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Large code models (LCMs), pre-trained on vast code corpora, have demonstrated remarkable performance
across a wide array of code-related tasks. Supervised fine-tuning (SFT) plays a vital role in aligning these models
with specific requirements and enhancing their performance in particular domains. However, synthesizing
high-quality SFT datasets poses a significant challenge due to the uneven quality of datasets and the scarcity
of domain-specific datasets.

Inspired by APIs as high-level abstractions of code that encapsulate rich semantic information in a concise
structure, we propose DATASCOPE, an API-guided dataset synthesis framework designed to enhance the SFT
process for LCMs in both general and domain-specific scenarios. DATASCOPE comprises two main components:
Dsrt and DGEN. On the one hand, DsLT employs API coverage as a core metric, enabling efficient dataset
synthesis in general scenarios by selecting subsets of existing (uneven-quality) datasets with higher API
coverage. On the other hand, DGEN recasts domain dataset synthesis as a process of using API-specified
high-level functionality and deliberately constituted code skeletons to synthesize concrete code.

Extensive experiments demonstrate DATAScOPE’s effectiveness, with models fine-tuned on its synthesized
datasets outperforming those tuned on unoptimized datasets five times larger. Furthermore, a series of analyses
on model internals, relevant hyperparameters, and case studies provide additional evidence for the efficacy
of our proposed methods. These findings underscore the significance of dataset quality in SFT and advance
the field of LCMs by providing an efficient, cost-effective framework for constructing high-quality datasets,
which in turn lead to more powerful and tailored LCMs for both general and domain-specific scenarios.
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1 Introduction

Large language models (LLMs) have demonstrated remarkable performance across a wide range
of tasks following extensive pre-training [32, 34, 40, 73]. In the domain of code-related tasks,
large code models (LCMs) such as CodeLlama [66] and StarCoder [38] have exhibited impressive
capabilities in program understanding and generation, supporting various real-world applications.
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Fig. 1. Overview of the proposed APl-guided dataset synthesis framework, from its (a) targeted scenarios to
(b) methodology, and further to (c) usage for enhancing LCM SFT in general and domain-specific scenarios.

However, despite their vast knowledge acquired through training on enormous datasets, these base
models may not achieve optimal performance across all use cases out-of-the-box. As illustrated in
Fig. 1(a) and (c), to further align models with diverse requirements—including enhancing general
code generation capabilities [39, 66] or specializing in specific codebases or domains (supporting
commercial products like deep learning [56] or security-related [25] assists)—researchers often
employ additional datasets to fine-tune base models, yielding more powerful and customized LCMs.

Among the various fine-tuning techniques proposed, supervised fine-tuning (SFT) has emerged
as a critical approach for enhancing LLM capabilities. SFT leverages the knowledge acquired
during pre-training while aligning models with human expectations [6, 12, 81]. This process
involves further training the models on carefully curated instruction datasets, typically comprising
formatted instruction-response pairs. These pairs, represented as (INSTRUCTION, RESPONSE),
consist of human-provided tasks or queries INSTRUCTION) and the corresponding desired outputs
(RESPONSE) that the model should generate [9, 17, 54, 90].

Given the importance of high-quality SFT datasets for LCMs, various approaches are developed
to create and curate such datasets. These methods include the collection of real-world code snip-
pets [82] and the use of programming concepts and keywords (e.g., recursion and loops) to guide
LLMs in dataset construction [46]. These efforts result in the generation of extensive datasets, as
exemplified by Nemotron-4’s 800k examples [2]. While such large datasets offer potential benefits,
they also present practical challenges in the SFT process. Notably, the computational resources
required for processing extensive datasets can be substantial, which is particularly relevant given
recent findings demonstrating that comparable performance can be achieved with as few as 2k
high-quality examples [90]. Additionally, the generated data often focuses on solving problems
using basic Python operations, potentially limiting its adaptability and efficacy in domain-specific
scenarios, where we define a domain as a particular application area or specialized programming
field (e.g., scientific computing and web development). Consequently, as illustrated in Fig. 1(a), re-
searchers currently face a dichotomy: an overabundance of datasets with uneven quality for general
scenarios, and a scarcity of high-quality, domain-specific datasets for specialized applications.

To address these challenges, we propose DATASCOPE, an API-guided dataset synthesis framework
designed to enhance the fine-tuning performance of LCMs. DATAScOPE offers a comprehensive
solution for dataset synthesis in both general and domain-specific scenarios, distinguishing itself
from previous approaches. On the one hand, it aims to “distill” existing overly abundant SFT
datasets to form concise, high-quality ones for general scenarios, thereby improving fine-tuning
performance while simultaneously reducing SFT process’s cost. On the other hand, DATAScoPE
supports the automated generation of domain-specific data to facilitate SFT in specialized contexts,
enabling the efficient construction of high-quality SFT datasets without requiring real-world data
or being constrained by particular powerful, proprietary LLMs.

The key observation underpinning DATAScOPE is the significant benefit APIs provide to LCMs.
APIs, as high-level abstractions of code, encapsulate abundant semantic information within a concise
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token structure. As will be shown in Sec. 3, our key insight is that such API-offered conciseness fa-
cilitates LCMs’ comprehension, alters their internal behavior towards more accurate interpretation,
and, consequently, improves their performance. Moreover, the power of APIs can further benefit
the two scenarios in LCM SFTs: in contexts with overly abundant existing datasets, API coverage
can serve as a core metric for subset selection, enabling LCMs to achieve superior performance
with a compact dataset. Conversely, in data-scarce environments, combining diverse APIs provides
an effective mechanism for constructing domain-specific datasets from scratch.

DATASCOPE concretizes the above insights and observations into two key components: DATAS-
COPE-SELECTION (DsLT) and DATASCOPE-GENERATION (DGEN), which are designed to address dataset
synthesis in general and domain-specific scenarios, respectively. As illustrated in Fig. 1(b), DsLT
employs API coverage as its primary metric, efficiently selecting subsets from existing datasets
while also taking into account the length distribution of the code examples to ensure diversity in
complexity. DGEN, on the other hand, leverages API information to control the generated program
functionality, using a domain-specific language we designed in Sec. 4.3.2, called Skeleton Domain-
Specific Language (SKDSL) to provide code snippet skeletons that guide the code structure, all
without requiring real-world data.

To enable comprehensive evaluation of our approach, we develop L1BEN, a carefully curated
benchmark of 345 high-quality instruction pairs across three specific domains. Our experimental
results not only show the effectiveness of DATASCOPE, but also provide a series of valuable insights
into API-guided dataset synthesis for LCM fine-tuning. DsrT efficiently selects subsets with high
API coverage from existing datasets, outperforming traditional selection methods like random
sampling and clustering-based approaches. When fine-tuning models of varying sizes, it enables
them to achieve performance comparable to or exceeding that of models fine-tuned on entire
datasets. Notably, fine-tuning a 34 billion parameter LCM on just 5% of the data selected by DsLT
achieves 110% of the performance compared to fine-tuning on the full dataset.

Beyond selection, DGEN conceptualizes dataset generation as a process of transforming high-
level requirements into concrete implementations. It facilitates domain-specific dataset synthesis
through API combination and SKDSL utilization, without relying on real-world code snippets. This
design enables automated generation of high-quality data using LLMs with limited capabilities at
reduced cost. Specifically, domain-specific SFT datasets of 4,000 examples can be generated at a
cost of only 3 USD, whereas a similar scale and quality human-written dataset requires over 334
volunteers [35]. This capability further enhances the SFT process in developing powerful models,
offering a cost-effective and efficient pathway to domain-specific model enhancement. In summary,
our contributions are as follows:

e Inspired by how APIs facilitate low-cost and effective LCM code comprehension, we propose
DATASCOPE, a simple yet highly effective API-guided program dataset synthesis framework
to enhance the LCM fine-tuning process from two key usage scenarios — general and domain-
specific usage.

e For general SFT scenarios, we introduce DsrLT, which employs a greedy algorithm to efficiently
select high-quality subsets from existing datasets. We propose well-designed, API-based
objectives in the selection process, enabling LCMs to achieve superior performance with
significantly less data.

e For domain-specific SFT scenarios, we present DGEN, which automates the generation of high-
quality, tailored datasets. DGEN considers diverse APIs to achieve comprehensive coverage
and uses SKDSL to provide code snippet skeletons, streamlining the creation process without
relying on real-world data or proprietary LLMs.
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o We demonstrate DATAScOPE’s effectiveness through comprehensive experiments. For domain-
specific scenarios, we develop LIBEN, a specialized benchmark with 345 instruction pairs
across three domains. Through extensive evaluation of both DsLT and DGEN on their respec-
tive scenarios and corresponding benchmarks, including analysis of LCMs’ performance
and internal behavior, along with human assessment, we validate our method’s efficacy and
provide insights into API-guided dataset synthesis for LCM SFT.

Due to space limitations, a full version of this paper is available in [42].

2 Background

This section introduces the background of LCMs and SFT. We explore the evolution of LCMs and
clarify two distinct scenarios in LCM fine-tuning: general and domain-specific.

2.1 Large Code Models

The rapid advancements in deep learning (DL) techniques have led to the development of DL
models capable of generating code with near-human or even superhuman performance [6, 12, 81].
These models are often integrated into development workflows through APIs (e.g., GPT-4 [53])
or IDE plugins (e.g., Codex [52]), revolutionizing the way developers write code by improving
both efficiency and quality. The majority of state-of-the-art LLMs employ the Transformer [76]
architecture, which relies on attention mechanisms to enable tokens to communicate and exchange
information with each other. This architecture allows LLMs to generate text sequentially, predicting
the next token based on the preceding context [61]. Building upon the success of LLMs, LCMs have
emerged as a specialized variant tailored specifically for code-related tasks, leveraging the same
underlying architecture. The development of a well-performed LCM typically involves a two-step
process. First, a foundation model is selected and further pre-trained on a vast corpus of code,
resulting in a “base model” Second, the base model undergoes fine-tuning on a task-specific dataset
using various fine-tuning techniques, ultimately yielding a fine-tuned model optimized for the
desired task [6]. A notable example is the CodeLlama base model, which is derived from the Llama
2 foundation model and offers instructed version models [66].

2.2 Supervised Fine-Tuning

Formally, the SFT process of the target model can be outlined as follows: for the specific domain d
with context ¢, each task example (x% y?) is used to update the model parameters. This update
aims at minimizing the loss function that measures the disparity between the data distribution and
the target model distribution, as expressed below:

Lser(6) = —log fo(y]e?, x%), 1)

Overall, this function seeks to minimize the negative log-likelihood of the target output y¢ given
the context ¢? and input x?, with respect to the model parameters . Lspr converges when the
generated response i matches y¢, i.e., the distribution of fine-tuned model aligns with the task
dataset distribution. Compared to other fine-tuning methods such as Reinforcement Learning
from Human Feedback (RLHF) [54] or Direct Preference Optimization (DPO) [62], SFT is more
efficient and effective, as it does not require a human preference dataset. Consequently, SFT
becomes a standard procedure for developing high-quality general-purpose LLMs [5, 54] and has
proven invaluable for customizing these models across numerous domains, such as medicine [68],
finance [11], and various other fields, significantly enhancing their applicability and effectiveness
in specialized contexts.

Notably, SFT methods can be further categorized into two main approaches: (1) full parame-
ter supervised fine-tuning (SFT) and (2) parameter-efficient fine-tuning (PEFT). Although PEFT
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demonstrates high performance while using fewer parameters, studies [23, 86] have shown that
it primarily assists the model with response initiation and extracts most of the response from
pre-trained knowledge. In other words, PEFT does not significantly contribute to the model’s ability
to acquire new knowledge. Therefore, in this study, we focus on the full parameter fine-tuning
approach and refer to it as the SFT.

2.3 Two Mainstream LCM Fine-Tuning Scenarios

The primary purpose of fine-tuning LCMs is to enhance their performance on code generation tasks
and align them with human instructions. Based on whether the fine-tuned models are intended for
specific domains, LCM fine-tuning can be categorized into two mainstream scenarios, general and
domain-specific, each facing distinct data scarcity, as illustrated in Fig. 1(a).

General Scenario. In this scenario, the fine-tuned model is designed as a universal code generation
tool aimed at improving its general generation capabilities. A prime example is the instructed
version of CodeLlama [66], which demonstrates superior performance across a wide range of
code generation tasks compared to its base model. Researchers and practitioners working on
fine-tuning general LCMs often face an abundance of existing datasets, such as OSS-instruct [82]
and CodeExercise [13], which are typically derived from various online code repositories and
programming forums using LLMs.

While the generation methods behind these datasets attempt to synthesize a diverse range of code

snippets, they are inherently constrained by the quality of online code samples and the restricted
number of programming forums. Consequently, these datasets often suffer from a paradox of
quantity over quality, containing a large volume of data with inconsistent quality. For researchers
aiming to construct SFT datasets to enhance a model’s general performance, an efficient and
cost-effective dataset synthesis approach would involve creating new SFT datasets by judiciously
selecting from existing datasets.
Domain-Specific Scenario. In real-world applications, LCMs are often designed to meet the
unique requirements of their target audience. For example, Pecan [56] focuses on generating
machine learning code, while SQLCoder2 [15] specializes in generating SQL-related code. In such
cases, fine-tuning aims to enhance the model’s performance in specific domains by leveraging
domain-specific datasets and integrating pertinent domain knowledge into the model.

Users aiming to tune domain LCMs frequently encounter a key challenge: the scarcity of high-
quality, domain-specific datasets. Curating such datasets demands expertise in the target domain and
often involves manual collection, cleaning, and annotation of code samples—a process that is both
time-consuming and resource-intensive [14, 90]. Moreover, many valuable datasets may originate
from proprietary company codebases, limiting their public availability and further exacerbating the
data scarcity issue. Given these constraints, there is a pressing need for an efficient and adaptable
framework that facilitates the synthesis of high-quality, domain-specific datasets. Such a framework
would ideally minimize the reliance on extensive manual data generation while still capturing
the nuances and complexities of the target domain, thereby enabling more effective and targeted
fine-tuning of LCMs for specialized applications.

3 A Motivating Example

While APIs have been widely recognized for their effectiveness in program synthesis [70], this paper
presents a novel perspective on their role in enhancing LCM performance through SFT dataset
synthesis. To ease understanding, this section provides a motivating example to demonstrate how
API-level abstractions can significantly improve an LCM’s ability to understand and process code
semantics, thereby underpinning our approach to SFT dataset synthesis.
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Question Prompt: Use one sentence to summarize the code. ‘ iimf}‘m v“:‘;"“PY Sy Code B Without API
der main():
import numpy as np Code A With API electronics_buyers = np.array([1023, 5136, 2352, 7315, 4182])
def main(): home_goods_buyers = np.array([2352, 7315, 4182, 1023, 8746])
electronics_buyers = np.array([1023, 5136, 2352, 7315, 4182]) assume_unique = False
home_goods_buyers = np.array([2352, 7315, 4182, 1023, 8746]) return_indices = False

loyal_customers =[np.intersectld(electronics_buyers, home_goods_buyers) | arl = np.asanyarray(electronics_buyers)
return loyal_customers ar2 = np.asanyarray(home_goods_buyers)
| if not assume_unique:

v . . 5
Response A: The code defines two arrays of integers, ‘electronics_buyers' and *home_goods_buyers’, arl = unique(arl)
and uses ll1c ‘np.imcrscclld{)‘ func}if)n to ﬁnd.lhc overlap between the two arrays, which results in a ar2 = unique(ar2)
new array 'loyal_customers’ containing the unique values that are present in both arrays. aux = np.concatenate((arl, ar2))

i aux.sort

Response B: The code defines two arrays, ‘electronics_buyers' and *home_goods_buyers’, and then k= 0 17— ol
uses the "unique’ function to find the unique elements in each array, and then merges the two arrays mask = aux[1:] == aux[:-1]
into one array, and then finds the loyal customers by comparing each element to its predecessors, and loyal_customers = aux[:-1][mask]
finally returns the loyal customers. @ <« return loyal_customers

Fig. 2. An illustrative example showing the crucial role of APIs in helping LCMs understand programs. For
readability, we have shortened the example code and simplified the API calls. The blue box on the left shows
the original highly abstract code using APIs, while the right one displays the code after we manually expanded
the API calls. The tokens highlighted in red are the top 20 tokens with the highest average attention scores
across all attention heads in the model’s ending layer.

Considering Fig. 2, we present two semantically equivalent code snippets that identify customers
purchasing both electronics and home goods (loyal_customers). Code A employs the highly ab-
stracted np.intersect1d() API call, while B replaces this with its official implementation. We
input both snippets into the llama2-7B model, prompting it to summarize the program functionality.
The model’s responses for A and B are shown in the bottom left of Fig. 2.

Moreover, to gain insight into the model’s internal processing, we analyze the attention mecha-
nisms within the LCM. Attention scores, a key component of Transformer-based models, reflect
the model’s understanding of input importance [76]. We calculate the average attention score
for each token across all attention heads in the model’s ending layer. The top 20 tokens with the
highest average attention scores are highlighted in red for both programs. This visualization offers
a glimpse into how the LCM prioritizes different parts of the input, potentially revealing differences
in its comprehension of highly abstracted API calls versus their expanded implementations. Based
on the example, we summarize the following three key advantages of using API abstractions in
LCM program comprehension:

1. Token Efficiency: The most apparent advantage of using APIs is the substantial reduction
in token count. The API-abstracted code (snippet A) is significantly shorter than its expanded
counterpart (snippet B), comprising only 49% of the original length. This reduction in token
count directly impacts the computational intensity and resource requirements of LCM fine-
tuning and inference processes, which are known to correlate positively with input token
count [30, 76]. Thus, API abstractions potentially support more efficient LCMs.

2. Semantic Comprehension: A closer examination reveals the benefits of APIs in enhancing
LCMs’ understanding of program semantics. Real-world API names often encapsulate pro-
gram functionality, enabling more concise and semantically rich code. Analyzing the model’s
responses, we observe that highly abstracted APIs more accurately reflect the program’s
functionality. Response A precisely captures the program’s aim of finding customers who
purchased both electronics and home goods, while response B merely describes the func-
tion’s operations. This demonstrates how API abstraction swiftly mitigates LCMs” hurdles in
understanding complex program semantics, thereby enhancing their performance.

3. Internal Attention Patterns: When examining the LLM’s internal behavior, we notice that
API calls typically receive higher attention scores. In contrast, manually expanded programs
fail to allocate similar levels of focus on key tokens. This analysis further suggests that the
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high-quality language abstraction provided by APIs augments the model’s comprehension
ability towards crucial semantic elements.

To ensure these observations are not specific to this single example, we additionally conduct a
systematic study on 100 similar program pairs. Our statistical analysis confirms all three advantages:
(1) Programs with APIs consistently use fewer tokens (average reduction of 68.76%); (2) Code
summarization quality is significantly better when APIs are used, with 93% of summaries being
judged as more accurate by LLM evaluators; and (3) API tokens demonstrate consistently high
attention patterns, appearing among the top 20 tokens with the highest average attention scores in
88% of all cases. These findings convincingly support the advantages of API abstractions in LCM
program comprehension.

Overall, our key insight, validated through both qualitative and quantitative analysis, is that APIs
unleash a new dimension in SFT dataset synthesis by enhancing LCMs’ comprehension capabilities
while reducing their resource consumption through abstraction. This insight is particularly valuable
given the pervasive use of APIs in modern programming, where the extra cost of incorporating
APIs is often negligible compared to their substantial benefits. This insight is the cornerstone of
our API-guided framework, which consists of two components to achieve well-performing and
low-cost SFT dataset synthesis under different scenarios.

4 DATASCOPE
4.1 Overview

Building upon the insights from our motivating example (Sec. 3), which shows the significant
benefits of APIs in enhancing LCM comprehension, we present DATASCOPE, a comprehensive
framework designed to leverage these advantages in SFT dataset synthesis. As illustrated in Fig. 1(b),
DATASCOPE comprises two key components: DSLT and DGEN, each tailored to address specific data
availability contexts.

Dstt focuses on general scenarios where abundant SFT datasets exist. It employs API coverage
as its primary metric for efficient subset selection, while also considering code example length
distribution to ensure diversity. This approach optimizes the quality and representativeness of
the selected data for fine-tuning, leveraging the semantic richness and token efficiency of API-
based code, as demonstrated in our motivating example. DGEN addresses domain-specific scenarios
characterized by data scarcity. It leverages API information to control the generated program
functionality and uses a custom-designed Skeleton Domain-Specific Language (SKDSL) to guide
code structure. This method enables creating high-quality, domain-specific datasets without relying
on real-world data, while using the advantages of API abstraction. In the following sections, we
provide detailed descriptions of DsLT (Sec. 4.2) and DGEN (Sec. 4.3).

4.2 DsLT: APl-guided Dataset Selection for General Scenarios

This section introduces DsLT, our approach for optimizing SFT dataset selection. We begin by
formulating the problem, followed by a detailed description of DsLT’s core algorithm.

4.2.1 Problem Formulation. Given an SFT dataset D = (x;, yi)fil, where each example consists
of an instruction x; and its corresponding code y;, our goal is to select a subset D’ C D of size n
(n < N) such that a model trained on this subset achieves maximum performance on general code
generation tasks, which can be formulated as:

’ o
B}g% Performance(D")  s.t. |D’| = n. @)
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Despite the rather straightforward formulation, predicting the performance of a fine-tuned model
is challenging. Drawing inspiration from our key observations in Sec. 3, which demonstrate the
influence of APIs on LCM code comprehension, we propose using API coverage as a proxy measure
for performance. Furthermore, building on previous research that highlights the importance of
diversity in dataset quality [2, 57, 90], we also consider the diversity of code lengths in the selected
subset. To quantify this aspect, we introduce a length diversity measure, LenDist(D’, D), which
assesses the similarity between the length distributions of the subset D’ and the original dataset D.
Incorporating these design considerations, we reformulate our optimization problem as:

max APICoverage(D’) s.t. |D’| =n, LenDist(D’,D) < r, 3)
where APICoverage(D’) represents the number of unique APIs covered in subset D’, and 7 is a
length diversity threshold. This formulation aims to maximize API coverage while maintaining a
representative distribution of code lengths.

SFT Dataset Selection vs. Test Case Selection. Test case selection is a well-studied problem in
software testing, with the objective to select a subset of test cases T’ C T from a large pool T while
maintaining software quality [45, 85]. Although both test case selection and dataset selection can
be formulated as optimization problems, there is a notable difference: as new, non-trivial examples
are continuously added to the existing test case set, code coverage will monotonically increase, and
the software will be tested more thoroughly. In contrast, such a monotonic behavior does not hold
for SFT; adding more code snippets does not necessarily lead to better model performance on the
task, as it may introduce more noise or cause overfitting [24], resulting in performance degradation.

4.2.2  Selection Algorithm. Although the optimization problem here can be solved through an
exhaustive search approach, it quickly becomes infeasible for large datasets due to the combinatorial
explosion of possible subsets. Thus, we propose an efficient sub-optimal greedy algorithm in DsLT.
This algorithm iteratively selects examples to maximize API coverage while maintaining code
length diversity. As shown in Algorithm 1, we first initialize the selected indexes subset as empty
and the API set as empty (line 2). We also create a list buckef,,; to track the number of examples
per length bucket (line 3). This list is initialized by distributing the total number of examples to be
selected (n) across buckets, based on the original dataset’s length distribution (line 4).

In each iteration (lines 5-17), we select the example that adds the most uncovered APIs to the
current API set. To ensure diversity, we prioritize examples from underrepresented length buckets.
We traverse each non-empty bucket (line 7) and each example within the current bucket (line 8).
For each valid example (i.e., not already selected and belongs to the current bucket), we calculate
the number of new APIs it would add to the API set (lines 9-10). We update the best example if it
adds more new APIs than the current best (lines 11-12). If the best example is found for the current
bucket, we break the loop and move to the next iteration (lines 13-14).

After selecting the best example, we add its index to the selected indexes subset, update the API
set with its APIs, and decrement the count for its corresponding length bucket (lines 15-17). This
process continues until we reach n selections or exhaust API coverage improvements.

4.3 DGEN: API-Guided Dataset Generation for Specific Scenarios

Building on the insights from our motivating example (Sec. 3) and complementing DsLT for general
scenarios (Sec. 4.2), we introduce DGEN, a framework that leverages API combinations to generate
domain-specific SFT datasets. By combining API specifications to guide content generation and
SKDSL to define structural constraints, DGEN can systematically generate high-quality datasets
through different LLMs.
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Algorithm 1 SFT data selection using DsLT.

Require: n (Number of cases to select), api_stats (API statistics for each case), case_lens (Lengths of each
case), buckets (Number of buckets for length distribution)
Ensure: Indices of selected cases
1: procedure SELECTAPI(n, api_stats, case_lens, buckets)

2: Initialize selected <« [], api_set «— {} > Init selected indices and API set
3 Initialize bucket_cnt < [0] X buckets > Init bucket counts
4 Calculate initial bucket_cnt based on n, case_lens and buckets > Distribute n cases across buckets
5 fori «— 1tondo
6: Initialize best «— —1, max_new «— —1
7 for bkt in prioritized order do > Traverse each non-empty bucket
8 for id, apis in api_stats do > Traverse each case for current bucket
9 if id is valid for current bkt and not in selected then
10: Calculate new_apis for id > Number of new APIs id would add to api_set
11: if new_apis > max_new then
12: Update best «— id, max_new <« new_apis
13: if best # —1 then
14: break
15: if best # —1 then
16 Add best to selected, Update api_set with APIs from api_stats[best]
17: Decrement bucket_cnt for the corresponding bkt by 1 > Update bucket count
18: return selected
SFT Dataset Generation Benchmark Generation
. . Library: Numpy
Stepl: API matpigglib [ Document ] Full API list Stepl: Problem Selection API Chosen: np.squeeze(),
s H IR 7 np.random.uniform(), np.vstack(),
Collection I"I g Advzncled APIs }S]clAPIS r:laf%&?ib ggTr::fyy ngvar(), np.median(()) ’ :
- + II:I N’=: yy Skeleton code:
API ch MIX SET SET . . def function_name():
. . chosen s Step2: Instruction Rewrite <Random Stmt>
Step2: Instruction - - )
. Skeleton Generation if <IF CONDITION>:
Generation Prompt } : Clear <Random Stmt>
PO [ RonSKDSL ]+ promptAssemble ' = <Random Stmt>
{ . if <IF CONDITION>:
B I"s'mm: — Step3: Human Inspection Retailen S
Step3: Dataset T @ for <FOR ITERATION>:
i o High-Quality Cliedking <Random Stmt>
Generation Checklist s Criteria o

(a) Overview of DGEN for SFT dataset generation and LIBEN for evaluation. (b) An example of key com-
ponents in DGEN’s step2.

Fig. 3. Overview of DGEN for SFT dataset generation and LiBEN for evaluation, with an example of key
components in DGEN’s instruction generation process.

4.3.1  Problem Statement and Approach Overview. Extending our research beyond the scope pre-
sented in Sec. 4.2.1, we now confront a more complex challenge: the absence of a pre-existing
high-quality dataset D. Our task evolves from subset selection to the creation of an entirely new
dataset for domain-specific scenarios from scratch. Following the definition of domains as particular
application areas or specialized programming fields in Sec. 1, we further concretize our approach
in this section by using representative libraries to scope domains. Specifically, we deem one library
representative enough to scope a domain - for instance, we consider Numpy as representative of
the scientific computing domain, Pandas for data manipulation and analysis, and Matplotlib for
data visualization. This pragmatic approach enables us to systematically generate domain-specific
datasets by leveraging the APIs and documentation of these representative libraries.
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Approach Overview. Fig. 3a illustrates the three-step process employed by DGeN for domain
dataset synthesis: @ API collection: Given the documentation of a library (usually can be obtained
by crawling the library’s official website), DGEN first extracts the complete API list, then categorizes
them into “Advanced APIs” and “Basic APIs” based on their popularity and complexity. @ Instruc-
tion generation: DGEN further combines the APIs into B_SET and MIX_SET to specify the target
functionality of the generated code. It also incorporates skeleton domain-specific language (SKDSL)
to define the code structure, resulting in the assembly of comprehensive instruction prompts. @
Dataset generation: Finally, DGEN queries LLMs with these constructed instruction prompts to
generate data, validates the generated instances against a predefined checklist, and produces a
high-quality SFT dataset.

SFT Data Generation vs. Test Case Generation. The generation of high-quality SFT datasets
shares certain commonalities with test case generation in software testing, despite their divergent
objectives. While test case generation aims to produce scenarios that trigger software failures, SFT
dataset generation seeks to create exemplars for improved model fine-tuning. In test case generation,
complex cases that traverse deeper code branches are generally considered more valuable than
trivial ones [21, 55]. Similarly, in SFT dataset generation, the quality of instructions and code
examples takes precedence over mere quantity. Zhou et al. [90] demonstrate that using 1,000 high-
quality, manually crafted instructions by domain experts yields significantly greater performance
improvements compared to larger but less curated datasets for SFT. However, a key distinction
lies in the emphasis on diversity. For SFT datasets, achieving a diverse range of functional code
completions is more crucial than solely pursuing complex corner cases.

4.3.2  Generation Algorithm. This section details DGEN’s three-step process for generating high-
quality SFT datasets: API collection, instruction generation, and dataset generation. We first intro-
duce the key insights of DGEN’s design, followed by giving the details of each step.

Key Insights. DGEN incorporates two key insights. First, it frames the task as a transformation
process from high-level requirements to concrete implementations. By providing the LLM with
specific and clear requirements for code generation, DGEN reduces the need for extensive domain-
specific knowledge, enabling the model to focus on translating clear specifications into actual code.
Second, DGeN decomposes complex generation problems into simpler sub-problems using API sets
and SKDSL, lowering the capability threshold required at each step.

As a result of these insights, DGEN reduces the strict demand for a “high-capability” model,
potentially enabling a weak-to-strong [7] generation paradigm where less capable models could be
used for data generation, which is then used to further improve the model performance. DGEN’s
novel approach enhances flexibility and cost-effectiveness, establishing it as a scalable framework
for specific dataset synthesis, adaptable to varying model capabilities and domain requirements.
API Collection. As illustrated in Fig. 3a, we first extract APIs from the library’s official docu-
mentation, following the method proposed by [10]. This process yields 4,089, 3,296, and 3,683
APIs from Matplotlib, Pandas, and Numpy respectively, including their parameters and functional
descriptions. Then, we rule out certain APIs based on the following criteria: (1) APIs starting with
“__”or “c” are excluded, as they are typically internal or low-level APIs related to the underlying C
implementation; (2) For method implementations in both base and derived classes, we only retain
the base class implementation as the API call; (3) any API invocation with a method chain [50]
longer than three is excluded from further consideration.

Finally, we categorize the kept APIs into basic and advanced types. We select basic APIs directly
from the examples in the official tutorials of each library, limiting their number to 50. These basic
APIs are frequently used and easily understood, such as numpy. sum and pandas. read_csv. The
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*
[System prompt]: You are a teacher who is good at {Library}. You are exceptionally Program P s
skilled at crafting high-quality programming problems and offering precise solutions, Stmt s FITIWIR|T|M
: FunctionDef F = def func_name() : S*
S e S IfStmt I w= ifC: S§*
[User prompt]: Please take inspiration from the following list of application interfaces (elif C: §%)*
and their definitions to create a quality programming problem. Requirement: Use all (else : S*)"
APIs in the list. Present your output in two distinct sections: [Problem Description] e o "
) ) L X . WhileStmt w whileC: S
and [Solution]. API list for inspiration: {API chosen} You will be given a Python code ForStmt R forE: S*
skeleton, and you need to follow the structure to complete your solution. Example oot o
’ TryStmt T try: S
Python code skeleton: {SKDSL code} (except X : S*)?
Guidelines for each section: 1. [Problem Description]: This should be **completely (else p S*)-'? :
self-contained**, providing all the contextual information one needs to understand . _ : .
. SimpleStmt M = break | continue |
and solve the problem. Assume common programming knowledge, but ensure that return V | D
any specific context, variables, or code snippets pertinent to this problem are explicitly - _
. . e o . Condition C = (IF CONDITION)
included. 2. [Solution]: Offer a comprehensive, *“correct™* solution that accurately _
dd o e DYl ided Forlter E =  (FORITERATION)
addresses the [Problem Description] you provided. Exception X = (Exception Type)
ReturnValue v = (RETURN VALUE)
RandomStmt D = (RANDOM STMT)
Fig. 4. The prompt template with two slots ({Library} and {API
chosen}). Text in red will only show up when SKDSL is enabled. Fig. 5. Selected syntax of SKDSL

remaining APIs are classified as advanced, which are typically less common and often require
specialized knowledge, as exemplified by numpy.linalg.eig and pandas.DataFrame.groupby.
Notably, while this extraction and filtering process is straightforward for most public libraries
with comprehensive documentation, we assume similar completeness for proprietary libraries
considered for SFT dataset construction. Typically, only high-quality internal codebases typically
require SFT, and organizations with substantial codebases may customize their filtering rules to
best suit their specific needs and codebase characteristics.
Instruction Generation. As shown in Fig. 3a, the second step of DGEN involves preparing
instructions for querying the LLM to synthesize the SFT dataset. Specifically, this step is divided
into two separate parts: choosing the appropriate APIs and selecting the prompt template. For the
chosen APIs, we consider two different strategies to create API sets of varying difficulty levels:

B_SET = RandomSample(BasicAPIList, N)

4
MIX_SET = RandomSample(BasicAPIList U AdvancedAPIList, N) @)

B_SET focuses on commonly used APIs, ensuring high coverage of basic functionalities. MIX_SET
introduces higher difficulty by incorporating advanced APIs, simulating real-world scenarios where
complex APIs are used alongside basic ones. The selected APIs, along with their relevant information
extracted from documentation, are then incorporated into the prompt template (see Fig. 4).

While API sets of varying difficulties control content complexity, we design SKDSL, a domain-
specific language, to govern code structure by allowing rapid prototyping of Python’s high-level
logic flow through specified Python keywords (e.g., def, if, else). Given a random keyword list,
we incrementally incorporate each keyword into the code, randomly injecting valid statements (e.g.,
a = 1) between keywords. These injected statements serve to create a more complete code skeleton,
enabling subsequent validation by a syntax checker. The formal syntax of SKDSL is illustrated in
Fig. 5. In the implementation, while our skeleton generation approach may occasionally produce
invalid code skeletons, we maintain it for its simplicity and efficiency. If an invalid skeleton is
detected, we discard and regenerate it. This process of generating and validating is significantly
faster than querying the LLM for generation, often by a factor of thousands. Consequently, the
generation of invalid skeletons has a negligible impact on overall efficiency.

After generating the skeletons, SKDSL integrates with a grammar checker to perform basic
validation, catching syntactic errors before full implementation. This process enhances the quality
of the generated skeletons. Subsequently, we standardize these skeletons by replacing random
statements with the special token <Random Stmt> and conditions in control flow keywords (e.g.,
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if, while) with <Corresponding Keyword + Condition>. These refined and standardized code
skeletons then serve as the example code part in the prompt template (see Fig. 4), which is ultimately
assembled into the final prompt for LLM querying. Fig. 3b shows an example, where a skeleton
code incorporating two if statements and one for loop is generated using five chosen Numpy
APIs, demonstrating how these elements are assembled to create the final prompt.

Dataset Generation. The final stage of DGEN uses the generated instruction prompts to query
the LLM, producing library-specific instruction and response code pairs. Each pair undergoes
format and length checks, discarding those that fail to meet specified criteria. These criteria include
the presence of a code snippet and content length requirements, where pairs with fewer than 32
tokens or more than 4,096 tokens are excluded. Subsequently, we perform content validation on
the remaining pairs. Since the inserted random valid statements enable grammatical correctness
checks, we define a threshold T (0 < T < 1) to determine code acceptance. If the number of detected
APIs in the generated code exceeds N X T, where N is the required number of APIs, the pair passes
content validation. Only the pairs that successfully pass all the aforementioned checks are included
in our SFT dataset.

Notably, DGEN is designed to establish an efficient and automated SFT dataset generation process.
The entire procedure does not necessitate any manual intervention, from API collection through
instruction generation to dataset creation. It guarantees the scalability and reproducibility of the
dataset generation pipeline, facilitating the creation of extensive, high-quality SFT datasets for a
wide range of domain-specific libraries. By minimizing human involvement, we not only increase
efficiency but also reduce the potential for human-induced biases or errors, ensuring consistent
quality across large-scale dataset synthesis efforts.

5 Experimental Setup

In this section, we first introduce L1BEN, a benchmark we developed to evaluate domain-specific
code generation. We then detail the experimental configuration for evaluating DATASCOPE.

5.1 LiBEN: A Benchmark for Evaluating Code Generation in Specific Domains

Before proceeding with the evaluation of DATASCOPE, it is crucial to establish an appropriate bench-
mark for testing. While the community has developed numerous benchmarks for assessing code
generation, existing options either focus on general programming problems (e.g., HumanEval [10])
or present tasks of relatively low difficulty (e.g., DS-1000 [36]). To address these limitations, we
develop L1BEN, a novel benchmark designed to assess model performance on specific domains. As
outlined in Fig. 3a, the creation of L1BEN follows a three-step approach: @ problem selection through
a highly automated collection process, @ instruction rewriting using an automated rewriting pro-
cess, and @ human inspection with rigorous selection criteria. This comprehensive process ensures
the quality and relevance of the included questions, facilitating further research and assessment of
LCMs in specific domains. In the following subsections, we detail each step of our approach.

5.1.1  Problem Selection. To demonstrate the versatility and effectiveness of DGEN across a range
of practical programming scenarios, we focus on three distinct domains: scientific computing,
data manipulation and analysis, and data visualization. These domains are represented by NumPy,
Pandas, and Matplotlib, respectively, chosen for their comprehensive API collections and well-
maintained codebases. Specifically, we use the Stack Exchange platform [71] to identify popular
library-specific questions, searching with the target library name as the keyword. We prioritize
questions with accepted answers or, in their absence, those with the highest-voted responses. To
ensure quality and relevance, we apply a filtering criterion based on the average monthly vote
count, considering only questions with at least 5 votes per month. We also verify the presence of
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the target library in the answer code snippets. This process yields 439, 642, and 391 Python-related
question-answer pairs for Numpy, Matplotlib, and Pandas, respectively, encompassing a diverse
range of domain-specific tasks. Furthermore, it is important to note that the proposed technique is
general and can be applied to other well-documented domains.

5.1.2 Instruction Rewriting. To enhance the quality of the selected question-answer pairs, we
employ a rewriting process similar to previous works [44, 90]. First, we extract code snippets from
raw answers, removing unrelated information, indentation symbols, and HTML tags (e.g., <p>).
Then, we apply GPT-4 to generate refined instruction pairs based on the questions and answers. This
process involves improving clarity, eliminating unnecessary details, and ensuring the instructions
are easily comprehensible. The result is a set of high-quality instruction pairs that effectively
capture the essence of the original question-answer pairs while significantly enhancing their clarity
and usefulness for evaluating LCMs in specific libraries.

5.1.3  Human Inspection. In the final step, we conduct a human inspection of the rewritten instruc-
tion pairs. This process ensures the quality and relevance of each pair to the target library. We
follow a set of predefined criteria that cover aspects such as contextualization, feasibility, readability,
relevance, correctness, usefulness, and safety. Our inspection approach is adapted from [44] to
suit code generation requirements. Through this rigorous evaluation, we curate a final benchmark
dataset of 115 high-quality instruction pairs for each library.

Data Leakage. Notably, to mitigate the risk of data leakage and maintain the integrity of the
evaluation, we exclusively consider questions posted between August 2023 and April 2024, ensuring
that the selected data is temporally distinct from the training data of the LCM model used in
our experiments. This temporal separation guarantees that the benchmark accurately assesses
the model’s ability to generalize to unseen domain-specific tasks, providing a fair and unbiased
evaluation of its performance. We conduct additional Membership Inference Attack (MIA) [67]
tests to justify that LIBEN indeed does not appear in the model’s memory.

5.2 Experimental Configuration

SFT Datasets. We use two datasets in our experiments: CODEE and OSS. CODEE is primarily
sourced from the CodeExercise dataset [13], which contains programming exercises covering a
wide range of Python-related topics, including basic syntax, data structures, algorithm applications,
and database queries. To further enhance the dataset’s diversity and quality, we supplement
it with the MEIC dataset [77], which follows a similar data generation process and template,
providing a substantial number of high-quality instruction pairs. In contrast, OSS is derived from
the MagicCoder’s OSS-Instruct dataset [82]. This dataset generates a large number of instruction
pairs by querying GPT-3.5 with a combination of real-world code snippets. To ensure data quality
and consistency, we apply a further processing step to both datasets. We select Python-related
examples, remove instances failing syntax checks or exceeding length thresholds, and eliminate
potentially invalid or excessively long code snippets. This filtering process helps to eliminate any
potentially invalid or excessively long code snippets that may adversely affect the training process.
After processing, we obtain 76,512 examples from CODEE and 37,284 examples from OSS, forming
the basis for evaluating our proposed SFT subset selection method.

Models. For our SFT experiments, we select CodeLlama, a family of LCMs based on Llama 2, as our
starting point. CodeLlama has demonstrated strong performance in code-related tasks and has been
widely adopted in previous works [16, 74, 87], establishing itself as a reliable benchmark model. To
investigate the impact of model size on the effectiveness of SFT, we consider three different sizes
of the CodeLlama base model: 7B, 13B, and 34B parameters. As noted in Sec. 2, META provides
both base and instructed versions of CodeLlama. We opt for the base version to ensure that our
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evaluation is not influenced by the fine-tuning process used in CodeLlama’s instructed version, as
the details of their SFT process are not clearly disclosed [66]. Using the base version allows us to
isolate the effects of DsLT and maintain a fair comparison across different model sizes, without
potential confounding factors introduced by the instructed version’s fine-tuning process.
Benchmarks. For evaluating DsLt, we employ HumanEval [10], a widely accepted benchmark
for assessing code generation capabilities [3, 16, 51, 72]. It offers a diverse set of programming
problems with human-written instructions and solutions. For DGEN, we use LIBEN, as introduced
in Sec. 5.1, to assess performance on domain-specific scenarios.

Metrics. For DsLT, we employ two primary metrics: Pass@k and Jensen-Shannon (JS) divergence.
Pass@k assesses the accuracy of LCMs in solving programming problems, while JS divergence
measures the similarity between code length distributions of the selected subset and the original
dataset. Following [38, 47, 83], we set k = 1 for the evaluation.

For DGEN, we primarily use CodeBLEU[64] to assess the quality of generated code snippets. To
provide a more thorough evaluation, we supplement this with three additional metrics: cyclomatic
complexity [48], Silhouette Coefficient [65], and Calinski-Harabasz Index (CH-Index) [8]. These
metrics offer insights into code complexity and clustering quality. Despite the prevalence of
evaluation methods based on test cases (e.g., HumanEval) in assessing code generation, CodeBLEU
serves as our primary metric due to two key factors. First, the StackOverflow answers forming our
dataset typically lack accompanying test cases, making consistent implementation of test-based
evaluations challenging. Second, for libraries like Matplotlib that deal with data visualization,
designing meaningful test cases is problematic due to the difficulty in asserting program behavior
for graphical outputs. To address the limitations of relying solely on CodeBLEU, we incorporate
human inspection and LLM-based evaluation in Sec. 6.3.2, providing qualitative insights into the
generated code’s effectiveness and correctness. This approach ensures a more comprehensive
assessment of DGEN’s performance by combining quantitative metrics with qualitative analysis.
Hyperparameters. DstT and DGEN share most hyperparameter configurations, which can be
found in the full version. Specifically, for DsLT, we set 40 buckets and vary the budget constraint n
as 2.5%, 5%, 10%, 20%, and 25% of the training data size. For DGEN, we adjust the training batch size
from 64 to 32 for datasets containing fewer than 2,000 examples to enhance training stability and
ensure reliable results.

6 Evaluation

We conduct extensive experiments to evaluate DATASCOPE in both data selection for general
scenarios (RQ1 and RQ2) and data generation for specific scenarios (RQ3-RQ5):

e RQ1: How effective is DsLT in selecting representative examples from SFT datasets?

e RQ2: How does DsLT impact the performance of SFT models?

e RQ3: How effective is DGEN in generating high-quality SFT datasets and improving model
performance?

e RQ4: How does DGEN-generated data affect the internal representations and discriminative
abilities of models?

e RQ5: How does DGEN perform under different hyperparameter settings and models?

Additionally, we compare DGEN with alternative strategies in Sec. 6.6 to validate our design.

6.1 RQ1: Effectiveness of DsLT in Selecting Representative Examples

6.1.1  Main Results. We conduct experiments on two datasets (OSS and CODEE) and compare DsrT
against two baselines: random selection (Random) and clustering-based selection (CaR) [22]. For the
Random baseline, we randomly select three sets of examples using different random seeds, perform
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Table 1. Comparative analysis of subset selection methods on LiBEN. API coverage (higher is better) and
Jensen-Shannon (JS) divergence (lower is better) are shown for different subset sizes using Random selection,
Clustering-and-Retrieve (CaR), our proposed DsLT, and its length-constrained version (TOPAPI).

API Coverage (%) JS Divergence

Random | CaR | Dsrct | TOPAPI | Random | CaR | Dsrt | TOPAPI
2.5% 6.84 4.05 | 18.95 12.09 0.0787 | 0.0886 | 0.0763 | 0.3945
5% 13.08 11.55 | 39.84 21.95 0.0760 | 0.0739 | 0.0734 | 0.4032
0SS 10% 26.53 22.45 | 55.33 28.34 0.0678 | 0.0781 | 0.0677 | 0.4105
20% 25.99 40.06 | 67.23 29.58 0.0772 | 0.0801 | 0.0659 | 0.4119
25% 31.67 56.26 | 77.82 29.58 0.0765 | 0.0798 | 0.0546 | 0.4119
2.5% 6.74 5.70 | 23.37 11.00 0.0546 | 0.0560 | 0.0512 | 0.3604
5% 11.86 11.70 | 36.98 17.59 0.0538 | 0.0539 | 0.0514 | 0.3452
CODEE | 10% 19.45 19.09 | 56.45 26.77 0.0543 | 0.0550 | 0.0503 | 0.3357
20% 32.17 32.21 | 89.00 26.77 0.0547 | 0.0539 | 0.0310 | 0.3357
25% 38.21 37.97 | 100.00 26.77 0.0543 | 0.0540 | 0.0208 | 0.3357

Dataset | Size

a preliminary study, and choose the seed that yields the best results for subsequent experiments.
In the CaR baseline, we follow the same setting, where we use the Sentence-BERT model [63] to
embed the instruction pairs and apply K-means [31] method on the feature vectors processed by
PCA [1]. We then select the top k examples from each cluster as representatives. The results are in
Table 1, where API coverage is calculated based on the unique APIs in the selected subset.

API Coverage Analysis. DsLT consistently achieves higher coverage compared to both Random
and CaR across all subset sizes and datasets. Notably, at the 25% subset size, DsLT covers 77.82% and
100% of the unique APIs for the OSS and CODEE datasets, respectively, outperforming the baselines
by 33.85% and 41.80%. This shows the effectiveness of DsLT in maximizing API coverage through
its iterative greedy selection approach. As the dataset size increases, the API coverage of all three
methods increases. However, the convergence speed is slower on OSS compared to CODEE, with
DsLT achieving a coverage increase of 58.87% from 2.5% to 25% subset size on OSS, compared to a
76.63% increase on CODEE. This indirectly reflects the challenge of finding a well-covering subset
for OSS, as it stems from complex real-world code crawled from the internet. Interestingly, all
methods’ API coverage values are higher than the corresponding dataset percentages. We attribute
this to that different examples contain varying numbers of APIs, and they could share some common
APIs, such as max(), min(), etc. Such usage overlap leads to higher API coverage values.

JS Divergence Analysis. DsLT consistently maintains lower divergence compared to the baselines,
especially at larger subset sizes. On average, DSLT achieves JS divergence that is 0.0128 lower
than Random and 0.0203 lower than CaR. At the 25% subset size, DsLT achieves JS divergence of
0.0546 and 0.0208 for OSS and CODEE, respectively. These values are 0.0219 and 0.0252 lower than
Random, and 0.0252 and 0.0332 lower than CaR for OSS and CODEE, respectively. This highlights
Dsr1’s ability in selecting subsets that are close to the original dataset. Similar to the API coverage
results, the JS divergence decreases more slowly on OSS compared to CODEE, with a decrease of
0.0217 from 2.5% to 25% subset size on OSS, compared to a decrease of 0.0304 on CODEE. This
further reflects the complexity of the data distribution and the effectiveness of DsLt in handling it.

6.1.2  Ablation Study on Length Diversity. To investigate how length diversity affects performance,
we conduct an ablation study by modifying our selection algorithm to prioritize API coverage while
constraining program length. Specifically, we set a threshold at the median length of the dataset
and only select programs below this threshold while maintaining high API coverage. We name
this approach TOPAPI because we prioritize the programs with more APIs. This approach aims to
maximize API coverage while systematically excluding longer programs.

Coverage Analysis. The results in Table 1 demonstrate the impact of length constraints on selection
performance, where higher API coverage and lower ]S divergence indicate better performance. For
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Fig. 6. Response length distribution comparison across different models. Fig. 7. Overlap of passed test-
cases among selected models.

the OSS dataset, the length-constrained TOPAPI achieves significantly lower API coverage (29.58%
vs. 77.82%) and higher JS divergence (0.4119 vs. 0.0546) compared to DsrT. Similarly, for the CODEE
dataset, TOPAPI shows substantial degradation in both metrics, with API coverage dropping from
100% to 26.77% and JS divergence increasing from 0.0208 to 0.3357.

Notably, TOPAPI’s performance plateaus after 10% subset size for both datasets. This saturation
occurs because the length constraint effectively prevents the selection of longer programs that could
potentially contribute new APIs. At this point, the remaining shorter programs in the candidate pool
either contain APIs that are already covered or are rejected due to the length threshold, creating a
coverage ceiling. These results demonstrate the critical role of length diversity in example selection.
Constraining program length not only limits API coverage but also distorts the natural distribution
of the training data, highlighting the importance of DsLT’s length-diverse selection strategy.
Impact on Model Generation Length. To evaluate the impact of length diversity on models’
generation behavior, we fine-tune CodeLLama-7B using 5% of CODEE dataset selected by both
Dstt and TOPAPI. We then analyze the length distributions of responses generated by these models
and the base model on 1,000 randomly sampled OSS test cases (Fig. 6).

The violin plot reveals distinct generation patterns: while the base model shows the highest
average length, model fine-tuned on DsLT produces moderately shorter responses with similar
distribution shape. In contrast, the model fine-tuned on TOPAPI exhibits a clear bias toward shorter
generations. It demonstrates that length-constrained examples significantly limit the model’s
generation flexibility, while DsL1’s diverse length selection strategy helps maintain the model’s
ability to generate responses in a wide range of lengths. This finding shows the importance of
preserving length diversity in training examples for developing more capable LCMs.

Answer to RQ1: DsLT consistently outperforms baseline methods in both API coverage and
distribution similarity across different subset sizes and datasets. Our ablation study further reveals
that maintaining length diversity in example selection is crucial for achieving comprehensive
API coverage and developing models with flexible generation capabilities, demonstrating the
effectiveness of DsLT in selecting representative examples from SFT datasets.

6.2 RQ2: Impact of DsLT on SFT Model Performance

Fig. 8 presents the evaluation results of DsLT on HumanEval using CodeLlama models of different
sizes (7B, 13B, and 34B), in which the score is represented by pass@1 score. Additionally, we
evaluate DsLT on the MBPP benchmark [4] under the same setting. Overall, we view the results as
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Fig. 8. Pass@1 score of DsLT, Random, and CaR on the HumanEval benchmark using CodeLlama models of
different sizes trained on subsets of varying sizes from the OSS and CODEE datasets.

highly promising. Before delving into a detailed analysis of DsLT’s effectiveness, it is important to
highlight its most direct benefit to developers: the significant reduction in training costs. When
using only 5% of the data, the required resources often decrease proportionally to around 5% or
even lower (due to faster model convergence). For instance, training a 34B model on the complete
CODEE dataset costs approximately 170 USD, whereas training on 5% of the data costs around 8
USD.! This substantial cost reduction demonstrates the immediate practical advantages of DsLT in
making large-scale model SFT more accessible and economically viable.

We first investigate how models fine-tuned using DsrT-selected subsets perform compared to
those trained on the full SFT dataset (denoted as “FULL” in Fig. 8). We observe that for the 7B
model, using the full SFT dataset yields better results than using subsets selected by DsrT. However,
this trend reverses for the 13B and 34B models, where using fewer examples selected by DsLT leads
to better performance. Moreover, we find that the larger the model, the smaller the number of
examples required to achieve superior performance compared to training on the full dataset.

This phenomenon can be attributed to several factors: The 7B model may not have effectively
learned code-related knowledge during pretraining, thus requiring more data to assist in its learning
process during SFT. On the other hand, the 34B model has already acquired enough knowledge,
enabling it to learn more effectively with only a small amount of carefully selected data during
SFT. This finding has significant implications, as larger models incur higher fine-tuning costs in
terms of both time and hardware requirements. The effectiveness of DsLT in improving the larger

1Calculated based on H800 service provider pricing provided by the authors’ institution, excluding data storage costs.
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models’ performance while using fewer examples demonstrates its potential to greatly reduce the
computational resources needed for SFT, making large-scale LCMs more feasible.

Besides the full dataset results, DsLT largely improves the performance of SFT models across all

model sizes and datasets compared to the random selection (Random) and clustering and ranking
(CaR) baselines. On average, DsLT outperforms Random and CaR by 7.96% and 7.14%. In general
code generation scenarios where syntax and semantics correctness are required, this relative
improvement means approximately 7-8% more user queries can be correctly processed on the
first attempt. Even considering just a single round of re-querying (i.e., simply asking again to
obtain the correct result), this improvement translates to at least a 7% reduction in computational
costs, which can be significant in large-scale applications. Similar patterns of improvement are
also observed on the MBPP benchmark, although different SFT datasets show varying degrees of
absolute improvement on different benchmarks.
Impact of Model Size and Dataset Quality. First, we observe that as the model size increases
from 7B to 34B, the relative improvement also increases. For instance, on the CODEE dataset,
compared to the base model fine-tuned with two baselines, DsLT achieves an average Pass@1
improvement of 4.29% for the 7B model, while the improvement increases to 7.06% and 5.45% for
the 13B and 34B models, respectively. This suggests that larger models generally benefit more from
Dstt. Second, we notice that fine-tuned models’ performance on the OSS dataset is consistently
lower than those tuned on the CODEE dataset by a margin of 8.29%. This significant gap highlights
the importance of dataset quality and the limitations of using open-source code to construct SFT
datasets. Finally, we find that for larger models (13B and 34B), increasing the subset size does not
always lead to better performance, which is consistent with the findings in [17].

Answer to RQ2: Dsrt significantly reduces training costs by using only a small portion of the
dataset. It enables larger models to achieve better performance with fewer examples compared
to using the full dataset, and consistently outperforms baseline methods across different model
sizes and datasets.

6.3 RQ3: Effectiveness of DGEN in Improving SFT Models

In this section, we examine DGEN’s performance on LIBEN and analyze the factors that potentially
affect the results. Additionally, we employ both LLM-based and human evaluations to assess the
quality of DGEN’s output.

6.3.1 Main Results. Table 2 presents the evaluation results on LIBEN using CodeBLEU as the metric
for CodeLlama models of 7B and 13B sizes. We compare the performance of base models without
fine-tuning, models fine-tuned on the full CODEE dataset (76K examples), and models fine-tuned
using our generated datasets. “DSL-Guided” indicates whether SKDSL is used in dataset generation.
The “Dataset” column specifies the prompt selection method: BASIC uses only the B_SET, MIX uses
only the MIX_SET, COMB combines both BASIC and MIX, and COMB-BOTH randomly selects
2K examples from each of the two COMB datasets, resulting in a total of 4K examples. The “#
Examples” column is the number of examples in each SFT dataset.

The results in Table 2 demonstrate that fine-tuning the models using our generated datasets
consistently improves their performance on all three libraries compared to the base versions without
fine-tuning. For instance, fine-tuning the 13B and 7B models with COMB-BOTH (4K examples)
achieves CodeBLEU scores of 0.3973 and 0.3795 on Matplotlib, representing relative improvements
of 82.4% and 163.2% over their respective base models. Moreover, using COMB-BOTH achieves
better results than fine-tuning with the full 76K examples from the CODEE dataset. For example,
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Table 2. Performance comparison of 7B and 13B models on LIBEN. Scores are reported using the CodeBLEU
metric. Bold values indicate the highest scores for each model size and library combination.

Model Size Dataset DSL-Guided # Examples Numpy Pandas Matplotlib
13B - - - 0.1917  0.2014 0.2177
13B CODEE - 76k 0.3218  0.3183 0.3436
13B MIX No 2k 0.3380  0.3151 0.3679
13B BASIC No 2k 0.3493  0.3319 0.3699
13B COMB No 4k 0.3563  0.3470 0.3722
13B BASIC Yes 2k 0.3546  0.3359 0.3472
13B MIX Yes 2k 0.3535 0.3314 0.3519
13B COMB Yes 4k 0.3681  0.3452 0.3513
13B COMB-BOTH Yes 4k 0.3815 0.3552 0.3973
7B - - - 0.1467  0.1327 0.1442
7B CODEE - 76k 0.3112  0.2994 0.3312
7B MIX No 2k 0.3169  0.2802 0.3522
7B BASIC No 2k 0.3205  0.2811 0.3668
7B COMB No 4k 0.3324  0.3266 0.3714
7B MIX Yes 2k 0.3402  0.3064 0.3443
7B BASIC Yes 2k 0.3392  0.3033 0.3324
7B COMB Yes 4k 0.3425  0.3474 0.3336
7B COMB-BOTH Yes 4k 0.3452 0.3544 0.3795

fine-tuning the 13B model with COMB-BOTH outperforms fine-tuning with CODEE by 9.3%, 11.6%,
and 15.6% on Numpy, Pandas, and Matplotlib, respectively.

Impact of API Selection Strategies. Both API selection strategies contribute to the improvement
in model performance. The models fine-tuned with COMB consistently exhibit higher scores
compared to each component across all three repositories. On average, fine-tuning the 13B model
with COMB improves the CodeBLEU score by 3.5% and 5.1% compared to fine-tuning with MIX
and BASIC, respectively. While some individual improvements may appear modest in absolute
terms, the consistent upward trend across various settings underscores that the combinations of
APIs is crucial to enhance the models’ ability to generate accurate and relevant code.

Impact of SKDSL. SKDSL plays a vital role in generating high-quality SFT datasets. Using SKDSL
improves the CodeBLEU score by 7.3% and 5.2% on Numpy and Pandas, respectively, compared
to the Non-SKDSL approach. However, for Matplotlib, the Non-SKDSL SFT dataset yields better
performance. Analysis of code length and cyclomatic complexity reveals that SKDSL-generated
code is longer (37.51%, 43.57%, and 27.01% for Numpy, Pandas, and Matplotlib) and more complex
(71.68% higher cyclomatic complexity) than Non-SKDSL code.

We attribute this performance variation to the distinct characteristics of each library. The in-
creased complexity benefits Numpy and Pandas, which often require more logical reasoning.
Conversely, Matplotlib typically involves simpler workflows where complex code structures are
less common. It’s worth noting that we do not dynamically adjust SKDSL specifications to generate
simpler structures in our experiments, potentially affecting Matplotlib results. Despite these varia-
tions, COMB-BOTH achieves the best performance across all three repositories, outperforming
the two COMB groups by an average of 5.7% and 3.2% on the 7B and 13B models, respectively.
These findings demonstrate the effectiveness of DGEN in generating SFT datasets, emphasizing the
importance of considering both API coverage and code structure in the dataset generation process.
Impact of Dataset Size. Audiences may question our choice of 2k as the minimum dataset
size in the above experiments. The primary rationale behind this decision stems from previous
research [90], which suggests that 2k high-quality examples are sufficient to produce an effective
SFT dataset and yield an excellent model with a stable training process. Conversely, using too
few examples (e.g., 10) can lead to training difficulties, such as convergence issues. We conduct
additional experiments to justify this choice.
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Execution-based Results and Analysis. To further validate the effectiveness of DGEN, we
conduct experiments on HumanFEval, an established benchmark that evaluates code correctness
through program execution. Specifically, we compare three models: the base model and two fine-
tuned variants trained with COMB-BOTH and CODEE datasets, by analyzing their pass rates on
HumanEval’s test cases.

Our results show that both SFT models achieve higher pass rates compared to the base model,
with improvements of 5.4% and 11.5%, respectively. CODEE demonstrates the highest pass rate at
40.2%, which we attribute primarily to its substantially larger training dataset. Notably, DGEN is not
specifically designed to enhance models’ general coding abilities, as discussed in Sec. 1. Therefore,
the observed improvements on HumanEval can be considered a positive side effect of DGEN’s
capability to generate high-quality domain-specific training data.

To gain deeper insights into the models’ performance patterns, we analyze their pass distributions
across all 164 test cases. While 34 cases (20.7%) are successfully solved by all three models, we
observe interesting variations in their unique successful cases, as illustrated in Fig. 7. Through
manual examination of these cases, we identify two key patterns:

1) The commonly passed test cases predominantly feature shorter instruction prompts, with
over 85% falling within the shortest 40.9% length bracket. These cases typically involve basic data
structure operations, particularly array manipulations, reflecting shared ability across different
model variants in handling straightforward programming tasks.

2) The DGEN-enhanced model uniquely solves 9 test cases that other models fail. Analysis reveals
these cases primarily involve mathematical computations and specific validation checks, such as
“monotonic” (HumanEval/57) and “valid_date” (HumanEval/124). We attribute this specialization
to DGEN’s training data sources from mathematical computation domains in this work and the
prevalence of validation logic in SKDSL-generated code structures.

6.3.2  Pairwise Comparison of Model Performance. To further evaluate DGEN’s effectiveness, we
conduct pairwise comparisons between responses generated by different models using both LLM-
based and human evaluations. We focus on 7B and 13B model sizes. For each size, we compare
the COMB-BOTH version (our primary model) against four variants: the CodeLlama-provided
instructed version, and versions fine-tuned on the full CODEE, BASIC, and MIX datasets respectively.
All fine-tuned models use the settings described in Sec. 6.3.1.

LLM-based Evaluation. As advanced LLMs demonstrate superior performance in providing
valuable evaluations, we follow previous works [41, 89] and conduct an evaluation using GPT-4 as
the judge for our pairwise comparison. For each question, we compare the responses generated by
different models and ask GPT-4 to select the better one. The results are then aggregated to calculate
the win rate of each comparison, as shown in the column “Win Rate by GPT-4” in Table 3.

The results reveal two key findings. First, the model fine-tuned on COMB-BOTH consistently
outperforms the instructed version and the model fine-tuned on CODEE, despite their use of larger
training datasets. With CodeLlama-7b as the base model, COMB-BOTH achieves a win rate of
85.22% against Instruct-hf and maintains win rates above 64% across all comparisons. It highlights
the effectiveness of DGEN in generating a small quantity of high-quality, domain-specific data to
facilitate further SFT and improve performance in domain-specific code generation tasks. Second,
in line with the findings in Sec. 6.3.1, models fine-tuned with COMB-BOTH consistently exhibit
a win rate of more than 50% compared to each component (BASIC and MIX), demonstrating the
value of combining different API sets in generating high-quality SFT datasets.

Human Evaluation. To validate our LLM-based evaluation, we conduct a complementary human
evaluation. The process involves randomly selecting 25 samples for each model pair comparison
and creating an online questionnaire. Five experts, including two industrial developers and three
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Table 3. Win rates of model fine-tuned on COMB-BOTH compared to other models, evaluated by GPT-4 and
human judges.

Base Model | Compared Model | # Examples | Win Rate by GPT-4 | Win Rate by Human
Instruct-hf - 85.22% 94.67%
CODEE 76k 67.83% 74.52%
CodeLlama-7b BASIC 2k 72.81% 88.15%
MIX 2k 69.30% 81.34%
Instruct-hf - 84.55% 93.78%
CODEE 76k 64.35% 76.36%
CodeLlama-13b BASIC 2k 81.74% 89.33%
MIX 2k 71.93% 84.27%

academic researchers with expertise in Python, are invited to participate. We provide two generated
code snippets for the same question without specifying their origins and ask the participants to
evaluate their quality based on the following criteria: (1) correctness, (2) relevance to the question,
and (3) readability. The participants are then required to choose the better response.

The human evaluation results, presented in Table 3, align with the LLM-based evaluation findings.
The primary model achieves an average win rate of 85.30%, significantly outperforming other models
and reaffirming our approach’s superiority in generating high-quality SFT datasets. To address
potential inter-rater variability [58], we calculate the Fleiss’ Kappa score [20] for the questionnaire.
The resulting score of 0.63 indicates substantial agreement among participants, bolstering the
reliability of our human evaluation results.

Answer to RQ3: DGEN significantly enhances SFT model performance by leveraging strategic API
combinations and SKDSL. Evaluations using CodeBLEU, LLM-based comparisons, and human
assessments consistently demonstrate that DGEN-generated datasets lead to superior model
outputs, even outperforming models fine-tuned on much larger datasets.

6.4 RQ4: Impact of DGeN-Generated Data on Model Representations

Beyond evaluating the performance improvement of our fine-tuned models on downstream code
generation tasks, we follow [17] and conduct a deeper analysis to investigate how DGEN-generated
SFT datasets impact the models’ ability to distinguish between different third-party libraries.
Specifically, we first treat questions from LIBEN pertaining to distinct third-party libraries as
separate categories. We then extract the hidden representations from the model’s ending layer
for each category. To visualize these high-dimensional representations, we employ t-distributed
Stochastic Neighbor Embedding (t-SNE) [75]. We evaluate clustering quality using Silhouette score
and CH Index score (See Sec. 5), where higher values for both metrics indicate better clustering
results. We analyze the base model and two fine-tuned variants for each model size. Table 4 presents
the average scores for each model configuration.

Table 4. Average Silhouette and CH Index scores for each model.

Base Model Dataset # Examples | Avg. Silhouette | Avg. CH Index
CodeLlama-7b | - - 0.079 6.282
CodeLlama-7b | CODEE 76k 0.085 6.249
CodeLlama-7b | COMB-BOTH 4k 0.076 6.906
CodeLlama-13b | - - 0.287 80.413
CodeLlama-13b | CODEE 76k 0.120 14.107
CodeLlama-13b | COMB-BOTH 4k 0.315 99.745

Our experimental results reveal two key insights. First, the DGEN fine-tuned model outperforms
both the base model and the model fine-tuned on CODEE across various configurations. It achieves
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Fig. 9. (a) Clustering behavior in the 7B model. (b) and (c) Comparison of the base 13B model and model
fine-tuned with DGEN in distinguishing between Matplotlib and Pandas.

average CH index improvements of 16.98% and 408.76%, respectively. Notably, for the 7B model,
we observe a higher CH index despite a slightly lower Silhouette score. This anomaly stems from a
small cluster of Pandas data points incorrectly grouped with Numpy, as illustrated in Fig. 9a.

Second, model size significantly impacts clustering performance. The 13B model exhibits stronger
discriminative power compared to the 7B one. Moreover, the DGEN fine-tuned model demonstrates
an improved ability to distinguish between third-party libraries. Fig. 9b and Fig. 9c illustrate this
enhancement, showing the base and fine-tuned models’ performance in distinguishing Matplotlib
from Pandas. The fine-tuned model’s improved discriminative performance aligns with the observed
increases in Silhouette and CH index values.

Answer to RQ4: Better clustering performance and clearer visualizations demonstrate that
DGEN-generated datasets significantly enhance model internal representations, with benefits
amplifying as model size increases.

6.5 RQ5: Performance of DGeN Under Different Settings

To evaluate the performance of DGeN under different settings, we focus on two key aspects: the
pass rate and cost across various LLMs, and the impact of hyperparameters on generation quality.

6.5.1 Pass Rate and Cost. We use GPT-3.5 as the backbone LLM for generation, aligning with
our baseline SFT datasets [13, 82] for fair comparison. However, considering that vendors who
construct these datasets and fine-tune models on them prefer to avoid relying on closed-source
models to prevent potential copyright disputes, it is crucial to assess open-source models’ ability to
generate high-quality datasets. Furthermore, as outlined in Sec. 4.3.2, each generated code snippet
undergoes content validation checks, where the pass rate represents the percentage of accepted
samples, introducing a trade-off between generation cost and pass rate.

We evaluate the pass rate of the SFT dataset generated by eight different models, including
six open-source and two closed-source models. For each model’s generated responses, we set the
threshold T, as described in Sec. 4.3.2, to (0.2, 0.4, 0.6, 0.8, 1.0) and calculate the pass rates. The results,
presented in Fig. 10a, reveal a general trend of decreasing pass rates as the threshold increases,
indicating that more stringent criteria lead to lower acceptance. However, the performance varies
among different models. In terms of pass rates alone, GPT-4 consistently outperforms others across
all thresholds. Llama-3-70B and GPT-3.5 alternate in leading performance at different thresholds,
highlighting their competitive capabilities. Conversely, some smaller models (e.g., Llama-3-8B) or
models that have undergone continued pretraining (e.g., CodeLlama-13b) exhibit lower pass rates.

Considering the price differences among the top three models in terms of pass rates, GPT-3.5
emerges as a cost-effective option. The cost of generating one million tokens using GPT-3.5 is 0.5
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Fig. 10. Evaluation of LLM performance: Pass rate analysis and hyperparameter impact assessment.

(input) / 1.5 (output), which is only 58% of the cost of Meta-Llama-3-70B and 5% of the cost of
GPT-4. Therefore, GPT-3.5 strikes a good balance, making it a suitable choice for our evaluation
and subsequent SFT. Our experiments show that generating a 4k SFT dataset using GPT-3.5 costs
approximately 3 USD, whereas a human-written dataset of comparable scale and quality would
require contributions from over 334 volunteers [35].

6.5.2 Hyperparameter Impact. To further investigate the impact of hyperparameters, we conduct
experiments with different combinations of temperature and top_p values on GPT-3.5 with threshold
T set to 0.6. The temperature ranged from 0.4 to 2.0, and top_p ranged from 0.2 to 1.0. Fig. 10b
shows the pass rate heatmap, where the pass rate value indicates the percentage of generated code
that satisfies the specified API usage requirements. The heatmap reveals that the pass rates range
from 0.76 to 0.82 for most hyperparameter combinations, with the best performance achieved when
both temperature and top_p are set to 0.8. However, extreme settings can lead to incoherent output.
Temperature controls the randomness of token selection, while top_p determines the cumulative
probability threshold for token consideration. Setting both to very high values (e.g., temperature=2.0,
top_p=1.0) significantly increases output uncertainty. This results in text containing a mix of random
English words, programming terms, numbers, and non-standard Unicode symbols, rendering the
generated data unusable for further fine-tuning.

Answer to RQ5: DGeN demonstrates adaptability across various LLMs, with GPT-3.5 offering
the optimal balance between pass rate and cost efficiency. Performance remains robust and stable
under different hyperparameter settings, with peak results achieved at moderate temperature
and top_p values, ensuring consistent high-quality dataset generation.

6.6 Alternative Generation Strategies

While DGeN shows promising results, alternative generation strategies also merit consideration.
One such alternative approach draws inspiration from real-world codebases. For instance, Magic-
Coder [82] generates SFT datasets using GitHub repository code snippets. To explore this method’s
potential in domain-specific contexts, we conduct a comparison study by first replicating Mag-
icCoder’s approach. We instruct models to reference original code and incorporate five specific
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Numpy APIs (np. squeeze (), np.random.uniform(), np.vstack(),np.var(),and np.median())
in their generated code.

defread css_and_check html(css_file, folder, template): defread_css_and_check html(css_file, folder, template): def process(months_data):
css_content =" css_content =" cleaned_data = [np.squeeze(month) for month in months_data]
html_exists = False html_exists = False bined_data = np.hstack(cleaned_data)
if css_file is not None: if ess_file is not Nonefand np.random.uniform(0, 1) > 0.5 noise = np.random.uniform(-0.5, 0.5, combined_data.shape)
with open(css_file, ') as f: with open(css_file, 'T) as £ noisy_data = combined_data + noise
css_content = f.read() css_content = f.read() variance = np.var(noisy_data)
html_file = Path(f {folder}/layouts/ {template}/index.html") html_file = Path(f {folder}/layouts/{template}/index.html') median = np.median(noisy_data)
it html_file.is_file(): if html_file.is_file(): print(f'Variance of the noisy temperature data: {variance:.2f}')
html_exists = True html_exists = True print(fMedian of the noisy temperature data: {median:.2f}")
return css_content, html_exists return css_content, html_exists
(a) Original seed code snippet (b) OSS-inspired with GPT-3.5 (c) OSS-inspired with GPT-4

Fig. 11. Example of alternative generation strategy with various models, showing only the generated code
solutions. The accompanying problem descriptions are omitted for brevity.

Fig. 11 illustrates the results of our test. Fig. 11(a) shows the real-world code snippet used to
inspire the LLM, while Fig. 11(b) displays the code generated by GPT-3.5. The output demonstrates
GPT-3.5’s difficulty in meeting the desired specifications. It merely adds a random condition
np.random.uniform(@, 1) > 0.5 to the existing if statement, failing to meaningfully use the
Numpy APIs or alter the original code’s semantics. Furthermore, Fig. 11(c) showcases the output
from GPT-4. While GPT-4 demonstrates improved performance by integrating more of the specified
APIs, it still struggles to effectively draw inspiration from the provided code snippet. The resulting
code lacks the complexity and sophisticated structure found in the original snippet.

This comparison study reveals potential limitations in the generation approach based on real-
world code snippets. When the model’s capability is limited, it may struggle to generate meaningful
code. Even with more advanced models, the generated code may lack the desired complexity.
The insights gained from this test highlight the strengths of DGEN’s core design principles. By
decomposing complex problems to match LLM capabilities and specifying concrete APIs and
code structures, DGEN offers a more targeted and effective framework for domain-specific dataset
synthesis. This approach addresses the challenges observed in the alternative strategy, potentially
explaining DGEN’s superior performance in synthesizing high-quality, domain-specific datasets.

7 Related Work

Component-based program synthesis. Program synthesis using various levels of abstraction
and specifications has demonstrated effectiveness in previous research [18, 28, 49, 60, 79]. Our
work specifically relates to program synthesis techniques that generate concise code fragments
by using components from existing libraries. The primary objective of these techniques is to
support developers in programming tasks through library code reuse or to test complex software
systems such as compilers. In these scenarios, a developer supplies an incomplete expression
[29, 59] or a method signature [19, 26, 27], and the program synthesis tool generates a ranked list
of implementation sketches that better align with the developer’s intent. While these approaches
strive to synthesize optimal solutions based on various factors (including code size, frequency of
API method invocations, type distance, or user intent), our objective diverges. We aim to generate
a diverse set of domain-specific programs to enhance SFT for LCMs.

Our work draws inspiration from THALIA [70], an API-driven program synthesis approach for
testing compilers’ static typing procedures. While THALIA focuses on synthesizing programs that
cover a wide range of type-related API usage patterns, we prioritize creating unexpected programs
rarely found in existing codebases. We refer to SKETCH [69] in designing the “hole” concept in
our code skeleton. Our approach contributes to the SFT process by exposing the model to a more
diverse set of programs, fostering a comprehensive understanding of the target library’s APIL
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SFT Dataset Selection. Recent studies [17, 90] have shown that carefully curated SFT data can
significantly improve model performance. Various approaches have been proposed for selecting
representative data, including using learning complexity as a scoring function [33], employing
determinantal point processes to capture dataset diversity [78], and combining language indicators
with advanced searching algorithms [9]. In addition to selecting the most representative data using
indicator-based methods, some studies also consider employing DL models to aid in the selection
process or using LLMs to rewrite the data for quality improvement. Ge et al. [22] propose Clustering
and Ranking (CaR), a two-step approach that involves ranking instruction pairs using a scoring
model aligned with expert preferences and preserving dataset diversity through a clustering process.
CoachLM [43] uses an LLM fine-tuned on a coach dataset to rewrite the SFT data, enhancing the
quality of fine-tuning datasets through automatic sample revisions.

Dstt distinguishes itself from these methods in two key aspects. First, to the best of our knowl-
edge, Dsit is the first work specifically focusing on LCMs, while most existing work concentrates
on natural language processing tasks and relies on natural language indicators for selection. Second,
Dstt is model-agnostic, meaning it does not require a deep learning model or training process
information to aid in the selection process, unlike existing work that depends on such resources.
SFT Dataset Generation. Various methods have been developed to generate high-quality SFT
datasets. Self-Instruct [80] aligns LLMs with human intent using teacher LLM-generated data,
while Evol-Instruct [84] creates large volumes of instruction pairs step by step with varying
complexity levels. These approaches have led to comprehensive datasets like Alpaca-GPT4 [57]
and Lmsys-chat-1m [88]. Demonstrating the power of synthetic data, Nvidia’s Nemotron-4 [2]
achieves state-of-the-art performance using 98% synthetically generated data in its alignment
process. For LCMs, Luo et al. [46] adapted Evol-Instruct to generate code snippets. Nemotron-4
further incorporated programming keywords in its generation process. However, these methods
often lack diversity in seed programs. To address this, OSS-Instruct [82] integrates real-world code
snippets, while AutoCoder [37] combines agent interaction with code execution verification to
generate “correct” programs.

DgGeN distinguishes itself from existing methods in two key ways: First, it uses APIs in combination
with program skeletons to generate high-quality SFT datasets, offering greater flexibility and data
control than relying on real-world code snippets or specific topics. Second, DGEN’s pipeline doesn’t
require any specific powerful model, further enhancing its capabilities and generalization.

8 Conclusion

We introduce DATAScOPE, an API-guided dataset synthesis framework for enhancing the fine-
tuning process of LCMs. Our approach, comprising DsLT for efficient subset selection and DGEN for
domain-specific dataset generation, addresses the challenges of dataset quality and scarcity in both
general and domain-specific scenarios. Extensive experiments demonstrate the effectiveness of our
framework, with models fine-tuned on datasets constructed using DsLT and DGEN outperforming
those tuned on larger, unoptimized datasets. Our work highlights the crucial role of APIs in guiding
the synthesis of high-quality datasets for LCM fine-tuning. By leveraging API-level abstractions,
we offer a novel perspective on dataset synthesis that improves the efficiency and effectiveness of
fine-tuning. This API-guided approach to dataset synthesis not only enhances model performance
but also provides a scalable solution for both general and domain-specific applications of LCMs.
We believe that further research in this direction will lead to more powerful and adaptable LCMs,
opening new avenues for Al-assisted software development.
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9 Data-Availability Statement

To facilitate the reproducibility of our experimental results, we make our artifact available in two
parts. The first part consists of the source code. The second part includes the L1BEN dataset used
in our experiments. Regarding the L1BEN dataset, to mitigate potential data leakage concerns, we
provide compressed versions of the dataset files, with a license explicitly prohibiting the upload of
uncompressed or plaintext versions to platforms such as Hugging Face. Both components of our
artifact are in the artifact evaluation.
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