
PropertyGPT: LLM-driven Formal Verification of
Smart Contracts through Retrieval-Augmented

Property Generation

Ye Liu1, Yue Xue2†, Daoyuan Wu3∗, Yuqiang Sun4, Yi Li4, Miaolei Shi2, and Yang Liu4,5
1Singapore Management University

2MetaTrust Labs
3The Hong Kong University of Science and Technology

4Nanyang Technological University
5China-Singapore International Joint Research Institute (CSIJRI)

Abstract—Formal verification is a technique that can prove
the correctness of a system with respect to a certain specification
or property. It is especially valuable for security-sensitive smart
contracts that manage billions in cryptocurrency assets. Although
existing research has developed various static verification tools
(or provers) for smart contracts, a key missing component is the
automated generation of comprehensive properties, including in-
variants, pre-/post-conditions, and rules. Hence, industry-leading
players like Certora have to rely on their own or crowdsourced
experts to manually write properties case by case.

With recent advances in large language models (LLMs), this
paper explores the potential of leveraging state-of-the-art LLMs,
such as GPT-4, to transfer existing human-written properties (e.g.,
those from Certora auditing reports) and automatically generate
customized properties for unknown code. To this end, we embed
existing properties into a vector database and retrieve a reference
property for LLM-based in-context learning to generate a new
property for a given code. While this basic process is relatively
straightforward, ensuring that the generated properties are (i)
compilable, (ii) appropriate, and (iii) verifiable presents challenges.
To address (i), we use the compilation and static analysis feedback
as an external oracle to guide LLMs in iteratively revising the
generated properties. For (ii), we consider multiple dimensions of
similarity to rank the properties and employ a weighted algorithm
to identify the top-K properties as the final result. For (iii), we
design a dedicated prover to formally verify the correctness of
the generated properties. We have implemented these strategies
into a novel LLM-based property generation tool called Proper-
tyGPT. Our experiments show that PropertyGPT can generate
comprehensive and high-quality properties, achieving an 80%
recall compared to the ground truth. It successfully detected 26
CVEs/attack incidents out of 37 tested and also uncovered 12
zero-day vulnerabilities, leading to $8,256 in bug bounty rewards.

This work was done while Ye Liu was a student at Nanyang Technological
University.

†Yue Xue and Ye Liu are the co-first authors.
∗Daoyuan Wu is the corresponding author.

I. INTRODUCTION

Smart contracts are transaction-driven programs deployed
and executed on blockchain platforms, automating the execu-
tion of digital agreements among users. Most smart contracts
are written in Turing-complete programming languages, such
as Solidity [47], and have been widely adopted on popular
blockchain platforms like Ethereum [61] and BSC [1]. Smart
contracts are extensively used in decentralized applications
such as DeFi [25] and NFTs [5]. However, they are susceptible
to various types of attacks, including integer overflow [51],
re-entrancy [43], front-running [50], and access control vul-
nerabilities [15], [34]. These vulnerabilities primarily arise
from loopholes in smart contracts due to programming errors,
incorrect implementations, and logical bugs [66].

Formal verification is one of the most advanced approaches
to identify contract loopholes by performing a comprehensive
examination with different kinds of specifications. To perform
formal verification, it is necessary to generate customized for-
mal specifications for different smart contracts. Formal spec-
ifications for smart contracts usually include temporal logic
properties and Hoare logic properties, as surveyed in [54].
Invariants are the most common contract specification, stating
a property that holds for any contract execution, followed by
function pre-/post-conditions for particular functional usage,
as well as rules that cover cross-function properties. In most
cases, temporal logic properties can be transformed into Hoare
properties that could be instrumented into smart contract
code [42]. Hence, existing works typically use Hoare-style
specifications for vulnerability detection [56], [58], inconsis-
tency detection [11], and correctness validation [42], [60].

Despite the promise of formal verification in enhancing
the security and reliability of smart contracts, one notable
challenge remains: the community still lacks the automated
generation of comprehensive properties for effective formal
verification of smart contracts. While several works have
attempted this, they have not yet achieved the ultimate goal
of automatically generating necessary properties, including
invariants, pre-/post-conditions, and rules, for an unknown con-
tract code. For example, InvCon [33], [36] can dynamically in-
fer likely contract invariants and function pre-/post-conditions,
but it requires historical transaction information. Likewise,
Cider [32] and SmartInv [59] employed a machine-learning-

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241357
www.ndss-symposium.org

based approach to generate specifications through the training-
and-inference paradigm, but only for the invariant properties.
As a result, industry-leading players like Certora [10] have to
rely on their own or crowdsourced experts [9] to manually
write properties case by case, which hinders the effective
formal verification of smart contracts on a large scale.

In this paper, we explore how recent advances in large lan-
guage models (LLMs) could enable automated generation of
comprehensive smart contract properties. Given LLMs’ strong
capability for in-context learning (see background in §II), we
try to achieve effective transfer learning from existing human-
written properties to customized properties for unknown code.
More specifically, we embed existing properties into a vector
database and retrieve a reference property for LLM-based in-
context learning to generate a new property for a given code. In
this way, we can generate diverse types of properties as long as
there are existing samples for each type in the collected vector
database. Moreover, compared to the training-and-inference
paradigm mentioned above [32], [59], our approach does not
require the error-prone labeling process (we can directly use
existing raw property results, such as those from Certora
auditing reports), nor re-training when there is updated data.

While the basic property generation process is relatively
straightforward, it is challenging to ensure that the retrieval-
augmented properties are (i) compilable, (ii) appropriate, and
(iii) verifiable. To address these challenges, we employ three
novel designs and implement them in an LLM-driven system
called PropertyGPT. First, we use compilation and static
analysis feedback as an external oracle to guide LLMs in iter-
atively revising the generated properties. Second, we consider
multiple dimensions of similarity to rank the properties and
find a balanced metric for all these dimensions. The resulting
weighted algorithm thus identifies the top-K properties as the
final result. Third, we design a dedicated prover to formally
verify the correctness of the generated top-K properties.

To evaluate PropertyGPT, we collected 623 human-written
properties from 23 Certora projects. We first split 90 of them as
a ground-truth testing set and used the rest as reference prop-
erties. We found that PropertyGPT can cover 80% equivalent
properties in the ground truth as judged by human experts,
with a reasonable precision of 64%. Note that the additional
properties (FPs) produced by PropertyGPT generally also hold,
complementing the human-written ones. We further used all
623 properties as a knowledge base to supply PropertyGPT
for detecting real-world CVEs and past attack incidents. Our
results showed that PropertyGPT successfully detected 9 out of
13 CVEs and 17 out of 24 attack incidents. Moreover, during
this process, PropertyGPT demonstrated sufficient generaliz-
ability in analyzing an entirely different dataset. Furthermore,
we ran PropertyGPT on four real-world bounty projects to
demonstrate its ability to find zero-day bugs. PropertyGPT
successfully generated 22 bug findings, out of which 12 have
been both confirmed and fixed, earning us a total of $8,256 in
bounty rewards.

Contributions. We summarize the contributions as follows:

• We proposed a novel LLM-based property generation
tool, PropertyGPT, to drive comprehensive formal verifi-
cation for smart contracts, with the major step of retrieval-
augmented property generation described in §V.

• To facilitate PropertyGPT, we also designed a property
specification language (PSL) for smart contracts (§IV)
and a dedicated prover for property verification (§VI).

• We conducted extensive experiments and ablation studies
to evaluate PropertyGPT in various real-world settings;
see §VII and §VIII.

Availability. The property dataset and raw experimental data
are available at https://github.com/Pr0pertyGPT/PropertyGPT,
while the prototype is being commercialized by our industry
partner, MetaTrust Labs. A partially open-source version will
be updated on the above GitHub link.

II. PRELIMINARY

Large language models (LLMs), such as GPT-3.5 [40] and
CodeLLama [44], have been widely used in many natural
language processing tasks, such as text generation, transla-
tion, and summarization. GPT series models are trained on
a large corpus of text data and have the potential to generate
human-like text, while CodeLLama is a fine-tuned version of
LLama 2 [55] on open-source code. The LLMs are pre-trained
on a large corpus of text data and then fine-tuned on specific
tasks and these datasets usually contain code from different
programming languages. Additionally, the pre-trained LLMs
have exercised its potential to revolutionize the traditional
software tasks, e.g., code generation [8], repairing [41], [63],
vulnerability detection [50].

In-context learning (ICL). Based on the pre-trained knowl-
edge, LLMs could leverage existing human-written properties
written with various specification languages. Yet, due to the
limitations of the pre-training data and the efforts needed
for training, LLMs may not be able to include the real-time
information. To address this problem, in-context learning (ICL)
mechanism have been proposed by offering LLMs with the
ability to learn from the latest conversation or task context [46],
[67]. In essence, in-context learning is a specialized kind of
few-shot learning [7], basing itself on a few examples or a
small amount of data to learn a new task.

Instead of using fine-tuning [59], in this work, we employ
the in-context learning ability from the state-of-the-art GPT-4
model [4] for retrieval-augmented property generation.

III. PROPERTYGPT OVERVIEW

In this section, we present the overall design of Prop-
ertyGPT, which leverages LLMs’ ICL capability to transfer
existing human-written properties and generate customized
properties for formally verifying unknown code. At a high
level, PropertyGPT takes a piece of subject smart contract code
as input and ultimately produces its corresponding properties
along with the verification results.

As illustrated in Fig. 1, PropertyGPT consists of eight
major steps: ① PropertyGPT first creates a vector database for
reference properties by embedding their corresponding critical
code. Note that the reference properties themselves will not
be embedded because they are not the search key. ② Given a
piece of subject code under testing (typically one function),
PropertyGPT queries the vector database to ③ retrieve all
similar code within the threshold and map each code to their

2

https://github.com/Pr0pertyGPT/PropertyGPT

Subject Code
under testing

Human-written
Properties

Corresponding
Critical Code

Vector DB

Embedded Code

Retrieved Code
and Properties

2. Query

3. Retrieve
& Map

1. Embed

7. Weighted
Algorithm

One Reference
Property

Subject Code
under testing

PropertyGPT
Generation Prompt

The Generated
Property

Compiler

Prover

6. Feedback
& Revise

4. Iterative Loop

Verification
Result

8. Output

All Compliable
Properties

The Ranked Top-K
Properties

5. Generate

PropertyGPT

Fig. 1: A high-level workflow of PropertyGPT.

original reference properties. ④ All the reference properties are
then tested with the subject code one by one in an iterative
loop. ⑤ For each reference property, PropertyGPT employs
a generation prompt to generate a candidate property for the
subject code. ⑥ This candidate property is then checked by
the compiler for grammar, and if it is not grammatically
correct, it will be further revised according to the compiler’s
feedback using a revising prompt. ⑦ Eventually, we obtain a
list of compilable properties and rank them according to our
weighted algorithm for the top-K appropriate properties. ⑧
These properties are finally formally verified by our prover,
aiming to discover smart contract vulnerabilities.

To explore and understand the details of PropertyGPT,
we first introduce its property specification language in §IV.
Following this, we describe the main process of LLM-based
property generation and refinement in §V. Finally, we connect
the generated properties with our dedicated formal prover in
§VI for property verification.

IV. PROPERTY SPECIFICATION LANGUAGE

To bridge the gap between property generation in §V
and formal verification in §VI, we propose an intermediate
language in this section to specify the properties of smart
contracts.

Fig. 2 illustrates our property specification language (PSL),
which extends the popular smart contract programming lan-
guage Solidity. In Solidity, a smart contract (SC) consists of
a group of state variables recording persistent program state
and a list of public functions allowing user interactions. The
symbol ▷◁ represents a set of arithmetic, comparison, or logical
operators, namely {+,−, /,>,<,==, ! =, >=, <=,&, ||}.
bool expr ⇂(v∗,C∗) indicates boolean expressions involving
state variables and constant values. PSL includes three kinds
of properties with respect to different purposes. Invariants
are properties that always hold true during contract execu-
tion and are defined over state variables; function pre-/post-
conditions are properties that can be expressed in Hoare triples
{p∗}func{q∗}, checking whether parameters and the modi-
fication of state variables satisfy functionality requirements.
Scenario-based properties, defined on restricted environments,
can be implemented as different rules by enforcing varied
assumptions and customized assertions. It is worth noting that

v ∈ StateV ar tmp ∈ TemporalV ar C ∈ Constant

SC = v∗; func∗
func ∈ Function = param∗; stmt∗

expr ∈ Expression = tmp |v |old(v)|param |C |expr ▷◁ expr

Spec(SC) = inv∗; {p∗}func{q∗}; rule∗
inv ∈ Invariant = bool expr ⇂(v∗,C∗)

p ∈ Precondition = bool expr ⇂(param,old(v),C)

q ∈ Postcondition = bool expr ⇂(param,v,C)

rule ∈ Rule = assume(expr) ∗ |func(expr∗)|assert(expr)∗

Fig. 2: Property Specification Language (PSL).

the current PSL prototype supports safety properties since they
are more security-related compared with liveness properties.

PSL brings several benefits to automate formal verification
over existing works [10], [60]. VeriSol [60] demands that
assertion-based properties must be inserted into smart contract
code. Certora’s Verification Language (CVL)1 is powered by
a closed-source commercial verification tool, which restricts
our ability to use CVL to build a self-contained pipeline
for PropertyGPT. Additionally, the learning curve of CVL
is quite steep since it requires not only knowledge about
smart contracts but also several non-trivial techniques, such
as using a hook for data reading or writing, to handle the low-
level execution model of smart contracts (an example of this
limitation of CVL is provided in Appendix B). In contrast,
writing or maintaining PSL specifications is easier because
they share similar structures with the Solidity language [47].
Note that the semantics of PSL will be illustrated in §VI-B.

V. PROPERTY GENERATION AND REFINEMENT

With the targeted PSL introduced in §IV, our objective
is to automatically generate properties written in PSL for the
given code. The generated properties are the result of LLM-
based transfer learning from existing human-written properties,
which can be written in any specification language, not limited
to PSL, such as CVL.

1https://docs.certora.com/en/latest/docs/cvl/index.html

3

Generation Prompt for Rule Properties

Based on the rule code ([rule code]) and the code
example ([code example]), generate corresponding rule
code for [contract code to be tested].
1. Using the syntax style demonstrated in the provided
code example, generate rule code. Focus on structural
and syntactic aspects rather than replicating specific
variable or function names from the example.
2. $ is for a symbolic variable, such as $varA for
symbolic varA.
3. MUST NOT replicate specific variable or function
names from the [code example].
4. MUST focus on the structural and syntactic aspects
from the [code example].
5. When writing the rule code, closely follow the
syntax and style from the provided example, focusing
on its structural and syntactic essence rather than
copying specific names.
6. The output MUST NOT contain any elements not
predefined in the contract or function.

[function code to be tested]: {func code}
[contract code to be tested]: {contract code}
[rule code]: {rule property}
[code example]: {spec grammar}

The Output MUST be in the form of:
rule [name of rule]() {{logic of rule}}
REMEMBER, ASSERT should not include an error
message; just use the comparison operator directly.
REMEMBER, the rule must aim to test the function,
not for another function.

Fig. 3: The prompt for generating rule properties.

PropertyGPT can achieve such powerful transfer learning
fundamentally rooted in LLMs’ capability for in-context learn-
ing (see §II). Nevertheless, we need to design a novel pipeline
to facilitate this. Our idea is to mimic the RAG (retrieval-
augmented generation) process in the NLP [29] or code [49]
domain, using the reference properties retrieved to augment
the generation of new properties. As previously illustrated in
Fig. 1, we first detail how such retrieval-augmented property
generation is conducted in PropertyGPT in §V-A. After that,
PropertyGPT iteratively revises the LLM-generated properties
to fix their compilation errors in §V-B. Furthermore, we design
a weighted algorithm to help PropertyGPT rank all compilable
properties and obtain only the top-K appropriate properties for
the prover’s verification in §VI.

A. Retrieval-Augmented Property Generation

Here we focus on the basic retrieval-augmented property
generation that occurs from step ② to step ⑤ in Fig. 1. But
the entire property generation process also includes property
⑥ revising and ⑦ ranking, which will be introduced in §V-B
and §V-C, respectively.

Generation Prompt for Function Invariants/Conditions

Based on the following code ([condition code]), gener-
ate the corresponding precondition and postcondition
code for [function code to be tested].
1. The basic syntax of preconditions and postconditions
is in Solidity code format.
2. You can use the ‘ old (xxx)‘ keyword if you need
to reference the initial value of a variable.
3. You can directly use ‘xxxx==/!=/¿/¡‘ without ‘assert‘
or ‘require‘ to compare the value of the variable.
4. MUST NOT use ‘require‘ or ‘assert‘ for assertions;
just use operator comparison directly.
5. MUST NOT use the ternary operator in the precon-
dition and postcondition, but USE ‘if/else‘ expressions.
6. Exclude the event and implementation of the func-
tion itself, only output the precondition and postcon-
dition of the function.
7. MUST NOT use any variables that I or the function
have not defined, such as result , return , only
follow the syntax I provide.
8. MUST NOT use ‘if/else‘ expressions in the precon-
dition and postcondition, but USE the ternary operator.
9. MUST NOT INVOKE other functions or other un-
defined variables or non-state variables in the contract,
only use the state variables in the func name itself.
10. Ignore and delete all conditions related to the return
value.

[function code to be tested]: {func code}
[condition code]: {condition property}

The Output MUST be in the form of:
function {func name}{{

precondition{{
Insert generated code here, ensuring it fol-
lows the syntax style of the example.

}}
postcondition{{

Insert generated code here, ensuring it fol-
lows the syntax style of the example.

}}
}}

Fig. 4: The prompt for generating invariants/conditions.

① Knowledge Preprocessing. One critical step in RAG-
based systems is to first build a knowledge base, typically
a vector database [49]. In PropertyGPT’s scenario, we do not
aim to extract “knowledge” from the existing human-written
properties; instead, we use them as reference properties for
LLMs’ in-context learning. Therefore, we directly use the
raw information from human-written reference properties to
construct our vector database. As shown in Fig. 1, we embed
the corresponding critical code of existing properties to build
the search key used by RAG. Note that the reference properties
themselves will not be embedded because they cannot be

4

queried against by the subject test code.

②-③ Similar Example Retrieval. With the vector database,
we can retrieve similar reference properties given the subject
code to enable one-shot LLM learning in subsequent steps. To
do this, the subject code is also embedded in step ② and the dot
product is calculated [24] with all the vectors in the database.
The top similar code with the highest dot products are then
retrieved, and their corresponding properties are returned as the
result in step ③. Here, we use a conservative code similarity
threshold (e.g., 0.8) to limit the number of retrieved reference
properties (typically 10 to 20 properties), which is acceptable
because PropertyGPT eventually uses a weighted algorithm in
§V-C to rank only the top-K generated properties as the final
result.

④-⑤ In-context Learning. All the reference properties are
then tested with the subject code one by one in an iterative
loop. For each reference property, PropertyGPT employs a
generation prompt to generate a candidate property for the sub-
ject code, using the reference property as a one-shot example.
Specifically, there are two types of generation prompts. One
is used to generate global, cross-function rule properties, as
shown in Fig. 3, and the other is used to generate function-level
pre-/post-conditions, as illustrated in Fig. 4. Note that here we
omit the generation prompt template for contract-level invari-
ants because they are usually in a simpler form and equivalent
to the one-for-all pre-/post-conditions for every public contract
function. Both prompt templates consist of three parts: the first
part details the generation instructions, the second part lists
the code and reference property, and the third part defines
the output property format. In particular, we supply a rule
example in Fig. 3 to help LLMs understand the grammar of
our rule properties, while the grammar of invariants/conditions
is directly specified using natural language instructions in Fig.
4 as it is relatively simple. Additionally, since rule properties
are cross-function, we provide not only the function code but
also the entire contract code in the prompt template shown in
Fig. 3.

To determine which generation prompt should be used,
PropertyGPT leverages the type of the retrieved reference
property. If the reference property is a rule, PropertyGPT uses
the first type of prompt template to generate the property.
Otherwise, if the reference property is classified as pre-/post-
conditions, PropertyGPT uses the second type of prompt
template.

B. Revising Property to Fix Compilation Errors

While the basic property generation process is relatively
straightforward, one particular challenge is how to guarantee
that the generated property is compilable. To address this
challenge, we are inspired from [28], [52] and leverage the
feedback from the compiler and static checking to iteratively
revise the property until it is compilable or until it reaches the
maximum number of attempts, as shown in step ⑥.

Leveraging Compiler Feedback. Our PSL compiler (see its
compilation details in Appendix C) provides compilation error
information, including detailed error locations and reasons, if
the property cannot be successfully compiled. PropertyGPT
thus leverages this feedback to instruct LLMs to iteratively
revise the property. Specifically, we design and employ a

Common Prompt for Revising (Rule) Properties

Here is the rule I provided: {spec res}.
When this code is compiled with a solc-like program,
an error occurs: {error info}.

Your task is to understand the rule I provided, fix the
rule code, and correct the error within the rule. Refer
to the contract code provided above.
Note, only modify the rule code; do not add other
code. If the error is due to a non-existent variable,
find feasible methods to reimplement it, or if it is not
implementable, delete this line.
Here is the function code to be tested: {func code}
Here is the contract code to be tested: {contract code}
Provide me with the repaired rule code. The revised
rule code must not be the same as the old rule code.
1. Using the syntax style demonstrated in the provided
code example, generate a rule code. Focus on the
structural and syntactic aspects rather than replicating
specific variable or function names from the example.
2. $ is for a symbolic variable, such as $varA which
symbolizes varA.

Rule Code Output MUST be in the form of:
rule [name of rule](){{logic of
rule}}
REMEMBER, ASSERT does not include an error
message, just use the operator comparison directly.
REMEMBER, the rule must aim to test the function
[{function name}], not for other functions.

Fig. 5: The common prompt for revising (rule) properties.

common prompt template as shown in Fig. 5 for revising
rule properties; note that the prompt for revising function pre-
/post-conditions is similar and is therefore not shown here.
In this prompt, we ask LLMs to first understand the gener-
ated property code, identify and fix errors, maintain stylistic
consistency throughout the process, and finally ensure that the
revised rule code meets specific formatting requirements. We
set a threshold for the maximum number of attempts to avoid
an endless loop. In our experiment, as shown in §VIII-D, we
found that 74% of properties could be successfully compiled
with no revisions (63%) or with only one attempt, and 84% of
all properties could be succesfully revised within five attempts.
This makes the iterative process manageable.

Employing Static Checking. However, we found that even
when the compiler does not report any errors, it does not mean
that the generated property is fully correct. One notable issue is
that LLM-generated properties could fail to include the target
subject function, which renders the property meaningless. To
address this, we perform additional static checking for all
compilable properties passed in the above step. If Proper-
tyGPT identifies that the property is missing the target subject
function, it employs a special prompt template as shown in
Fig. 6 (listing only the scenario for rule properties, similar

5

Special Prompt for Revising (Rule) Properties

Here is the knowledge rule you should learn from:
{knowledge rule}.
Here is the rule I provided: {spec res}.
This rule lacks core function execution for:
{function name}.
The contract code is: {contract code}.

Your task is to understand the rule I provided,
absorb the knowledge provided, and fix the rule
code by adding the core function execution for:
{function name}.
Here is the function code that needs to be tested:
{func code}.
Provide me with the revised rule code; the new rule
code must not be the same as the old rule code.
1. Using the syntax style demonstrated in the provided
code example, generate a rule code. Focus on the
structural and syntactic aspects rather than replicating
specific variable or function names from the example.
2. $ is for a symbolic variable, such as $varA for
symbolic varA.

Rule Code Output MUST be in the form of:
rule [name of rule](){{logic of
rule}}
REMEMBER, ASSERT does not include an error
message, just use the operator comparison directly.
REMEMBER, the rule must aim to test the function
[{function name}], not for other functions.

Fig. 6: The special prompt for revising (rule) properties.

to Fig. 5). It is generally similar to the common revising
prompt but explicitly addresses the rule’s lack of testing for
the core function execution. In this way, we not only guarantee
that the generated property is grammatically correct but also
functionally meaningful.

C. Ranking the Top-K Appropriate Properties

Another challenge is how to select the appropriate prop-
erties from all compilable properties as the final generation
result. To do so, we propose a weighted algorithm to rank all
the resulting properties, as shown in step ⑦. Specifically, we
rank the properties based on the following four embedding-
based metrics:

Xraw(f, g): Similarity between contract code f and g.

Xsummary(f, g): Similarity between high-level functionality
summaries of code f and g.

Yraw(ϕ1, ϕ2): Similarity between raw properties ϕ1 and ϕ2.

Ysummary(ϕ1, ϕ2): Similarity between high-level property sum-
maries for ϕ1 and ϕ2.

Note that we introduce Xsummary and Ysummary to cope
with that variety could exist for same-functionality code or

Smart Contract

Formal Specs Modular
Verification

Bounded Model
Checking

Counter-
examples

Pass

Source code-level
symbolic execution

FailFail

Fig. 7: Workflow of Property Verification.

same-semantic properties, where high-level natural language
summaries are made by large language model for given code
or properties.

Given an unknown code f , let ϕ1 be its property generated
corresponding to reference code g having property ϕ2, we
score ϕ1 using a weighted algorithm as below.

Score(f, ϕ1) = α ∗Xraw(f, g) + β ∗Xsummary(f, g)

+γ ∗ Yraw(ϕ1, ϕ2) + η ∗ Ysummary(ϕ1, ϕ2) (1)

where α, β, γ, η are coefficients and α+ β + γ + η = 1.

To tune these coefficients, we train a linear regression
model to approximate the actual property score ˆScore(f, ϕ1),
with details available in Appendix D. In this work, for sim-
plicity, we consider ˆScore(f, ϕ1) = Ysummary(ϕ1, ϕ̂1), where
ϕ̂1 is the corresponding ground truth property of ϕ1. We
have conducted a primitive experiment on 3,622 properties
generated by PropertyGPT, and the results show that α: 0.134,
β: 0.556, γ: 0.141, and η: 0.168 are the optimal weights.

Consequently, properties with different scores are ranked
in descending order, where we believe that properties with a
higher rank are more likely to be important for the prover to
verify.

VI. PROPERTY VERIFICATION

The properties generated by PropertyGPT are not only
compilable and appropriate but also verifiable. Fig. 7 il-
lustrates the workflow of our property verification process.
Our prover accepts smart contracts written in Solidity, along
with their corresponding PSL specifications. We employ for-
ward symbolic execution to conduct a strongest postcondition
analysis for each contract statement. Subsequently, we per-
form modular verification to determine whether these formal
specifications have been accurately implemented in the smart
contract and can produce a proof if the properties hold. In
cases where the properties are violated, we use bounded model
checking to verify whether the violated properties genuinely
remain unfulfilled during contract execution. Upon encoun-
tering counterexamples, we can confidently conclude that the
properties indeed fail to hold, suggesting the presence of
vulnerabilities in the smart contracts, which necessitate further
manual verification.

A. Modeling Smart Contract Execution

The runtime behaviors of smart contract execution rely on
persistent contract states stored in the blockchain, transaction
environment information, and specific contract statements to

6

execute. The persistent states are maintained in a group of
contract state variables. The transaction message includes the
current block timestamp, the caller, the callee contract, and
its called method. Given a set of contract statements S = [s],
each statement execution can be modeled as a Hoare triple
{δ} s {δ′}, where δ, δ′ indicate program states before and
after executing s. Unlike traditional programs, there is no crash
in smart contract execution. Any unexpected behavior will
cause a reversion of the smart contract transaction, leaving
the contract state unchanged. Such reversion behaviors may
affect availability, e.g., denial of service, but generally do not
pose a threat to smart contract safety and therefore we exclude
them from our analysis.

B. Verification Technique

We employ the small-step operational semantics of smart
contracts to formally verify invariants, function pre/post-
conditions, and rules. Readers can refer to KSolidity [23] for
detailed operational semantics.

Function Pre/post-condition Verification. Given a function
f , let p and q be its precondition and postcondition to verify,
respectively. Specification {p} f {q} is provable if and only
if the below predicate holds

∀δ ∈ ∆, sp(f, p ∩ δ) =⇒ q (2)

where ∆ encompass all feasible contract states.

We elide verification details for contract invariants because
invariants can be deemed as a variant of function-level speci-
fications that hold for every contract function, with the same
precondition and postcondition standing there.

Rule Verification. Given a rule-based property rule, with
user-given assumptions δ declared in assume statements and
assertions q declared in assert statements, rule holds if and
only if the below predicate holds

sp(rule, δ) =⇒ q (3)

Note that δ may not always be feasible contract state.

We utilize source code-level symbolic execution to conduct
strongest postcondition analysis for Solidity smart contracts.
Distinguishing ourselves from existing research [31], our
novel symbolic execution approach implements comprehensive
small-step semantics, enabling automated analysis of real-
world, complex smart contracts. Although SolSee [31] has
made strides in symbolic execution for Solidity smart con-
tracts, it lacks support for certain critical features commonly
used in smart contracts, such as the aggregated effect of
intricate expressions and polymorphic handling during com-
plex inheritance relationships. We address these limitations by
meticulously adhering to the practices of the Solidity compiler,
ensuring precise semantics of complex expressions. For in-
stance, expressions are evaluated from left to right as specified
by the compiler. Furthermore, our approach accurately resolves
polymorphism during both the compilation and execution
stages of smart contracts. To mimic actual contract execution,
our symbolic execution approach maintains a comprehensive
list of function signatures and revisits contract inheritance
chains to determine the exact function implementation for
ambiguous calls, such as super().call(), where super
refers to an unknown parent contract.

To deal with the complexity of smart contracts, we imple-
mented several over-approximation techniques to handle un-
known or non-linear operation semantics. First, the behaviors
of function calls to on-chain smart contracts remain unknown
at the verification stage, so we assume all on-chain calls
succeed but make their return data symbolic to accommodate
any possible outcome. This approach is necessary because on-
chain contracts may not be open source, and their inter-contract
interactions can be overly complex, falling beyond the scope
of our current research. Second, non-linear native functions,
such as sha3, which computes the hash value of a string,
are challenging to model precisely. To address this, we utilize
uninterpreted functions [19] to capture their primary features,
such as treating sha3 as an injective function.

We employed modular verification and bounded model
checking. During modular verification, we lift all state con-
straints by making all state variables symbolic. Correctness
can be safely ensured when the specification properties hold
accordingly. Otherwise, we perform bounded model checking
to systematically explore all feasible states to find counterex-
amples that violate the property being verified. Any violated
property and its counterexamples will be manually investigated
to confirm the existence of vulnerabilities, similar to the
approach used in SmartInv [59]. The depth of bounded model
checking is capped at three by default, and we allow up to five
loop iterations in the case of non-terminated execution.

VII. IMPLEMENTATION AND SETUP

We implemented PropertyGPT in around 3K lines of
Python code for LLM-based property generation, and around
38K lines of C++ code for grammar support and verification
of PSL property specifications. Additionally, for applying sym-
bolic execution to smart contracts written in various versions
of Solidity, we developed a converter to map smart contracts
written in Solidity versions 0.6.x and 0.7.x into abstract syntax
trees compatible with the latest Solidity version 0.8.x, where
we have systematically investigated their syntax and semantic
differences. We use the Z3 solver, version 4.11.2, to discharge
symbolic constraints for path feasibility checking and property
satisfiability checking.

A. Property Knowledge Collection

To obtain high-quality human-written properties as the
knowledge base for in-context learning, we systematically
analyzed 61 audit reports from the Certora platform, for which
experts have written property specifications to facilitate formal
analysis of smart contracts. These audit reports were published
from 2019 to 2023. Through further investigation, we removed
38 projects whose contract code and raw properties were not
available, and eventually, we collected 23 Certora projects,
including 623 human-written properties, which will be detailed
in Table VII in Appendix A. It is worth noting that for the
selected projects, all human-written properties were collected,
whether they represent violated or non-violated ones in their
particular audited projects.

To study the characteristics of these properties, we em-
ployed the affinity propagation clustering algorithm [18]
from the sklearn 2 library to discern property categories,

2https://scikit-learn.org/

7

https://scikit-learn.org/

0.4 0.2 0.0 0.2 0.4
PCA Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

PC
A

Di
m

en
sio

n
2

Clusters
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Fig. 8: The property cluster distribution after two-dimension
PCA [20] reduction.

based on pairwise embedding similarity across the proper-
ties. Specifically, we performed some preliminary experiments
and found that this setting AffinityPropagation(damping=0.5,
preference=-75, random state=5) could establish a good result
for property clustering. Fig. 8 illustrates the distribution where
six clusters are labeled with different colors. However, it is
clear that overlapping exists among clusters, especially for
clusters #3 and #5.

Furthermore, we investigated all the clusters and have the
following classifications of human-written properties as shown
in Table I. There are six property categories as follows:

• DeFi, involving the management of its essential proto-
col components including reserves, collateral, and liquidity
pools;

• Token, which is the cornerstone of entire DeFi ecosystems,
specifying standard behaviors such as token balance and
critical operations like transfer and minting;

• Arithmetic, focusing on the correctness of numerical con-
versions and the consistency of asset splitting;

• Usability, examining the validity of operations containing
timestamp-based constraints (Temporal Use) and operations
with contract state-based constraints (State-dependent Use);

• Governance, which plays an important role in the manage-
ment of decentralized applications, usually through a voting
mechanism, concerning issues such as the transfer of voting
power to a delegator and the double-voting problem;

• Security, checking for the presence of common vulnerability
types including front running and overflow.

B. Experimental Setup

We use the large language model GPT-4-turbo provided
by OpenAI through its API gpt-4-0125-preview. Regarding
the model configuration, we adhere to the default settings
where the temperature is 0.8, top-p is 1, frequency penalty and
presence penalty are both 0, and the maximum response length

TABLE I: Characteristics of the collected Certora properties.

Category Classification Property Examples

DeFi
Reserve setReserveFactorIntegrity
Collateral integrityOfisUsingAsCollateralAny
Liquidity checkBurnAllLiquidity

Token

Balance total supply is sum of balances
Transfer/TransferFrom transferBalanceIncreaseEffect
Mint/Burn integrityMint, additiveBurn
Approve approvedTokensAreTemporary

Arithmetic Numerical Conversion toElasticAndToBaseAreInverse1down
Asset Splitting moneyNotLostOrCreatedDuringSplit

Usability Temporal Use timestamp constrains fromBlock
State-dependent Use unsetPendingTransitionMethods

Governance Delegation integrityDelegationWithSig
Voting totalNonVotingGEAccountNonVoting

Security Front run cannotFrontRunSplitTwoSameUsers
Overflow integrityOfMulDivNoOverflow

is 2000. Moreover, we calculate all embedding similarities
using the pre-trained model text-embedding-ada-002 from
OpenAI. For property generation, we cap revising attempts at
nine to limit LLM usage for better economics. All experiments
were conducted on a Docker with Ubuntu 20.04 OS, an Intel
Core Xeon 2.2 GHz processor, and 2GB RAM.

VIII. EVALUATION

In this work, we aim to answer the following research
questions (RQs):

• RQ1: (Property Generation) How accurately does Proper-
tyGPT generate properties for smart contracts?

• RQ2: (Vulnerability Detection) How effectively does Prop-
ertyGPT discover smart contract vulnerabilities? Can Prop-
ertyGPT achieve state-of-the-art results?

• RQ3: (Generalizability) Does PropertyGPT have sufficient
generalizability to enable powerful transfer learning?

• RQ4: (Influencing Factors) What factors influence the
performance of PropertyGPT?

• RQ5: (Impact) How well does PropertyGPT find zero-day
vulnerabilities in real-world smart contract projects?

Methodology. To answer RQ1, we divide Certora properties
into a testing dataset and a “training” dataset as the knowledge
base. We instruct PropertyGPT to generate properties for smart
contracts in the testing dataset using smart contracts and their
properties from the knowledge base. We compare the resulting
properties by PropertyGPT with ground-truth human-written
ones to investigate its effectiveness. Specifically, we randomly
selected nine (40%) Certora projects as our testing dataset and
then picked 10 properties for each project. Consequently, our
testing dataset includes 90 ground truth properties from nine
projects. During this experiment, PropertyGPT first extracts
the subject function code where the ground truth properties
are specified, and then queries the knowledge base to enable
ICL to automate property generation.

To answer RQ2, we compare PropertyGPT with Smart-
Inv [59], a concurrent work with ours, published recently
in May 2024. We contacted the authors to obtain a copy

8

TABLE II: The evaluation benchmarks.

Benchmark RQs

23 Certora projects (623 properties; 90 for testing) RQ1, RQ4
13 CVEs + 24 projects from the SmartInv benchmark RQ2, RQ3

of their source code and benchmark3, which includes 60
attack incident projects that have suffered significant losses.
Upon reviewing their benchmark, we identified several issues.
Among the listed cases, 2 are repeated, 9 lack public exploit
transactions (e.g., sherlockYields), 2 are not open-sourced,
and 2 have incomplete code. Of the remaining cases, 11 are
reentrancy attacks that could be easily remedied by adding
the widely-used nonReentrancy modifier. Furthermore, 8 cases
involve price manipulation attacks, which may be impractical
to identify using the simple invariant properties that SmartInv
generated. For example, Tolmachet al. [53] proposes a semi-
automated formal composite analysis for DeFi protocols that
detects such problems with fairness properties, while others
use either runtime monitoring [62] to identify attack behavior
or static analysis [26] to flag vulnerable code with predefined
patterns. Through this deep analysis of their benchmark, we
curated 24 attack incidents from the SmartInv benchmark for
our evaluation. Additionally, we compare PropertyGPT with
state-of-the-art tools [2], [16], [38], [50] on well-known smart
contract CVEs. As of April, 2024, there are 577 smart contract
CVEs, predominantly 477 integer overflows. To avoid bias, we
randomly selected 13 CVEs of different types: three integer
overflow cases, three access control vulnerabilities, four other
logic bugs, etc., details of which are provided in Table IV.

Benchmarks. As shown in Table II, we evaluate the property
generation process using Certora audited projects and test the
applicability of PropertyGPT in vulnerability detection using
well-known CVEs and attack incident projects studied by
SmartInv. Additionally, RQ3 and RQ4 also use the correspond-
ing benchmarks, the details of which will be elaborated later.

A. RQ1: Property Generation

We evaluated PropertyGPT on 90 ground-truth properties
from nine Certora projects to investigate the effectiveness of
property generation. Table III shows PropertyGPT’s property
generation results using the rest of Certora properties as the
knowledge base. Note that this RQ only measures whether the
generated properties match the ground-truth properties, where
an FP indicates a property unmatched with the ground truth.

The first two columns show the project name and the
number of properties written by Certora experts, i.e., #Prop-
erty (Certora). The middle five columns list the number of
properties generated by PropertyGPT, i.e., #Property (ours),
true positives that are equivalent to the ground-truth proper-
ties (TP), the number of ground-truth properties hit by the
properties generated (#Hit), the number of missed ground-
truth properties (FN), as well as false positives (FP). The
last three columns are recall, precision, and F1-score met-
rics where recall = #Hit

#Hit+FN , precision = TP
TP+FP , and

F1-score = 2×recall×precision
recall+precision . Because Certora properties are

3https://github.com/sallywang147/attackDB

written in the proprietary Certora Verification Language (CVL)
that supports formal verification of smart contracts at the
EVM bytecode level, while PropertyGPT uses PSL to facilitate
property formulation and verification at the source code level,
there is currently no automated analysis tool available for
equivalence checking between properties from these two dis-
tinct specification systems. Therefore, two authors with 5 years
of research and auditing experience independently examined
the equivalence between the ground-truth properties by Certora
and the properties generated by PropertyGPT, with a third
author breaking ties in case of disagreement. We welcome
other researchers to conduct replication and verification using
our released data, available at https://github.com/Pr0pertyGPT/
PropertyGPT.

Table III shows that PropertyGPT can generate compre-
hensive properties with relatively high recall and reasonable
precision. Most properties generated (26/42) are true positives,
and most ground truth properties (8/10) can be successfully
reproduced, achieving a satisfactory recall (0.80), reasonable
precision (0.64), and fairly good F1-score (0.71). Delving
into project-specific results, PropertyGPT was able to re-
produce all the ground-truth properties for four projects in-
cluding aave_proof_of_reserve, celo_governance, ousd, and
sushi_benttobox. In contrast, PropertyGPT reproduced only
two ground-truth properties for openzepplin, suffering the
lowest recall and F1-score, although with the highest precision.
We investigated the results and found this is largely because
OpenZeppelin [3] is a foundational contract library that has
been directly imported by nearly all real-world applications,
and client code is unlikely to re-implement similar functional-
ity, thus leading to the scarcity of reliable reference properties.
In terms of precision, opyn_gamma_protocol achieves the low-
est, reaching only 0.47. We investigated all 16 false positives
about it and later recognized that 11 of these false positives are
properties that hold for smart contracts but are not documented
in the ground truth by Certora.

Answer to RQ1: PropertyGPT can generate comprehen-
sive and high-quality properties, covering 80% equivalent
properties in the ground truth as judged by human ex-
perts. Moreover, the additional properties (FPs) produced
by PropertyGPT generally also hold, complementing the
human-written ones.

B. RQ2: Vulnerability Detection

We investigate the applicability of PropertyGPT in the
vulnerability detection task on well-known smart contract
CVEs and the attack incident projects studied by SmartInv.
Note that to mimic the situation of real-world deployment, we
set the top-K to top-2, as measured by §VIII-D, as the best
configuration starting from this section.

CVEs. Table IV demonstrates PropertyGPT’s effectiveness in
detecting 13 smart contract CVEs. We compared PropertyGPT
with GPTScan [50], which employs the variable recognition
ability of LLMs to instantiate high-level detection patterns
for logic bugs, and Slither [16], a popular static analysis tool
used to detect a wide range of common vulnerability types. In
particular, since the original GPTScan covers only ten types of
logic bugs, we have enhanced it with the recent unsupervised
paradigm [49] and refer to the enhanced version as GPTScan+.

9

https://github.com/sallywang147/attackDB
https://github.com/Pr0pertyGPT/PropertyGPT
https://github.com/Pr0pertyGPT/PropertyGPT

TABLE III: The property generation results for 90 ground-truth properties from nine Certora projects.

Project #Property (Certora) #Property (ours) TP #Hit FN FP Recall Precision F1-score

aave proof of reserve 3* 38 25 3 0 13 1.00 0.66 0.79
aave v3 17 61 32 15 2 29 0.88 0.52 0.66
celo governance 10 39 29 10 0 10 1.00 0.74 0.85
furucombo 10 23 11 7 3 12 0.70 0.48 0.57
openzepplin 10 2 2 1 9 0 0.10 1.00 0.18
opyn gamma protocol 10 30 14 8 2 16 0.80 0.47 0.59
ousd 10 100 67 10 0 33 1.00 0.67 0.80
radicle drips 10 17 9 7 3 8 0.70 0.53 0.60
sushi benttobox 10 70 49 10 0 21 1.00 0.70 0.82

Average 10 42 26 8 2 16 0.80 0.64 0.71

* This project contains only three human-written properties, so we picked seven more from aave_v3. Both are from the same institution.

TABLE IV: Vulnerability detection results for 13 CVEs.

CVE ID D
es

cr
ip

tio
n

A
vg

. C
od

e
Si

m
.

Pr
op

er
ty

G
PT

G
PT

Sc
an

+

Sl
ith

er

M
an

tic
or

e

M
yt

hr
il

2021-34273 access control 0.693 ✓ ✓ × × ×
2021-33403 overflow 0.666 ✓ × × × ✓
2018-18425 logic error 0.704 ✓ × × × ×
2021-3004 logic error 0.691 × × × × ×
2018-14085 delegatecall 0.662 × × ✓ × ×
2018-14089 logic error 0.661 ✓ ✓ × × ×
2018-17111 access control 0.636 × × × × ×
2018-17987 bad randomness 0.660 × ✓ × × ×
2019-15079 access control 0.701 ✓ × × × ×
2023-26488 logic error 0.682 ✓ × × × ×
2021-34272 access control 0.693 ✓ ✓ × × ×
2021-34270 overflow 0.671 ✓ ✓ × × ✓
2018-14087 overflow 0.661 ✓ × × × ✓

Additionally, Manticore [38] and Mythril [2] are two bytecode-
level symbolic execution tools that automate comprehensive
program state exploration and exploit generation of smart
contract vulnerabilities. In Table IV, the first two columns list
CVE names and their vulnerability types, while the remaining
columns show the detection results by each tool.

The detection results presented in Table IV illustrate that
PropertyGPT outperforms all the comparison tools by detect-
ing 9 out of 13 CVEs, followed by GPTScan detecting five
CVEs, Slither detecting only one delegatecall-related CVE,
Mythril detecting three overflow-related CVEs, and Manticore
detecting zero CVEs. We also investigated the remaining four
CVEs that PropertyGPT failed to detect. It is unknown what
valid properties can express the expectation of proper random-
ness and delegatecall use. CVE-2018-17111 is caused by the
misuse of access control rather than the lack of access control,
which is quite challenging for PropertyGPT to recognize this
subtle difference during property generation.

The ability of PropertyGPT can be enhanced by the in-
troduction of newly confirmed vulnerable code and properties
into our knowledge database. As shown in Table I, the studied
properties written by Certora experts seem to lack support for
access control, which could limit the effectiveness of Proper-
tyGPT in detecting other wild access control vulnerabilities,
even though we realized that PropertyGPT has demonstrated a

TABLE V: Evaluation results for 24 attack incident projects
from the curated SmartInv benchmark.

Contracts Detection #Property Avg. Code
Similarity

Generation
(seconds)

Verification
(seconds)

dfxFinance ✓ 8 0.675 235 7
AnySwap × 11 0.692 518 7
Dodo ✓ 17 0.703 1,182 19
Bancor ✓ 19 0.699 1,948 9
BeautyChain ✓ 5 0.676 104 9
Melo ✓ 9 0.732 252 8
BGLD × 9 0.654 229 39
GYMNetwork ✓ 21 0.681 274 71
elasticSwap ✓ 37 0.681 1,136 120
EulerFinance × 23 0.669 376 43
monoSwap ✓ 5 0.722 69 12
nimBus ✓ 32 0.678 4,288 30
VTF × 8 0.672 358 21
Nomad ✓ 14 0.673 590 70
Umbrella ✓ 14 0.688 404 25
Fortress Loan ✓ 2 0.668 71 5
ShadowFinance ✓ 25 0.683 551 80
Revest ✓ 4 0.646 75 10
Cartel ✓ 11 0.683 401 20
sushiSwap × 10 0.686 419 20
ChainSwap × 9 0.690 307 25
Ragnarok ✓ 42 0.684 1,890 88
templeDao ✓ 13 0.677 302 30
BabySwap × 33 0.679 1,842 50

Overall 17 16 0.683 743 34

certain level of generalization capability in the aforementioned
CVE detection results.

Attack Incidents. Table V shows the evaluation results on 24
attack incident projects from the curated SmartInv benchmark.
Because the authors of SmartInv did not share their instru-
mented buggy contract code, and the ground truth and raw
experimental results about their generated invariant properties
are also missing, we perform a qualitative rather than a
quantitative comparison with SmartInv and will discuss this
in §IX. In Table V, the first two columns list project names
and the amount of attack loss. The remaining columns show
the detection results, the number of properties generated, the
time used for property generation, and formal verification,
respectively.

PropertyGPT successfully identified vulnerabilities in 17
out of 24 real-world attack incidents, on average generating 16
properties per project, spending around 12 minutes for property
generation and only 34 seconds for formal verification. For the

10

remaining seven projects that PropertyGPT failed to detect,
we studied the root causes of their reported vulnerabilities.
We recognized that PropertyGPT does not support the run-
time context of smart contracts, which may be essential for
generating properties in particular use scenarios, for example,
deflationary token abuse for the BGLD project, which we leave
as future work.

Answer to RQ2: PropertyGPT can effectively detect
vulnerabilities in both simple and complex smart con-
tracts. Specifically, PropertyGPT has distinguished itself
from the current state-of-the-art by detecting 9 out of
13 CVEs. Additionally, PropertyGPT achieved relatively
good results in identifying logic bugs in 17 out of 24
attack incidents.

C. RQ3: Generalizability Measurement

Following the effective vulnerability detection demon-
strated in §VIII-B, we are still interested in whether Proper-
tyGPT has sufficient generalizability to enable powerful trans-
fer learning. Given that PropertyGPT’s vector database was
constructed from Certora audit projects, we use the dataset of
CVEs and attack incidents used in RQ2 to measure the gener-
alizability of PropertyGPT’s transfer learning during retrieval-
augmented property generation for an entirely different dataset.

We use the similarity between the tested code and the re-
trieved reference code to indirectly measure the generalizability
of PropertyGPT’s property generation for the vulnerability
detection results shown in Table IV and V. That is, if the sim-
ilarity is lower, that indicates PropertyGPT’s generalizability
is stronger. For the metric of similarity, to avoid bias, we use
the average of two popular similarity metrics, namely cosine
similarity and Word Mover’s Distance [64]. The results are
then presented as standalone columns in Table IV and V,
respectively.

Overall, we find that the mean average code similarity
for all 26 successful cases (i.e., PropertyGPT successfully
generated the correct property) is 0.68, with a range between
0.64 and 0.73, while for all 11 failed cases (i.e., PropertyGPT
failed to generate the appropriate property or the verification
was unsuccessful) it is 0.67, with a range between 0.63 and
0.69. This result has two implications. First, the absolute
similarity values are within a reasonable range—not too high
(meaning the test code is very similar to the reference code) nor
too low (meaning the vector database fails to provide an effec-
tive reference case), indicating that PropertyGPT demonstrates
sufficient generalizability in analyzing an entirely different
dataset. Second, the average similarity for the failed cases is
only slightly lower than for the successful cases, 0.67 vs. 0.68,
which suggests that the failures were not due to PropertyGPT
lacking the generalizability to test a new piece of code.

Answer to RQ3: PropertyGPT demonstrates sufficient
generalizability in analyzing an entirely different dataset
through our indirect measurement of the similarity be-
tween the tested code and the retrieved reference code.

D. RQ4: Influencing Factors

In our ablation study, we first systematically explored
the impact of varying Top-K settings on the property selec-

0.00

0.25

0.50

0.75

1.00

Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9

Recall Precision F1-score

Fig. 9: The impact of Top-K settings on property accuracy.

TABLE VI: The success rate of property generation.

Method #Compilable #Failed Success Rate

GPT-4.0-turbo w/o fix 234 136 0.63
PropertyGPT w/ §V-B 321 49 0.87

tion process. Conducting different trials on the same Certora
projects in RQ1, in Fig. 9, we plotted recall, precision, and
F1-score for the resulting properties accordingly. It is clear
that all the metrics are above 0.5. More importantly, when
moving from top-1 to top-2, all the metrics increase, although
precision has only a very slight increase from top-1 (0.64) to
top-2 (0.65), and afterward, precision goes down and finally
fluctuates around 0.60. Therefore, for the sake of efficiency, we
suggest selecting top-2 properties generated for use by external
community experts or other compatible program analysis tools.

In addition, we delved into our property generation process
with a focus on the success rate of property generation and
property repair times using compiler feedback information.
Table VI shows that GPT-4.0-turbo without revising or repair
achieves a 63% success rate, which is quite lower compared
to PropertyGPT (87%). Fig. 10 visualizes the distribution
of property repair times, where we capped repair time at
nine. We can see that most compilable properties (84%) can
be generated with no more than five fix attempts. We also
investigated the remaining 49 properties that could not be
fixed by PropertyGPT and discovered the main compiler error
message to be the use of undeclared variables, which may be
addressed with a pattern-based approach [27].

Answer to RQ4: PropertyGPT can effectively generate
compilable properties, with 84% of all properties being
successfully revised within five attempts, and the high-
est success rate reaching 87%. Among them, the top-2
properties achieve the best balance between precision and
recall.

E. RQ5: Real-world Impact

To demonstrate PropertyGPT’s ability to identify zero-
day vulnerabilities, we ran PropertyGPT on real-world bounty
projects hosted by popular platforms such as Secure3 [45] and

11

Fix times

N
um

be
r

of
 r

ep
ai

re
d

pr
op

er
ti

es

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

Fig. 10: The distribution of property fix times.

1 pragma solidity ˆ0.8.0;
2 contract SimplifiedStandaloneZkLink {
3 address private _owner;
4 mapping(address => bool) private _validators;
5 uint256 public totalValidatorForwardFee;
6 uint256 public

totalValidatorForwardFeeWithdrawn;↪→

7

8 function withdrawForwardFee(uint256 _amount)
external nonReentrant onlyValidator {↪→

9 require(_amount > 0, "Invalid amount");
10 uint256 newWithdrawnFee =

totalValidatorForwardFeeWithdrawn +
_amount;

↪→

↪→

11 require(totalValidatorForwardFee >=
newWithdrawnFee, "Withdraw exceed");↪→

12

13 totalValidatorForwardFeeWithdrawn =
newWithdrawnFee;↪→

14 (bool success,) = msg.sender.call{value:
_amount}("");↪→

15 require(success, "Withdraw failed");
16 emit WithdrawForwardFee(_amount);
17 }
18 }

Fig. 11: The vulnerable withdrawForwardFee function.

Code4Rena [12]. PropertyGPT successfully generated 22 bug
findings for 4 projects, 12 of which have been both confirmed
and fixed. In return, we received $8,256 in bug bounties from
vendors. In this section, for case studies, we list two zero-day
bugs that have been fixed for responsible disclosure, and we
do not mention their project source to respect the anonymity
policy.

Fig. 11 shows that the withdrawForwardFee function con-
tains a critical vulnerability allowing validators to withdraw
more than their allocated share of forwarding fees, poten-
tially leading to unfair distributions and loss of funds. The
vulnerability arises because the function fails to track and
limit individual validators’ withdrawals according to their
proportionate share. It calculates the new total withdrawn fee
by simply adding the requested withdrawal amount _amount to
totalValidatorForwardFeeWithdrawn (Lines 10-13), without
considering the requesting validator’s entitled share. The only

1 function withdrawForwardFee(uint256 _amount)
2 precondition {
3 _validators[msg.sender] == true;
4 _amount > 0;
5 old(totalValidatorForwardFee) >=

old(totalValidatorForwardFeeWithdrawn) +
_amount;

↪→

↪→

6 }
7 postcondition {
8 totalValidatorForwardFeeWithdrawn ==

old(totalValidatorForwardFeeWithdrawn) +
_amount;

↪→

↪→

9 totalValidatorForwardFee -
totalValidatorForwardFeeWithdrawn ==
old(totalValidatorForwardFee) -
old(totalValidatorForwardFeeWithdrawn) -
amount;

↪→

↪→

↪→

↪→

10 }

Fig. 12: The property generated for the case in Fig. 11.

1 function addEnvelope(
2 string calldata envelopeID, bytes32

hashedMerkleRoot,↪→

3 uint32 bitarraySize, address
erc721ContractAddress,↪→

4 uint256[] calldata tokenIDs
5) public {
6 require(tokenIDs.length > 0, "Trying to

create an empty envelope!");↪→

7 MerkleEnvelopeERC721 storage envelope =
idToEnvelopes[envelopeID]; // bug:
overwrite storage.

↪→

↪→

8 envelope.creator = msg.sender;
9 envelope.unclaimedPasswords =

hashedMerkleRoot;↪→

10 envelope.isPasswordClaimed = new
uint8[](bitarraySize / 8 + 1);↪→

11 envelope.tokenAddress =
erc721ContractAddress;↪→

12 envelope.tokenIDs = tokenIDs;
13 ...
14 }

Fig. 13: The vulnerable addEnvelope function.

check performed is against the total collected forwarding fees,
ensuring that the new total withdrawn does not exceed this
amount (Line 11). However, this does not prevent individual
validators from withdrawing more than their share.

PropertyGPT detected this vulnerability through the
generation and verification of function pre-/post-conditions
listed in Fig. 12. The pre-conditions(Lines 3-5) hold for this
contract as they precisely capture the constraints onlyModifier
and the other two require statements. The post-conditions
describe the expected functionality. However, one of the post-
conditions (Line 9), totalValidatorForwardFee
- totalValidatorForwardFeeWithdrawn
== old(totalValidatorForwardFee) -
old(totalValidatorForwardFeeWithdrawn)
- amount, does not hold, thus identifying the contract
vulnerability in Fig. 11.

12

1 rule
checkAddEnvelopeCorrectSenderAndCreator()
{

↪→

↪→

2 assume(msg.sender == 0x000000000000000000000 ⌋
0000000000000000001);↪→

3 string memory envelopeID = "uniqueID";
4 bytes32 hashedMerkleRoot =

0x1234567890abcdef1234567890abcdef123456 ⌋
7890abcdef1234567890abcdef;

↪→

↪→

5 uint32 bitarraySize = 128;
6 address erc721ContractAddress = 0x0000000000 ⌋

000000000000000000000000000002;↪→

7 uint256[] memory tokenIDs = new uint256[](1);
8 tokenIDs[0] = 12345;
9

10 MerkleEnvelopeERC721 storage $envelopeBefore
= idToEnvelopes[envelopeID];↪→

11 bool $existsBefore =
($envelopeBefore.creator != address(0));↪→

12

13 addEnvelope(envelopeID, hashedMerkleRoot,
bitarraySize, erc721ContractAddress,
tokenIDs);

↪→

↪→

14

15 MerkleEnvelopeERC721 storage $envelopeAfter
= idToEnvelopes[envelopeID];↪→

16 bool $correctlyAdded =
($envelopeAfter.creator == msg.sender);↪→

17 bool $notExistsBefore = ! $existsBefore;
18

19 assert($correctlyAdded && $notExistsBefore);
20 }

Fig. 14: The property generated for the case in Fig. 13.

Fig. 13 shows a vulnerable addEnvelope function where
it does not enforce uniqueness of envelope (Line 7), where
existing storage can be overwritten arbitrarily. Fig. 14 presents
the property generated by PropertyGPT to detect such issue.
Interestingly, PropertyGPT can skillfully construct varied input
data (Line 3-8). When the function call (Line 13) succeeds,
we check the condition (Line 19) that same-id envelope
does not exist before and the envelope creator equals to the
current caller. In other words, this condition disallows calling
addEnvelope function with same envelope id and ensures the
effect of addEnvelope will set envelope creator to be the
function caller. Due to the overwrite bug in Fig. 13, this
assertion does not hold for this function.

F. Threats to Validity

Internal Validity. We evaluated the effectiveness of Prop-
ertyGPT on an established Certora property dataset. Never-
theless, there is lack of equivalence checking tool between
Certora-style properties and our proposed PSL-style proper-
ties generated by PropertyGPT. To mitigate this issue, three
authors independently reviewed these properties to determine
equivalence and we release all the properties generated and the
according labeling results for public use.

External Validity. Our findings in vulnerability detection may
not apply to other kinds of smart contracts and other types
of contract vulnerabilities. In this work, we evaluated Prop-
ertyGPT on 13 representative smart contract CVEs covering

many kinds of vulnerabilities and 24 real-world victim projects
of different application domains. Moreover, we generated 24
bug findings for high-profile projects to audit and 12 have been
confirmed and fixed, with $8,256 bounty reward. Therefore,
PropertyGPT offers a practical formal verification technique
for detecting a broader range of smart contract vulnerabilities.

IX. RELATED WORK

Vulnerability Detection. Numerous automated and semi-
automated analysis tools have been proposed to detect smart
contract vulnerabilities. On the one hand, static analysis tools
analyze code sequences along the abstract syntax tree of
contracts [16] or use a fact-based transformation and query
system [6], [57] to flag weaknesses and vulnerabilities against
expert-written patterns. In contrast, with test oracles, fuzzers
examine runtime behaviors including operation traces [22],
[39] and execution effects [35], [58] for exploit generation,
usually leading to higher precision but lower recall compared
with static analyses. On the other hand, formal verification
has been widely employed in techniques to ensure smart
contract correctness. Automated tools like Manticore [38]
and Mythril [2] use symbolic execution to explore as many
program states as possible to identify vulnerable behavior
with a set of predefined detection rules. Semi-automated tools
require users to provide specification properties, including
invariants [56], function pre-/post-conditions [60], temporal
properties [42], [48], and other customized rules [10], [21].

PropertyGPT distinguishes itself by automating property
generation using a large language model and proposing a pow-
erful prover based on source code-level symbolic execution of
smart contracts, supporting the detection of a wide range of
contract vulnerabilities.

Property Generation. Static inference [51], [60] and dynamic
inference [33], [36] have been applied in property generation
for smart contracts, and recently, machine-learning-based mod-
els have also been used for invariant property generation [32],
[59]. VeriSol [60] applies the Houdini algorithm [17] to reason
about correct invariant properties from a set of hypothesized
candidates. SolType [51] discovers type invariants for Solidity
smart contracts, requiring developers to add refinement type
annotations to the contracts. However, their properties are
limited to arithmetic operations to secure smart contracts from
integer overflow and underflow. InvCon [33] and its subse-
quent work [36] apply dynamic invariant detection and static
inference to produce contract invariants and function pre-/post-
conditions, but they necessitate contracts having sufficient
transaction histories.

Our work aligns with previous efforts in machine-learning-
based approaches, i.e., Cider [32] and SmartInv [59]. Cider
uses a deep reinforcement learning approach but only generates
likely invariant properties, while PropertyGPT can verify all the
properties generated with a prover. Both SmartInv and Prop-
ertyGPT are powered by large language models. PropertyGPT
differs from SmartInv in that we use in-context learning rather
than fine-tuning, and our properties generated extend beyond
function pre-/post-conditions.

LLM-based Security Systems. By combining LLMs, various
security tasks have been addressed more effectively. Sun et
al. [50] proposed GPTScan, and Li et al. [30] introduced

13

methods that combine LLMs with static program analysis for
vulnerability detection, covering more types of vulnerabilities
than traditional tools. Beyond vulnerability detection, LLMs
have been used for other security tasks. Deng et al. [13] pro-
posed TitanFuzz, which utilizes LLMs to guide the fuzzing of
deep learning libraries such as PyTorch and TensorFlow. They
also introduced FuzzGPT [14] to synthesize unusual programs
for fuzzing vulnerabilities. ChatAFL [37] utilizes LLMs to
guide the fuzzing of protocols by interpreting the protocol
documents. Additionally, LLMs have been applied to program
repairing tasks, such as ACFix [65] and ChatRepair [63].

X. CONCLUSION

In this paper, we proposed retrieval-augmented property
generation for smart contracts by utilizing LLMs’ in-context
learning capabilities. We implemented this approach in a tool
called PropertyGPT and addressed challenges to ensure the
generated properties are compilable, appropriate, and runtime-
verifiable. Our evaluation results indicate that PropertyGPT can
detect many real-world contract vulnerabilities, especially in
high-profile projects, collectively receiving $8,256 in bounty
rewards from vendors. For future work, we plan to include
more comprehensive contract context information, such as
documentation, in our approach and enhance PropertyGPT
with richer property knowledge from various sources.

ACKNOWLEDGEMENT

We thank all the reviewers for their constructive feedback
on this paper. This research/project is supported by the Sin-
gapore Ministry of Education Academic Research Fund Tier
1 (RG12/23), the Nanyang Technological University Centre
for Computational Technologies in Finance (NTU-CCTF), the
National Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme (AISG Award
No: AISG2-RP-2020019), and the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Campus
for Research Excellence and Technological Enterprise (CRE-
ATE) programme. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not reflect the views of NTU-CCTF, National
Research Foundation, Singapore and Cyber Security Agency
of Singapore.

REFERENCES

[1] “Binance Smart Chain,” https://docs.binance.org/smart-chain/guides/
bsc-intro.html, 2020, introduction of Binance Smart Chain.

[2] “Mythril,” https://github.com/Consensys/mythril, 2024.
[3] “Openzeppelin–a library for secure smart contract development,” https:

//github.com/OpenZeppelin/openzeppelin-contracts, 2024.
[4] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,

D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[5] A. Arora, Kanisk, and S. Kumar, “Smart contracts and nfts: non-
fungible tokens as a core component of blockchain to be used as
collectibles,” in Cyber Security and Digital Forensics: Proceedings of
ICCSDF 2021. Springer, 2022, pp. 401–422.

[6] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulner-
abilities,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 454–
469.

[7] T. B. Brown, B. Mann, N. Ryder, and Others, “Language models are
few-shot learners,” no. arXiv:2005.14165, Jul. 2020, arXiv:2005.14165
[cs].

[8] C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems De-
sign and Implementation, ser. OSDI’08. USA: USENIX Association,
2008, pp. 209–224.

[9] Certora, “A community of hackers putting their formal verification skills
to the test and earning rewards from leading protocols,” https://www.
certora.com/contests.

[10] ——, “Securing web3 with decentralized intelligence,” https://www.
certora.com/.

[11] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao, and
X. Zhang, “Tokenscope: Automatically detecting inconsistent behaviors
of cryptocurrency tokens in Ethereum,” in Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, 2019,
pp. 1503–1520.

[12] Code4rena, “Keeping high severity bugs out of production,” https://
code4rena.com/.

[13] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. Seattle WA USA:
ACM, Jul. 2023, p. 423–435.

[14] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang, “Large
language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries.” IEEE Computer Society, Nov.
2023, p. 830–842.

[15] Y. Fang, D. Wu, X. Yi, S. Wang, Y. Chen, M. Chen, Y. Liu, and L. Jiang,
“Beyond ”protected” and ”private”: An empirical security analysis of
custom function modifiers in smart contracts,” in Proc. ACM ISSTA,
2023.

[16] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[17] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for esc/java,” in International Symposium of Formal Methods Europe.
Springer, 2001, pp. 500–517.

[18] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[19] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey,
“An abstract domain of uninterpreted functions,” in Verification, Model
Checking, and Abstract Interpretation: 17th International Conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceed-
ings 17. Springer, 2016, pp. 85–103.

[20] B. M. S. Hasan and A. M. Abdulazeez, “A review of principal
component analysis algorithm for dimensionality reduction,” Journal
of Soft Computing and Data Mining, vol. 2, no. 1, pp. 20–30, 2021.

[21] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “KEVM: A complete
formal semantics of the Ethereum virtual machine,” in 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). IEEE, 2018, pp.
204–217.

[22] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[23] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational semantics of
solidity,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1695–1712.

[24] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–
547, 2019.

[25] J. Kim and S. Kim, “A survey of decentralized finance (defi) based on
blockchain,” Journal of the Korea Society of Computer and Information,
vol. 26, no. 3, pp. 59–67, 2021.

14

https://docs.binance.org/smart-chain/guides/bsc-intro.html
https://docs.binance.org/smart-chain/guides/bsc-intro.html
https://github.com/Consensys/mythril
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://www.certora.com/contests
https://www.certora.com/contests
https://www.certora.com/
https://www.certora.com/
https://code4rena.com/
https://code4rena.com/

[26] Q. Kong, J. Chen, Y. Wang, Z. Jiang, and Z. Zheng, “Defitainter: Detect-
ing price manipulation vulnerabilities in defi protocols,” in Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2023, pp. 1144–1156.

[27] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” Empirical Software Engineering, vol. 25, pp. 1980–
2024, 2020.

[28] U. Kulsum, H. Zhu, B. Xu, and M. d’Amorim, “A case study of llm
for automated vulnerability repair: Assessing impact of reasoning and
patch validation feedback,” in Proceedings of the 1st ACM International
Conference on AI-Powered Software, 2024, pp. 103–111.

[29] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-augmented generation for knowledge-intensive nlp tasks,”
no. arXiv:2005.11401, Apr. 2021, arXiv:2005.11401 [cs].

[30] H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis for
practical bug detection: An llm-integrated approach,” in Proc. ACM
Program. Lang., Nov. 2023.

[31] S.-W. Lin, P. Tolmach, Y. Liu, and Y. Li, “Solsee: a source-level
symbolic execution engine for solidity,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 1687–1691.

[32] J. Liu, Y. Chen, B. Tan, I. Dillig, and Y. Feng, “Learning contract
invariants using reinforcement learning,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2022, pp. 1–11.

[33] Y. Liu and Y. Li, “Invcon: A dynamic invariant detector for ethereum
smart contracts,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–4.

[34] Y. Liu, Y. Li, S. Lin, and C. Artho, “Finding permission bugs in smart
contracts with role mining,” in Proc. ACM ISSTA, 2022.

[35] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in
smart contracts with role mining,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). New York, NY, USA: ACM, Jul. 2022, pp. 716–727.

[36] Y. Liu, C. Zhang, and Y. Li, “Automated invariant generation for solidity
smart contracts,” arXiv preprint arXiv:2401.00650, 2024.

[37] R. Meng, M. Mirchev, M. Bohme, and A. Roychoudhury, “Large lan-
guage model guided protocol fuzzing,” in Proceedings of the Symposium
on Network and Distributed System Security 2024.

[38] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 1186–1189.

[39] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[40] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” 2022, arXiv:2203.02155.

[41] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt,
“Examining zero-shot vulnerability repair with large language models,”
in 2023 IEEE Symposium on Security and Privacy (SP). San
Francisco, CA, USA: IEEE, May 2023, pp. 2339–2356. [Online].
Available: https://ieeexplore.ieee.org/document/10179324/

[42] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[43] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

[44] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and

G. Synnaeve, “Code llama: Open foundation models for code,” 2023,
arXiv:2308.12950.

[45] Secure3, “Securing web3 with decentralized intelligence,” https://www.
secure3.io/.

[46] S. Shin, S.-W. Lee, H. Ahn, S. Kim, H. Kim, B. Kim, K. Cho,
G. Lee, W. Park, J.-W. Ha, and N. Sung, “On the effect of
pretraining corpora on in-context learning by a large-scale language
model,” in Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Seattle, United States: Association
for Computational Linguistics, Jul. 2022, pp. 5168–5186. [Online].
Available: https://aclanthology.org/2022.naacl-main.380

[47] “Solidity,” https://solidity.readthedocs.io/en/v0.5.1/, 2022.
[48] J. Stephens, K. Ferles, B. Mariano, S. Lahiri, and I. Dillig, “Smartpulse:

Automated checking of temporal properties in smart contracts,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 555–
571.

[49] Y. Sun, D. Wu, Y. Xue, H. Liu, W. Ma, L. Zhang, M. Shi, and
Y. Liu, “Llm4vuln: A unified evaluation framework for decoupling and
enhancing llms’ vulnerability reasoning,” no. arXiv:2401.16185, Jan.
2024, arXiv:2401.16185 [cs].

[50] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts by
combining gpt with program analysis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024, pp. 1–
13.

[51] B. Tan, B. Mariano, S. K. Lahiri, I. Dillig, and Y. Feng, “Soltype:
refinement types for arithmetic overflow in solidity,” Proceedings of
the ACM on Programming Languages, vol. 6, no. POPL, pp. 1–29,
2022.

[52] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri,
“Autochip: Automating hdl generation using llm feedback,” arXiv
preprint arXiv:2311.04887, 2023.

[53] P. Tolmach, Y. Li, S.-W. Lin, and Y. Liu, “Formal analysis of compos-
able defi protocols,” in Financial Cryptography and Data Security. FC
2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC,
Virtual Event, March 5, 2021, Revised Selected Papers 25. Springer,
2021, pp. 149–161.

[54] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart
contract formal specification and verification,” ACM Computing Surveys
(CSUR), vol. 54, no. 7, pp. 1–38, 2021.

[55] H. Touvron, L. Martin, K. Stone, and et al., “Llama 2: Open foundation
and fine-tuned chat models,” 2023, arXiv:2307.09288.

[56] Echidna, Trail of Bits, 2019. [Online]. Available: https://github.com/
trailofbits/echidna

[57] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, 2018, pp. 67–82.

[58] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
IEEE Transactions on Dependable and Secure Computing, 2020.

[59] S. J. Wang, K. Pei, and J. Yang, “Smartinv: Multimodal learning
for smart contract invariant inference,” in 2024 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, 2024, pp. 126–
126.

[60] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, and
I. Naseer, “Formal specification and verification of smart contracts for
azure blockchain,” arXiv preprint arXiv:1812.08829, 2018.

[61] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[62] S. Wu, D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan, Q. He, and K. Ren,
“Defiranger: Detecting price manipulation attacks on defi applications,”
arXiv preprint arXiv:2104.15068, 2021.

[63] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162 out
of 337 bugs for $0.42 each using chatgpt,” no. arXiv:2304.00385, Apr.
2023, arXiv:2304.00385 [cs].

[64] X. Yi, D. Wu, L. Jiang, Y. Fang, K. Zhang, and W. Zhang, “An
empirical study of blockchain system vulnerabilities: modules, types,
and patterns,” ser. ESEC/FSE 2022. New York, NY, USA: Association

15

https://ieeexplore.ieee.org/document/10179324/
https://www.secure3.io/
https://www.secure3.io/
https://aclanthology.org/2022.naacl-main.380
https://solidity.readthedocs.io/en/v0.5.1/
https://github.com/trailofbits/echidna
https://github.com/trailofbits/echidna

for Computing Machinery, 2022, p. 709–721. [Online]. Available:
https://doi.org/10.1145/3540250.3549105

[65] L. Zhang, K. Li, K. Sun, D. Wu, Y. Liu, H. Tian, and Y. Liu, “Acfix:
Guiding llms with mined common rbac practices for context-aware
repair of access control vulnerabilities in smart contracts,” 2024.

[66] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs
in smart contracts,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 615–627.

[67] Y. Zhu, J. R. A. Moniz, S. Bhargava, J. Lu, D. Piraviperumal, S. Li,
Y. Zhang, H. Yu, and B.-H. Tseng, “Can large language models un-
derstand context?” no. arXiv:2402.00858, Feb. 2024, arXiv:2402.00858
[cs].

APPENDIX

A. Supplementary Material

Table VII lists the raw information for all the 61 Certora
projects, of which we collected 23 projects with available code
and properties.

B. An Example of CVL

1 hook Sstore _checkpoints[KEY address
account][INDEX uint32 index].votes
uint224 newVotes (uint224 oldVotes)
STORAGE {

↪→

↪→

↪→

2 havoc userVotes assuming
3 userVotes@new(account) == newVotes;
4

5 havoc totalVotes assuming
6 totalVotes@new() == totalVotes@old() +

newVotes - userVotes(account);↪→

7

8 havoc lastIndex assuming
9 lastIndex@new(account) == index;

10 }

Fig. 15: Part of the CVL specification for ERC20Votes.

Following the description in §IV, we provide a CVL
example here to illustrate its reliance on a low-level rather
than a high-level execution model for smart contracts.

Fig. 15 shows part of the CVL specification for
ERC20Votes4. It specifies the semantic behavior for up-
dating the field item votes of mapping(address
=> Checkpoint[]) private _checkpoints, a data
structure used to record user votes. Essentially, the specifica-
tion states that after users cast new votes, the recorded user
votes should be updated accordingly, the total votes should
be recalculated, and the last index, i.e., the size of the user
checkpoint array, should also be updated accordingly.

In our experience, writing such specifications is non-trivial
for smart contract developers, as Fig. 15 requires explicit
semantic definitions for each field item of complex data struc-
tures. Additionally, explicitly declaring low-level opcodes such
as sstore and specifying the variable type of involved field
items (e.g., STORAGE indicating a storage variable) burdens
users with subtle and exhaustive details of smart contract data
storage.

4https://github.com/Pr0pertyGPT/PropertyGPT/blob/main/certora projects/
openzepplin/specs/ERC20Votes.spec

In comparison, PSL extends Solidity, and its execution
follows the well-studied Solidity semantics, allowing users
to write specifications without needing to know the intricate
details of the verification process.

C. Compilation Phase of PSL Specifications

PSL is developed as a variant of Solidity, where we
modify the Solidity compiler by adding new syntactic struc-
tures and imposing certain constraints to support the com-
pilation of specifications written in PSL. Specifically, we
add the following keywords by modifying Solidity compiler
v0.8.17: invariant for declaring invariant specification
code blocks, rule for declaring customized rule code blocks,
and precondition and postcondition for function
preconditions and postconditions. We also add the keyword
assume for verification purposes (c.f. Fig. 2). Moreover,
we implement checks to permit only expression statements
in invariant, precondition, and postcondition specifications.
Through these measures, our customized PSL compiler can
accept specifications written in PSL and validate their syntactic
correctness.

D. Learning Optimal Coefficients via Training a Linear Re-
gression Model

Following the introduction in §V-C, this section details how
we train a linear regression model to learn optimal coefficients,
which is vital for ranking the top-k appropriate properties as
the final property generation result.

Data Preparation. We used PropertyGPT to generate a total of
3,622 property generation records. Specifically, for each prop-
erty generation, we randomly selected a known subject code f
from the Cetora dataset, and then PropertyGPT yielded a rule
property ϕ1 for it. We measured Xraw(f, g), Xsummary(f, g),
Yraw(ϕ1, ϕ2), and Ysummary(ϕ1, ϕ2). Additionally, we com-
puted the actual score ˆScore(f, ϕ1) = Ysummary(ϕ1, ϕ̂1),
where ϕ̂1 is the known rule property of f in the Certora dataset.
Our training aims to produce Score(f, ϕ1) to approximate

ˆScore(f, ϕ1) using the four features mentioned in §V-C.

Model Training. We trained an Ordinary Least Squares (OLS)
linear regression model using the above data and evaluated the
model’s performance using multiple metrics: Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Coefficient of Determination (R2), Mean Ab-
solute Percentage Error (MAPE), and Mean Deviation Error
(MDE). Finally, we obtained the following weight coefficients
and performance results:

• Coefficients: α: 0.134, β: 0.556, γ: 0.141, and η: 0.168

• Performance metrics: MAE: 0.0239, MSE: 0.0008,
RMSE: 0.0291, R2: 0.1294, MAPE: 2.7810, and MDE:
-0.0022

These coefficient settings achieve relatively good performance.
Additionally, we conducted other primitive experiments and
found that combining fewer features in the prediction model
led to a decline in performance metrics. Therefore, we believe
that the selected four-feature combination can rank the gener-
ated properties with reasonably high accuracy.

16

https://doi.org/10.1145/3540250.3549105
https://github.com/Pr0pertyGPT/PropertyGPT/blob/main/certora_projects/openzepplin/specs/ERC20Votes.spec
https://github.com/Pr0pertyGPT/PropertyGPT/blob/main/certora_projects/openzepplin/specs/ERC20Votes.spec

TABLE VII: The raw information for all the 61 Certora projects.

Report Name Year Month Included #Property

Aave CLSynchronicity Price Adapter 2022 December ×
Aave GHO Stablecoin 2023 March ✓ 35
Aave Governance V2 Update 2022 September ×
Aave L2 Bridge 2022 July ✓ 42
Aave Proof of Reserve 2022 November ✓ 3
Aave Protocol V2 2020 December ✓ 17
Aave Rescue Mission Phase 1 2023 January ✓ 1
Aave Staked Token v1.5 2023 February ✓ 11
Aave Static aToken 2023 April ✓ 24
AAVE Token V3 2022 September ×
Aave V2 AStETH 2022 August ×
Aave V3 2022 January ✓ 59
Aave V3 BTC.b Listing Steward 2022 September ×
Aave V3 MAI & FRAX Listing Stewards 2022 August ×
Aave V3 PR #820 2023 March ×
Aave V3 sAVAX Listing Steward 2022 July ×
Aave V3 sUSD Listing Steward 2022 August ×
Aave V3.0.1 2022 December ×
Aave Vault 2023 June ✓ 16
Aave-StarkNet L1-L2 Bridge 2022 October ✓ 10
Balancer 2022 September ×
Balancer V2 2021 April ×
Balancer V2 (Issues only) 2021 April ×
Balancer’s Timelock Authorizer Verification Report 2023 May ×
Benqi’s Liquid Staking Contracts 2022 April ×
Celo Core Contracts Release 4 2021 May ×
Celo Governance Protocol 2020 May ✓ 35
Compound V1 Price Oracle 2018 September ×
Compound V3 Comet 2022 July ×
Compound’s MoneyMarket v2 formal verification report 2019 August ✓ 41
Compound’s Open-Oracle with Uniswap Anchor 2020 August ×
Daoism 2022 October ×
dcSpark 2022 December ×
dForce Lending Protocol 2021 February ×
Euler 2021 November ×
Furucombo 2021 May ✓ 20
Kashi Lending Protocol 2021 March ×
Keep’s Fully-backed bonding contract 2020 November ✓ 13
Lido V2 2023 April ✓ 1
Lyra 2021 May ×
Master Chef V2 2021 April ×
Notional Finance V2 2021 November ✓ 30
OOPSLA’2020 2020 - ×
Open Zeppelin 2022 April ✓ 80
Open Zeppelin 2022 June ×
OpenZeppelin Governance contracts 2021 December ×
Opyn Gamma Protocol 2020 December ✓ 33
Orchid’s Smart Contracts 2019 December ×
Origin OUSD Token 2021 February ✓ 16
Popsicle V3 Optimizer 2021 November ✓ 21
Radicle Drips 2023 January ✓ 36
Rolla Finance 2021 August ×
SaaS Verification Report by Blockswap Labs 2022 July ×
SaaS Verification Report by Silo 2022 July ×
Sushi BentoBox 2021 February ✓ 22
Sushi Compound Strategy 2021 April ×
SushiSwap ConstantProductPool 2021 November ×
SushiSwap TridentRouter 2021 November ×
Synthetix Multi-Collateral Loans 2020 December ×
Trader Joe 2022 March ✓ 98
Zesty 2021 July ×

17

	Introduction
	Preliminary
	PropertyGPT Overview
	Property Specification Language
	Property Generation and Refinement
	Retrieval-Augmented Property Generation
	Revising Property to Fix Compilation Errors
	Ranking the Top-K Appropriate Properties

	Property Verification
	Modeling Smart Contract Execution
	Verification Technique

	Implementation and Setup
	Property Knowledge Collection
	Experimental Setup

	Evaluation
	RQ1: Property Generation
	RQ2: Vulnerability Detection
	RQ3: Generalizability Measurement
	RQ4: Influencing Factors
	RQ5: Real-world Impact
	Threats to Validity

	Related Work
	Conclusion
	References
	Appendix
	Supplementary Material
	An Example of CVL
	Compilation Phase of PSL Specifications
	Learning Optimal Coefficients via Training a Linear Regression Model

