses functionality deviations
that cannot be resolved through static repairing alone. Specifically, hallucinations likely introduce
stealthy functionality deviations, which DecLLM leverages dynamic information to capture.
Regarding hallucinations, dynamic repairing handles them by providing the expected output

or ASAN error message (if it crashes) for the LLM to fix the error. Compared with 𝐿𝐿𝑀-𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ,
DecLLM reduces hallucinations by 31% ((91 − 63)/91 ≈ 31%) as illustrated in Table 3. The extra
context information derived from ASAN errors guides the LLM to precisely fix the errors and avoid
introducing new bugs to the input under repair.
Types of the Fixed Errors. Using compilation errors from DecRule as a reference, we analyze
the types of errors DecLLM can fix. We find that DecLLM fixes 98% of specification errors within
two conversation rounds regardless of whether the test case can be recompiled. Unlike traditional
approaches that use heavy-weight analyses like symbolic execution to infer function prototypes [35,
107, 108], LLMs can fix these errors by replacing the code block, which is reasonable because typical
APIs and function prototypes are widely represented in the training sets or can be inferred from
the compilation errors submitted to the LLMs.
DecLLM can fix 60.1% of inference errors and all identified decompiler template errors. In one

successful case, a variable’s integer type is incorrectly inferred as unsigned, causing compilation
errors when used with the max function.DecLLM fixed this in two iterations by correctly identifying
and replacing the type. Similar situations also occur for LLMs to fix decompiler template errors,
which usually result in type conversion failure during compilation.
Effectiveness of fuzzing.We report that three functional inconsistencies are being asserted by
cases generated from fuzzing. These cases resulted from an erroneously inferred buffer, and the
recompiled binary did not crash when the original binaries did. Moreover, none of these cases can
be fixed by DecLLM; we further discuss this in §6.3.
Comparison with DeGPT. We evaluate DeGPT by running it three times and deem it a success
if any run successfully recompiles the binary and passes all the test cases. DeGPT successfully
recompiles 30 binaries (10%), which includes all cases handled by DecRule and 3 additional
cases. Most modifications by DeGPT involve comments and variable renaming, with some code
simplification. For the 3 additional binaries, all of them have minor specification errors. Therefore,
when the LLM attempts to simplify the decompiler outputs, it inadvertently fixes these errors.
However, we observed instances where DeGPT oversimplified code by replacing it with comments.
Its root cause is likely due to the inaccuracy of the symbolic reasoning engines. This highlights
the need for a two-step paradigm for recompilation, using the test suite to validate functional
correctness. We clarify that DeGPT is intended as a lightweight framework to improve readability
without compilation. As such, the result is within our expectations.
Comparison with LLM4Decompile-Ref. Due to resource constraints, we evaluate the 6.7b-v2
version of LLM4Decompile-Ref. We run the evaluation three times on the testing dataset, and
the outputs are identical for the same input, so we do not repeat it further. LLM4Decompile-Ref
successfully recompiled 52 out of the 300 binaries (17.3%). More than half of failed cases were due

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA081. Publication date: July 2025.



ISSTA081:14 WK Wong, D Wu, H Wang, Z Li, Z Liu, S Wang, Q Tang, S Nie, S Wu

to compilation errors resulting from inconsistencies when each function was refined separately
without feedback. Also, hallucination-related crashes or functional inconsistencies occurred in
27% of failure cases. These results highlight the importance of DecLLM’s iterative design, which
provides additional context for the LLM to fix errors exposed by the compiler or during runtime.

Table 4. Effect of Compiler Optimization.

O0 O1 O2 O3 AVG

DecLLM 80.49% 65.24% 65.5% 58.5% 67.43%
LLM4Decompile 80.49% 58.54% 59.76% 57.93% 64.18%

Effect of Compiler Optimization. Decompile-
eval [103] is a benchmark comprising 656 bina-
ries, compiled from 164 distinct programs at 4 op-
timization levels. We utilize the published dataset
for evaluation. DecLLM successfully fixes 45% of the functions with a single query (𝑁 = 1), and a
total of 67.4% up to 𝑁 = 15. Table 4 presents the success rate for each optimization level together
with the reference result reported in the original paper. By reviewing cases that DecLLM fails to
fix, we find undefined constant variables, with 78, 99, 91, and 129 instances for O0, O1, O2, and
O3 test cases, respectively, which inversely correlates with the success rate. Even with the feed-
back mechanism, DecLLM can only fix 23 of them. This shows that recompilation decompilation
is upper-bounded by the decompiler output’s quality. For remaining cases, it correlates to code
patterns from decompiler. For example, the inlined fabs has multiple undefined variables. While it
fails to handle by DecLLM, LLM4Decompile-Ref can fix it. We acknowledge this as a limitation of
off-the-shelf LLMs, which are not trained specifically to handle decompiler outputs.
Extension with Other LLMs. To compare the performance of DecLLM with different LLMs,
we evaluate its effectiveness when replacing GPT-3.5 with the more powerful GPT-4 model. As
illustrated in Table 2 and Table 7 (available in the subsequent §7), both GPT-3.5 and GPT-4 exhibit
similar performance in terms of success rate, with GPT-4 showing only a 4.3% enhancement over
GPT-3.5. We further investigate GPT-4’s performance in terms of conversation length. Comparing
the average conversation length for GPT-3.5 and GPT-4, as shown in Table 2, we see that the average
conversation length is reduced with GPT-4 for all intervals. This illustrates how the DecLLM design
successfully offsets the limitations of the underlying LLM.

Answer to RQ1: DecLLM significantly increases the recompilation success rate, raising it
from 8% with rule-based recompilation and 10% with a recent readability-oriented LLM-
based approach to 74% with GPT-3.5 and 78.3% with GPT-4.

6.2 RQ2: Real-World Applications
We consider two real-world applications of DecLLM: recompiling real-world binaries and program-
matic use of decompiled code for vulnerability detection.

6.2.1 Recompiling Real-World Binaries. Decompiler outputs of real-world software can be too long
for DecLLM. We configure it to process in a function-by-function manner, eventually forming the
recompilable code. Specifically, we extract error messages related to undefined functions and types,
and use an LLM to infer their dependencies. Next, we modify the response criteria by removing
the “main” keyword and the instruction to fix missing headers from the system prompt. Similar to
DecLLM, we query the LLM 15 times to fix each function4.

During our evaluation, we notice the likelihood of the LLM replying with explanations or code
fragments increases when we modify the system prompt. We add an integrity check to prevent
LLM fixes from removing more than 50% of the code. If this occurs, we revert the changes.

4To handle functions with an input length exceeding the upper limit of DecLLM, we embed the backward slice into the
LLM and request a JSON output instead.
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Table 5. Statistics for Recompiling Real-World Binaries with DecLLM.

Coreutils-GPT-3.5 Coreutils-GPT-4 CGC-GPT-3.5 CGC-GPT-4

Fully functional binaries 52/108 60/108 70/134 79/134
Malfunction binaries 3/108 3/108 2/134 2/134
Crashing binaries 14/108 13/108 11/134 14/134

Overall 63.9% (69/108) 70.4% (76/108) 61.9% (83/134) 70.9% (95/134)

Result. We present our results in Table 5. First, we note that none of the binaries in these two
dataset recompile with DecRule and the inferred dependencies. This is because DecRule cannot
handle the errors present in the decompiler outputs. Both DeGPT and LLM4Decompile-ref also fail
to recompile any binaries. DeGPT’s changes only add comments to the decompiled code, which
does not address compilation errors. LLM4Decompile-ref, meanwhile, produces conflicting content
that cannot be compiled. Using GPT-3.5 and GPT-4 as the LLM models, DecLLM can recompile
69 and 76 binaries for Coreutils and 83 and 95 for CGC-binaries, respectively. As expected, GPT-
4 demonstrated better performance on this task. Overall, DecLLM can fix 52.8% and 58.1% of
the compilation errors for GPT-3.5 and GPT-4, respectively. The average lengths of conversation
sequences for GPT-3.5 and GPT-4 to repair a function are 4.29 and 3.79, and the numbers of illegal
outputs reverted by DecLLM are 746 and 607, respectively. From these results, we can see that
GPT-4 has a slightly better instruction-following capability than GPT-3.5.

Excluding dependencies errors handled by DecLLM, the remaining errors can be categorized into
struct-related errors, type inference errors, and undefined variables. The major source of errors of
both dataset is struct-related errors, which account for 58.2% of the reported error messages when
we attempt to compile the output from the decompiler. To illustrate the effectiveness of DecLLM
in handling these errors, we present one of the compilation errors as follows:

1 // Original Decompiler Outputs
2 ...
3 emit_ancillary_info::infomap ∗map_prog;
4 emit_ancillary_info::infomap infomap[7];
5 ...
6 infomap[0].program = "[";
7 infomap[0].node = "test␣invocation";
8 ...

1 // Fix by DecLLM
2 struct infomap {
3 const char ∗program;
4 const char ∗node;
5 } infomap[7];
6 struct infomap ∗map_prog;
7 infomap[0].program = "[";
8 ...

We can see that lines 3-4 of the original decompiler outputs are syntactically incorrect. By
utilizing the error message with the usage example of the struct from line 6, DecLLM successfully
fixes the error by first inferring that the infomap struct has two members (i.e., “program” and
“node”) based on the value assignment below. Next, it corrects the syntactical issue by replacing the
incorrect line with the correct one (refer to lines 2 to 6 of the fixed version). This demonstrates the
powerful debugging and reasoning capabilities of off-the-shelf LLMs.
DecLLM can correct 79.1% and 81.3% of the memory corruption errors for GPT-3.5 and GPT-4,

respectively. Manual analysis revealed all memory corruptions originate from the decompiler.
Apart from the decompiler template error we discussed in §3, memory corruption also stems
from false-positive analysis results from the decompiler [7], leading to null pointer dereference.
By supplying the ASAN error message alongside the decompiler outputs, we observed DecLLM
replacing &dword_0 with 0 to prevent triggering such runtime errors that originate from decompiler.
Compared to §6.1, where a significant portion of memory corruption was caused by the LLM,

there are no such cases in the real-world binaries. One reason we interpret is that there is only
a single function within each prompt provided to the LLM. Hence, there is less noise compared
to §6.1, where the LLM had the full code snippets to consider. Nevertheless, this approach will
prohibit the inference of undefined global variables and fixing of type inference errors.
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6.2.2 Vulnerability Detection. DecLLM can bridge source-based vulnerability analysis tools like
CodeQL to detect vulnerabilities in binaries. Following the approach from [68], we assess DecLLM’s
effectiveness with CodeQL’s official queries in detecting 12 CWEs (details in [22]) from the Juliet Test
Suite [85]. Specifically, we sample 50 test cases per CWE variant, with half containing vulnerabilities.
We report that the precision, recall, and F1 scores of official queries over the source code are 0.99,
0.33, and 0.50, respectively.

31 369

Original Recompiled

Fig. 3. Count of vulnerabilities de-

tected by CodeQL.

To evaluate the effectiveness of DecLLM, we compile these
600 samples into binaries with GCC (with the default compi-
lation/optimization configurations), strip those binaries, and
then decompile them with DecLLM to get their recompilable
code5. DecLLM only fails to produce recompilable code of
13/600 samples. We attribute these cases to incorrect analysis.
We then run CodeQL on the outputs of DecLLM; we report
the precision, recall, and F1 score of the CWE detection results

as 0.70, 0.24, and 0.36, respectively. Compared to the reference results, CodeQL generates 22 false
positives (FP) and 31 false negatives (FN). Notably, the test cases of CWE-190 account for all the
FPs and 20 of the FNs, with the remaining FNs originating from CWE-134.
As illustrated in Fig. 3, among 100 vulnerabilities initially detected in source code, 69 of them

are successfully identified when analyzing recompiled code. For the remaining 31 vulnerabilities,
we further investigated the possibility of customizing existing queries to better suit recompiled
code. Our investigation revealed that the 31 FNs stemmed from two queries: “ArithmeticWithEx-
tremeValues” and “UncontrolledFormatString”. In the case of “ArithmeticWithExtremeValues”, the
key issue is the query’s reliance on source-level artifacts, such as macro names (e.g., INT_MAX) [13].
By modifying these queries to match literal values instead, we are able to capture these previously
missed vulnerabilities. For “UncontrolledFormatString”, the query’s failure potentially stemmed
from a mismatch between IDA Pro’s code generation patterns and heuristics in CodeQL [18, 68],
which hindered proper propagation of printf calls through the call tree.

By following the fixing procedure outlined by CodeQL developers [18], we successfully detected
all these FNs. Despite the necessity of manual interventions, the required query adaptations are
minimal and aligned with common practices in query-based static analysis, where queries are often
customized for specific codebases. The results suggest that recompiled code does not fundamentally
undermine CodeQL’s vulnerability detection capabilities. In fact, with customized queries, CodeQL’s
analysis of recompiled code can yield results consistent with those obtained from source code
analysis. Furthermore, CodeQL detected three additional vulnerabilities missed when analyzing
source code, primarily due to macro expansion, where the vulnerable code was expanded and
subsequently captured by CodeQL. This highlight the unique opportunity presented by analyzing
decompiled code, which we plan to explore in future work.
Overall, our evaluation demonstrates DecLLM’s ability to bridge the gap between source-level

analyzers and binary code, unlocking the potential of source-based tools for binary analysis.

Answer to RQ2: For real-world binaries, the recompilation results are slightly lower than
those in RQ1, but DecLLM still achieves an average of 62.8% with GPT-3.5 and 70.7% with
GPT-4. Furthermore, we demonstrate that recompilable code enables the effective applica-
tion of a source-level vulnerability detector, CodeQL, to binary code, yielding promising
results.

5For vulnerable samples, we verify that the recompiled code can trigger the corresponding CWEs.
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6.3 RQ3: Error Analysis of Hard Cases
Despite DecLLM’s ability to recompile a portion of binaries from both the Code Contest dataset
(§6.1) and Coreutils (§6.2), our evaluation shows that 21.7% to 36.1% of binaries cannot be fixed
by DecLLM automatically. To better understand these hard cases, we conduct a manual study on
these unrecompilable binaries and summarize our findings.
Variable Recovery. Since decompiler outputs are the primary input for DecLLM, any defects from
the decompiler affect the performance of DecLLM, particularly in the Coreutils dataset. Out of the
32 binaries that DecLLM cannot recompile, 10 of them have problems with distinguishing between
addresses and data within the decompiler outputs. Five binaries from CGC fail to recompile due to
the same cause. For example, the decompiler misinterprets the "-c" string in the argument of the
execl function as an address. Thus, a non-existing variable “loc_632D” is referenced (632D is the
little-endian of "-c"), leading to a compilation error. Also, all unfixable malfunctions and crashing
binaries in §6.2 are attributed to this problem as well. The wrongly inferred variable content leaves
the binaries in an invalid internal state. After calling some system APIs like “getpwuid”, it returns
an invalid pointer, leading to crashes within the main function.
Ill-inferred Buffer Size. As we observe in §6.1, while DecLLM can fix 60.1% of inference errors,
we see that the remaining errors stem from ill-inferred buffer sizes in different contexts. Although
buffer size can be indirectly fixed through ASAN error messages, the lack of accurate buffer size
information still poses challenges for LLMs in repairing decompiler outputs. We consider this a
challenge for both LLMs and decompilers, given that the performance of LLMs highly depends on
the quality of inputs (i.e., decompiler outputs).
Insufficient or Ambiguous Information Consumed by LLMs. Insufficient information poses a
challenge for any LLM-based reasoning system. As discussed in §4.4, dynamic repairing relies on a
set of valid test cases to identify different input-output relations and trigger crashes. Therefore,
DecLLM cannot fix functionality deviations that are not covered by the available test cases.

Ambiguous compiler errors also challenge LLMs. For example, “expected ’;’ before” is raised due
to the omitted “struct” keyword before “sigaction”. Although it is easy for programmers to fix [2],
LLMs struggle to synthesize fixes from error messages alone. As a result, DecLLM could only fix
11% of these cases. To conclude, these two issues are beyond the capabilities of off-the-shelf LLMs,
and we will leave the investigation of resolving these challenges as future work.
Attention Degradation. As mentioned in §6.1, DecLLM may not be able to fix all inference
errors. Out of the remaining 40% of samples, 69.9% come from the Standard Template Library
(STL) functions. Since calls to STL functions introduce their implementations into the binary, it
increases the size of the decompiler’s outputs from 2.8 to 16.1 times. As LLMs performance is
highly dependent on context length [73], long decompiled outputs pose a challenge. However,
automatic identification of STL functions is challenging [3, 8]; a possible solution is adopting
Retrieval-augmented Generation (RAG) [66] techniques to recognize STL functions and replace
this implementation with the identified calls. We leave this as a future enhancement for DecLLM.
Poor Instruction Following. In §6.1, we see that both GPT-3.5 and GPT-4 settings result in over
half of the triggered memory errors that cannot be automatically fixed by DecLLM. We manually
investigate these remaining memory errors by examining the intermediate conversation between
the LLM and DecLLM. We then categorize the causes into two types. The major cause (81.8% for
GPT-3.5 and 78.5% for GPT-4) is the problematic usage of type casting operators (e.g., “static_cast”
and “reinterpret_cast”) when the LLM attempted to fix type conversion errors. Despite our efforts
to mitigate this, the LLMs persist in using them as a fixing strategy, which may be due to shortcut
learning behavior mentioned in §3.2 and poor instruction following. The remaining errors are
associated with inferring incorrect buffer sizes, which are hard to fix by LLM.
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Other Issues. In addition to the aforementioned issues, there is a tendency for the LLM to generate
illegal outputs when we do not provide it with the full context of the decompiled pseudocode.
We interpret that providing the full decompiled pseudocode will hint to the LLM to generate the
source code, not the explanation. Instruction fine-tuning is a potential solution to this problem and
the shortcut learning behavior we reported in §3.2. It modifies self-attention heads to encourage
response alignment [117], making the LLM specific to tasks.

Answer to RQ3: For the remaining hard cases beyond the capabilities of off-the-shelf LLMs,
we delve into their errors and obtain insights that could guide future decompilation-oriented
LLM design and fine-tuning.

6.4 RQ4: Cost of DecLLM

Table 6. The cost of static and dynamic repairing with DecLLM.

Dataset Static Repair Time Dynamic Repair Time Financial Cost
Code Contest 60.04s 17.09s $0.04
Coreutils 420.20s 93.30s $0.18
CGC 77.26s 39.34s $0.04

We evaluated the cost of using De-
cLLM with GPT-3.5, considering
both the time required for repair-
ing and fuzzing and the financial
cost associated with token con-
sumption. Table 6 reports the re-
sults across three datasets. While repairing decompiled code with LLMs is generally efficient, static
repairing is notably more time-consuming due to multiple rounds of LLM interactions. Besides,
we used tiktoken [17] to estimate the financial cost associated with token consumption. Table 6
indicates that fixing a complex binary (e.g., Coreutils binary) costs notably more, suggesting that
decompiled code of complex binaries tends to have more errors to fix.

Additionally, DecLLM ensures a higher level of confidence in the recompiled binary’s correctness
by incorporating a fuzzing mechanism to detect behavioral inconsistencies that humans might
miss. As explained in §4.4, the fuzzing process in DecLLM aims to detect behavioral deviations
introduced by decompilation or LLMs. Such deviations are easier to detect than bugs stemming
from programming defects. Thus, the fuzzing process in DecLLM will not consume as much time as
traditional fuzzing research. Moreover, the workload of fuzzing can be parallelized and amortized
across CPU cores to save time.
In the experiments, we adopted a conservative fuzzing strategy continued beyond coverage

saturation. Specifically, the fuzzing time for the Code Contest, Coreutils, and CGC dataset is 1, 45,
and 12 minutes, respectively. Since we deployed the fuzzing process on a machine with 64 cores,
the CPU hours used for these three datasets are about 1, 48, and 12 hours. Nevertheless, the fuzzing
time is adjustable and can be largely reduced in practice. Recent advances in fuzzing research can
also be employed to speed up further.
Overall, DecLLM achieves a reasonable processing time and incurs minimal financial cost. As

the first automated solution for recompilable decompilation, DecLLM shows significant advantages
in reliability and efficiency compared to prior attempts that fix decompiled code into recompilable
forms [80] manually, which can take hours to days of skilled human efforts.

Answer to RQ4: DecLLM shows low financial costs with reasonable time costs, whereas
the cost of fuzzing is adjustable and can be further optimized through advanced fuzzing
techniques. This makes DecLLM highly practical as the only automated recompilable
decompilation solution. Additionally, as LLMs continuously evolve for better performance
and lower prices, we expect its financial cost to decrease significantly in the future.
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Table 7. Success cases across different context lengths. GPT3.5-IDA is from §6.1. Config-① denotes supplying

line numbers and code to LLM during static repair, and Config-② denotes only supplying line numbers.

Context Length GPT3.5-IDA GPT3.5-Ghidra GPT4-IDA Config-① Config-②

200-560 57/60 56/60 59/60 58/60 55/60
560-920 53/60 52/60 56/60 54/60 42/60
920-1280 48/60 49/60 50/60 49/60 39/60
1280-1640 37/60 38/60 40/60 36/60 21/60
1640-2048 27/60 25/60 30/60 26/60 13/60
Overall 74% (222/300) 73.3% (220/300) 78.3% (235/300) 74.3% (223/300) 56.6% (170/300)

7 Discussion
In line with our presented evaluation and application results, we now discuss the following several
aspects and mitigate potential concerns.
Extension to Other Decompilers. In §3 and §6, we perform studies on recompilation and
benchmark DecLLM with decompilation outputs of IDA Pro, the de facto commercial C/C++
decompiler. However, the proposed approach is independent of the underlying decompilers. To
examine DecLLM’s generalizability, we extend DecLLM to support an open-source C decompiler,
Ghidra 10.4 [86]. We repeat the experiment in §6 and denote this setting as GPT3.5-Ghidra. The
results are shown in Table 7. Compared with using IDA Pro, our evaluation shows that DecLLM
achieves a comparable performance with Ghidra, with merely a 0.7% difference in recompilation
success rate, illustrating that DecLLM is not tightly coupled to a specific decompiler. Moreover,
given that the powerful LLM is not limited to a specific programming language, we envision that
the workflow of DecLLM can also work on software compiled from other programming languages.
Extension to Other LLMs and Datasets. Another potential extension of DecLLM is to leverage
other LLMs. To ensure generality, we deliberately refrain from conducting specific LLM hyperpa-
rameter tuning. Such an LLM-agnostic setting largely improves our work’s reproducibility and
enhances our findings’ generalizability. We also replicated our evaluation in §6 with GPT-4. As
anticipated, we observe a consistent improvement across all settings (see Table 7), indicating that
DecLLM is not limited to a specific LLM. We also performed our empirical study (in §3) and
evaluation (in §6) on two separate datasets, demonstrating comparable performance. The results
indicate that the performance of DecLLM is not restricted to a specific dataset.
Validity in CodeQL Results. In §6.2.2, we have presented an important application of DecLLM
in vulnerability detection. We view the results as highly promising, as DecLLM can bridge the gap
between binary-level analysis and source-level analysis. However, one may be concerned about the
study’s validity because the decompiler or DecLLM may eliminate certain vulnerabilities before
analysis, as DecLLM is designed to fix memory errors found by ASAN, and decompilers (which are
essentially rule-based) to some extent may “smooth” the code. Yet, in practice, experiment in §6.2.2
shows that the detection results in the fixed code are consistent with that of the original source
code. In practice, we recommend users to check errors reported by ASAN when using DecLLM as
well as findings reported by CodeQL to ensure a comprehensive vulnerability understanding.
Functional Equivalence. DecLLM utilizes official test suite to assert functional inequivalence
between the original and recompiled executables. It is important to note that checking equivalence
between original and recompiled executables is inherently undecidable, as per Rice’s theorem [97].
While DecLLM focuses on automatic recompilation, developing practical equivalence verification
would be a valuable enhancement for DecLLM.
Postprocessing of Compiler Error Messages. We investigated the impact of including line
numbers in compiler error messages during static repair. As shown in Table 7, Config-① (including
line numbers and erroneous code) performs similarly to our default setting, while Config-② (only
line numbers) shows significant performance degradation, especially for longer contexts. This
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suggests that concrete code examples are more valuable than line numbers for LLMs to fix errors,
aligning with known LLM limitations in counting tasks [25].

8 Related Work
Besides reviewing software decompilation and recompilation techniques in §2. We review other
related work below.
Dynamic Binary Rewriting. Binary rewriting modifies executables without source code access.
While we mainly discuss static binary rewriting in §2, dynamic rewriting techniques have developed
significantly over the past few decades. Dynamic rewriting is performed during runtime, often based
on system-level support like Intel Pin [79], DynamoRIO [29], and Valgrind [83]. Dynamic binary
rewriting enables binary code modification without the restrictions faced by static methods [43, 45].
However, it incurs high overhead due to runtime rewriting. In contrast, this work focuses on
more efficient static binary rewriting. Our approach further extends the capability of static binary
rewriting methods, enabling smooth instrumentation of binary code at a modest cost.
Decompilation Readability. This work focuses on the automatic recompilation of decompiled
code, emphasizing its functionality and correctness. Another important and orthogonal research
area in decompilation is improving readability by assigning meaningful names and types to de-
compiled variables using NLP models [34, 65, 89], generating function names for decompiled
code [39], and predicting function names for stripped binaries [47, 60]. Such works do not improve
the correctness of decompiled code but facilitate human comprehension. Moreover, Debin [53]
and CATI [33] predict debugging information from binaries. Recent works, like LmPA [119] and
DeGPT [55], combine program analysis with LLM to enhance the readability of decompiler outputs.

9 Conclusion
This paper explored enabling recompilable decompilation with off-the-shelf LLMs for the first time.
We demonstrated that this is a non-trivial task through a pilot study of existing rule-based and
LLM-based approaches. We designed DecLLM, an iterative LLM-based repair loop that combines
static recompilation and dynamic runtime feedback to fix decompiler outputs. Evaluation on
popular C benchmarks and real-world binaries showed that DecLLM can achieve up to a 70%
recompilation success rate. The recompilable code can be used for CodeQL-based vulnerability
analysis, demonstrating largely consistent results with the ground-truth source code.

10 Data Availability
We maintain a website at [22] hosting the research artifacts.
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