
On the Usability (In)Security of In-App Browsing Interfaces in
Mobile Apps

Zicheng Zhang
Singapore Management University

Singapore
zczhang.2020@phdcs.smu.edu.sg

Daoyuan Wu∗
The Chinese University of Hong Kong

Hong Kong, China
dywu@ie.cuhk.edu.hk

Lixiang Li†
miHoYo Co., Ltd.

China
lixiang.li@mihoyo.com

Debin Gao
Singapore Management University

Singapore
dbgao@smu.edu.sg

ABSTRACT
Due to the frequent encountering of web URLs in various appli-
cation scenarios (e.g., chatting and email reading), many mobile
apps build their in-app browsing interfaces (IABIs) to provide a
seamless user experience. Although this achieves user-friendliness
by avoiding the constant switching between the subject app and
the system built-in browser apps, we find that IABIs, if not well
designed or customized, could result in usability security risks.

In this paper, we conduct the first empirical study on the usability
(in)security of in-app browsing interfaces in both Android and iOS
apps. Specifically, we collect a dataset of 25 high-profile mobile
apps from five common application categories that contain IABIs,
including Facebook and Gmail, and perform a systematic analysis
(not end-user study though) that comprises eight carefully designed
security tests and covers the entire course of opening, displaying,
and navigating an in-app web page. During this process, we obtain
three major security findings: (1) about 30% of the tested apps fail
to provide enough URL information for users to make informed
decisions on opening an URL; (2) nearly all custom IABIs have
various problems in providing sufficient indicators to faithfully
display an in-app page to users, whereas ten IABIs that are based
on Chrome Custom Tabs and SFSafariViewController are generally
secure; and (3) only a few IABIs give warnings to remind users of
the risk of inputting passwords during navigating a (potentially
phishing) login page.

Most developers had acknowledged our findings but their will-
ingness and readiness to fix usability issues are rather low compared

∗Daoyuan Wu is the corresponding author.
†Lixiang Li was a MSc student when he conducted this study through the Advanced
Research and Development Project course at The Chinese University of Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9058-3/21/10. . . $15.00
https://doi.org/10.1145/3471621.3471625

to fixing technical vulnerabilities, which is a puzzle in usability se-
curity research. Nevertheless, to help mitigate risky IABIs and guide
future designs, we propose a set of secure IABI design principles.

CCS CONCEPTS
• Security and privacy→ Mobile platform security.

KEYWORDS
Android Security; Usability Security; WebView Security

ACM Reference Format:
Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao. 2021. On the
Usability (In)Security of In-App Browsing Interfaces in Mobile Apps. In
24th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’21), October 6–8, 2021, San Sebastian, Spain. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3471621.3471625

1 INTRODUCTION
Nowadays, mobile applications (or apps) are heavily used in our
daily life. Although most app functionalities are self-contained, it
is not uncommon for users to open (external) web URLs in their
app UIs (user interfaces). For example, a user may need to open a
URL sent from her friends in a chat app like Whatsapp or WeChat,
or need to open a URL embedded in an email when using Gmail.
To satisfy such URL opening requirements in non-browser apps,
one could offload the task to the system built-in browser apps.
While this is simple for developers, it hurts user-friendliness due to
the potential constant switching from the subject app to a system
browser app. As a result, many high-profile apps choose to provide
their own in-app browsing interfaces, or IABIs, for a seamless user
experience.

However, if not designed or customized well, IABIs could in-
troduce serious usability security issues. The major reason is that
IABIs are typically simplified implementations of browsing inter-
faces lacking security indicators as opposed to “full-service” and
standalone browsers with well-thought usability security designs.
For example, an IABI may not display the full URL domain name
or simply miss the HTTP(S) indicator. Motivated by this intuition,
we conduct the first empirical study in this paper on the usability
(in)security of in-app browsing interfaces in both Android and iOS
apps. To this end, we collect and analyze a dataset of 25 high-profile
mobile apps that contain IABIs, such as WeChat, Twitter, Gmail,

https://doi.org/10.1145/3471621.3471625
https://doi.org/10.1145/3471621.3471625

RAID ’21, October 6–8, 2021, San Sebastian, Spain Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao

LinkedIn, and Reddit. To make our results representative, these
apps are selected from five common app categories, including Chat,
Social, Mail, Business, and News.

Atop this dataset, we perform a systematic analysis that com-
prises eight carefully designed security tests (T1∼T8 in three cate-
gories) and covers the entire course of interacting with an in-app
web page in IABIs including page opening, displaying, and navigat-
ing. First, before a user opens a URL, we test whether the subject app
provides sufficient URL information to enable end users to make
informed decisions on opening the URL in a trustworthy manner
(T1). Second, after the web page is loaded, we test whether the IABI
provides enough security indicators for end users to validate the
trustworthiness of the displayed page. This includes whether the
URL itself (T2), an HTTPS (secure) indicator (T3), and an HTTP (in-
secure) warning (T4) are displayed in the title/address bar, whether
a security alert is prompted for URLs with TLS errors (T5), and
whether IABIs could defend against phishing URLs with a fake
HTTPS lock icon (T6) and a long sub-domain name (T7). Third,
during navigation of the web page, we test whether IABI could
give a specific warning if the browsed page asks users to input
passwords in a (potentially phishing) login form (T8).

Although our analysis focused on the apps’ performance rather
than a study with direct end users, our cross-platform analysis
results show the following major security findings:

• About 30% of the tested apps do NOT display the complete
URL, thus fail to provide enough information for a user to
trustfully open an URL. Most of these apps omit the scheme
(HTTP or HTTPS), while two apps (Weibo and Quora) com-
pletely hide the URL. Another 30% of the apps, despite out-
putting the full URL, display additional favicon or title infor-
mation, which enables attackers to craft a fake favicon/title
to mislead users.

• Nearly all custom IABIs have various problems in providing
sufficient indicators to faithfully display an in-app page to
users, whereas ten IABIs that are based on Chrome Custom
Tabs or SFSafariViewController are generally secure. Specifi-
cally, among the 15 apps implementing their own IABIs, over
half do not display the domain name in the address bar, and
nearly none provide HTTP(S) indicators, which makes them
fail to defeat phishing with a lock emoji or a long subdomain.

• Only a few IABIs, from the QQ, and QQ Mail apps, give
specific warnings to remind users of dangerous operations
(e.g., password inputting) during navigating a login page.

To understand developers’ reaction to our findings and to poten-
tially provide our recommendations on fixing severe IABI issues,
we issued security reports to all affected apps (details in Section 5).
Most developers acknowledged our findings and agreed with our
assessment. In particular, Instagram had fixed its issues as we re-
ported and LinkedIn would patch it in its future versions. However,
we also found that developers’ willingness and readiness to fix
usability security issues are rather low compared to fixing tech-
nical vulnerabilities. Specifically, they refused to recognize them
as vulnerabilities and were not willing to patch or improve their
risky IABIs. Nevertheless, to help mitigate risky IABIs and guide
future designs, we propose a set of secure IABI design principles in
Section 6.

Chatting UI Posting UI Email UI IABI

Click on
the URL

Figure 1: The process of opening a URL within an app. It
demonstrates the 3 sample situations in which we want to
open a URL within an app, including chatting with friends
(Chatting UI), posting on the social network (Posting UI),
and reading or sending an email (Email UI). When we click
on the URL (e.g., https://badssl.com), an app may use in-app
browsing interfaces to open the URL.

To sum up, we make the following contributions in this paper:
• (Problem and analysis in §2-§3) We summarized the attack
surfaces on interacting with an IABI and performed a sys-
tematic analysis with eight security tests.

• (Measurement results in §4) We obtained cross-platform anal-
ysis results and their three major security findings by exten-
sively testing 25 high-profile mobile apps.

• (Reporting and defense in §5-§6) We reported our findings to
affected vendors and analyzed their responses. We further
proposed a set of IABI design principles.

2 BACKGROUND
When we are using mobile apps to, e.g., chat with friends, read posts
on social platforms, or read emails, we often need to open a URL
link. In order to provide a “one-stop” service to keep users within
the app interface without the need of switching to a web browser,
many apps have implemented their own in-app browsing interfaces
(IABIs) which typically use the underlying browsing engines to
load the web content.

Figure 1 shows a typical process of opening a URL in an IABI.
Sometimes the IABI may also contain an address bar to display
the information related to the web page. Moreover, as shown in
Figure 2, apps have three ways to handle an URL request when a
user clicks the URL. First, some apps choose to jump out of the app
and open a browser app to display the web page. This situation is
out of the scope of our paper because they do not contain in-app
browsing interfaces. The second way is to customize a browsing
interface based on the Chrome Custom Tabs (CCT) [2] and SFSa-
fariViewController (SF) [4] libraries. The third way is to create their
own IABIs, which display the web page in the form of WebView
(for Android) [1] or UIWebView (for iOS) [5] instances. Next, we
explain the relevant terms in more details.

IABI (in-app browsing interface) and its address bar. We
refer to the UI design of the entire screen when a mobile app opens
a web page as the In-App Browsing Interface (IABI). In this paper,
we mainly focus on the usability problems of IABIs’ address bars.

Underlying browsing engines. The implementation of IABIs
typically uses one of the following browsing engines:

On the Usability (In)Security of In-App Browsing Interfaces in Mobile Apps RAID ’21, October 6–8, 2021, San Sebastian, Spain

SMU Classification: Restricted

Chat UI

Post UI

Before Page Opening

Displayed in the
in-app browser

Jump to stand-along
Browser

Page Displaying

Chrome Custom Tabs/
SFSafariViewController

URL Displaying
HTTP

HTTPS
SSL Error

Unordinary URL

Login in HTTP

Page Navigating

Email UI

Figure 2: Three stages of interaction between an end user
and the IABI and their potential usability security risks, in-
cluding (i) usability trust given before users open a URL, (ii)
security indicators to faithfully display an in-app page to
users, and (iii) specific warnings to remind users of danger-
ous operations during navigating a login page.

• Chrome Custom Tabs (CCT in Android) [2, 24]
• SFSafariViewController (SF in iOS) [4, 24]
• WebView (in Android) [1, 19]
• UIWebView (in iOS) [5, 27] and
• Custom browser engines implemented in native code [26].

Chrome Custom Tabs and SFSafariViewController. CCT is
supported by Chrome, which is a web browser developed by Google.
Amobile app can send a special intent to Chrome to launch a CCT to
open websites without implementing a built-in browser engine by
themselves, assuming that Chrome is installed on the smartphone.
Chrome also provides well-encapsulated APIs for developers to
make some limited browsing UI customization, such as color and
animation. Similarly, iOS has SF supported by Safari for developers
to incorporate into their apps easily.

WebView andUIWebView.Although CCT and SF provide con-
venient ways for a developer to implement IABI, one could choose,
instead, to use lower-level display engines WebView and UIWeb-
View (or even custom engines in native code [26]) for more com-
prehensive control over the UI. They allow developers to monitor
specific events (e.g., loading and navigating) upon triggering of
which developers can gather event information and make corre-
sponding responses. The lower-level implementation of this design
provides developers with very flexible control of the UI, which also
implies more opportunities for design mistakes.

3 OVERVIEW OF OUR ANALYSIS
To reveal the usability security issues of IABIs in real-world ap-
plications, we analyze the IABIs in three phases corresponding to
opening, displaying, and navigating a web page; see Figure 2. We
design detailed security tests (T1 ∼ T8) to reveal security proper-
ties of the design of IABIs in real-world applications. URLs tested
include those provided by https://badssl.com/ and homepages of
Google and Facebook.

(1) https://badssl.com
(2) http://http.badssl.com
(3) https://expired.badssl.com
(4) https://wrong.host.badssl.com
(5) https://self-signed.badssl.com
(6) http://lock-title.badssl.com
(7) https://long-extended-subdomain-name-containing-m any-

letters-and-dashes.badssl.com
(8) http://http-login.badssl.com

(9) https://google.com
(10) https://m.facebook.com/login/

In this section, we will explain the details of our security tests
T1 ∼ T8 and then describe in detail how the individual tests are
performed in each stage.

3.1 Analyzing Risks before Page Opening
In the first phase of our analysis, we investigate how an app displays
URLs before users tap on them to open the web pages (T1). The sim-
plest design is to display only the URL of the website without other
content. Some apps may show a box below the URL with additional
information about the web page, e.g., the title and favicon.

T1 is an indispensable step in the process of opening a web page
in the app. Since it is not a part of the IABI, we cannot compare
it with mobile browsers, and existing work does not provide any
principles about its design. Therefore, we assigned a GOOD rating
according to criteria of other tests (T2, T6 & T7, see Section 3.2).
It could be counter-intuitive, but we find that only displaying the
URL without any other information could actually be a GOOD
design because any additional information displayed (e.g., favicon)
could potentially be taken advantage of by an attacker to provide
misleading information (e.g., favicon being a lock emoji). NEUTRAL
and BAD ratings are awarded accordingly.

To perform the test, we input all tested URLs to the subject apps
and check the corresponding display. Note that at this moment the
app does not open the website yet. Some apps may pre-load the
website to get brief information about the website. We discuss the
results of T1 in Section 4.2.

3.2 Analyzing Risks on Page Displaying
After an end user taps on the URL, the app could open the web page
by switching to a stand-alone web browser (out of scope of our
paper) or within the app implemented either with Chrome Custom
Tabs (CCT)/SFSafaraViewController (SF) or its customized IABI.

When displaying the corresponding web content, different apps
could have their own design on the address bar, which is the focus
of the analysis in this stage. It includes six tests as follows.

• T2: whether the URL is shown on the address bar (using
URL9). End users need this information to know the origin
of the page. Various designs include showing the URL and/or
domain name.

• T3 and T4: how HTTPS and HTTP protocols are handled
in the URL (using URL1 and URL2). The HTTPS indicator
is very intuitive for users to recognize whether a web page
meets the TLS requirement or not. IABIs should display the
corresponding indicator in both HTTP and HTTPS web-
pages. If an IABI only displays the HTTPS indicators but
shows no indicator for an HTTP page, the user may not
know that the HTTP page is not secure before she opens
another HTTPS page and sees the indicator.

• T5: how SSL errors are handled (using URL3∼5). The SSL
errors tested include expired certificates, wrong hosts, and
self-signed certificates. Various designs include blocking ac-
cess, prompting options to end users, or accessing the web
page without any warnings.

https://badssl.com/

RAID ’21, October 6–8, 2021, San Sebastian, Spain Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao

• T6: how the title with a lock emoji is displayed (using URL6).
Showing the lock emoji could mislead end users into believ-
ing that it is a secure web page with HTTPS protocol.

• T7: how URLs with long subdomain names are displayed (us-
ing URL7). Displaying only the long subdomain without the
domain name could present an illusion of visiting a trusted
domain.

Our ratings for T2 ∼ T7 are based on the evaluation of security in-
dicators and principles on mobile browsers in existing work [9–11],
which perform systematic analysis based on best pratices outlined
in theWorldWideWeb (W3C) guidelines [6]. In the following expla-
nations, we first outline principles we extract from such guidelines
that are applicable to IABIs, and then justify our definitions of the
various ratings used in this paper.

1) Identity Signal: Availability. The security indicators show-
ing identity of a website MUST be available to the user through
either the primary or secondary interface at all times. We be-
lieve that IABIs should at least display the domain name of a
website which is the basic identity of a page. Therefore in T2,
we assign a GOOD rating to displaying the URL or domain
name of a web page.

2) Errormessages: Interruption/Prceeding options/Inhibit
interaction. These three principles require that the error
warnings MUST interrupt the users’ current task and inhibit
the user to interact with the destination website. Meanwhile,
the warnings MUST provide the user with distinct options
(MUST NOT be only to continue). Accordingly, in T5 we test
how IABIs react to erroneous certificates, like wrong-host,
expired, or self-signed certificates. Our GOOD rating is consis-
tent with this guideline, which is displaying a prompt with the
option to continue or not before the user opens the SSL-error
page. The only difference is that we relax the requirement a
bit and allow IABIs to directly stop loading that page without
providing options. A BAD rating is given to designs which
directly open those pages with certificate errors. We assign
NEUTRAL to designs that handover the issue to a standalone
browser, which is “lazy” but not compromising security.

3) TLS indicator: Availability. The TLS indicators MUST be
available to the user through the primary or secondary inter-
face at all times. Accordingly, we conduct T3 and T4, which
test whether the HTTPS and HTTP indicators are displayed
on the address bar. A GOOD rating is to display the indicators
(lock/exclamation icons) to show whether a page meets the
TLS requirement. A BAD design does not show any indicators.
Displaying the scheme (“https://” or “http://”) also serves as
an indicator, although not as intuitive as icons and therefore
receives a NEUTRAL score.

4) TLS indicator: Content and Indicator Proximity.Content
MUST NOT be displayed in a manner that confuses hosted
content or browser indicators. In this paper, we conduct T6
and T7 to test whether the lock emoji in the titles and long
sub-domain names could confuse the users. According to this
guideline, the IABIs should not allow lock emoji to mimic
the HTTPS indicators or allow the long sub-domain name to
mislead users, which are the GOOD ratings of T6 and T7. We
define NEUTRAL as displaying both the security indicators

and the lock emoji (T6). In T7, NEUTRAL is not displaying the
domain name (though it is a BAD design in T2), and a BAD
design refers to those ignoring this principle and allowing the
two items to mislead users.

The results of our analysis into T2 ∼ T7 are presented in Sec-
tion 4.3.

3.3 Analyzing Risks on Page Navigating
When a user navigates a web page in an app’s IABI, it is dangerous
to input the username and password information in a login form
because IABIs are more vulnerable to phishing attacks than stan-
dalone browsers [18]. Therefore, well-designed IABIs should give
specific and extra warnings to remind users of the risk of inputting
passwords during navigating a login page. Moreover, they should
cover not only insecure HTTP login pages but also HTTPS login
pages with vaild but illegitimate certificates. That is because an
attacker can forge a phishing page with the title of a popular page
(e.g., alibaba.com) by simply using a CA-issued (valid) certificate
on a similar domain (e.g., alibababa.com) and thus meet the TLS
requirement.

Based on this consideration, we test whether IABIs would show
a specific or extra warning during navigation of a login page as
compared with their normal behaviors on a non-login page (T8). We
conduct this test using URL8 and URL10, which are example HTTP
and HTTPS login pages, respectively. Note that for Facebook and FB
Messenger, we use our university’s HTTP login page since URL10
is already the Facebook login page. For each IABI, we navigate to
the two login pages, input a username and a password, and check
whether the IABI shows a specific warning on our operation.

Specifically, we assign a GOOD rating if the subject IABI pro-
vides specific warnings for both HTTP and HTTPS login pages.
In contrast, we give the NEUTRAL and BAD ratings if the subject
IABI displays a warning for at least one login page or has no such
warning for both pages, respectively. We show the test results of
T8 in Section 4.4.

4 CROSS-PLATFORM ANALYSIS RESULTS
We begin this section with an overview of the test apps used in our
analysis (Section 4.1). Section 4.2, 4.3, and 4.4 cover our analysis
results on IABIs handling of URLs before web page opening, during
web page opening, and during web page navigation, respectively.

4.1 Test Apps and Overall Analysis Results
Table 1 shows the category, number of ratings on Apple Store, and
installs on Google Play of the 25 high-profile applications we use
in our analysis. We reiterate that these apps are selected because
they have an IABI and they are good representations of popular
apps from various usage categories. In each category, we sort these
apps according to their popularity on Apple Store because users in
China typically do not use Google Play to install Android apps.

Table 2 presents an overview of our analysis results, with details
discussed in Section 4.2, 4.3, and 4.4. Note that when an app uses
Chrome Custom Tabs (CCT) or SFSafariViewController (SF) to
implement IABI, its behavior will always be the same (defined in
CCT and SF; see row “CCT/SF” in Table 2). Therefore, our analysis
and discussion below focus more on the analysis of “own IABI”

On the Usability (In)Security of In-App Browsing Interfaces in Mobile Apps RAID ’21, October 6–8, 2021, San Sebastian, Spain

Table 1: Subject mobile apps we tested and # of their Apple
Store ratings and Google Play installs.

Category App Name # of Ratings # of Installs

Chat

WeChat 4,000,000+ 100M-500M
FB Messenger 1,000,000+ 1B-5B

QQ 700,000+ 5B-10B
Snapchat 300,000+ 1B-5B
LINE 200,000+ 500M-1B

Telegram 60,000+ 100M-500M
KakaoTalk 60,000+ 100M-500M
Hangouts 40,000+ 1B-5B

Social

Instagram 10,000,000+ 1B-5B
Weibo 500,000+ 1B-5B

Facebook 400,000+ 5B-10B
Twitter 200,000+ 500M-1B
Tumblr 200,000+ 100M-500M

VK Russia 200,000+ 100M-500M

Email

Gmail 100,000+ 5B-10B
163 Mail 100,000+ 50M-100M
Mail.ru 100,000+ 50M-100M
QQ Mail 50,000+ 100M-500M

Business Alipay 600,000+ 1B-5B
LinkedIn 50,000+ 500M-1B

News

Toutiao 2,000,000+ 100M-500M
Reddit 1,000,000+ 1M-50M
Baidu 800,000+ 1M-50M
Zhihu 700,000+ 100M-500M
Quora 70,000+ 1M-50M

implementation, where each subject app makes its own call on the
design and implementation. As the results on Android and iOS are
the same in most subject apps, in the following detailed discussions,
we will first focus on our analysis on the Android platform followed
by a brief comparison with results on iOS.

4.2 Usability Risks before Page Opening
As discussed in Section 3.1, this part of the analysis concerns how
the URL is displayed before end users opens it.

4.2.1 T1: Displayed URLs before page opening. Figure 3 provides
screenshots of a few representative apps on how they display a URL
before end users click on it. After analyzing the different handling,
we categorize them into three buckets — Good, Neutral, and Bad1.

GOOD. The most common way (accounts for roughly 50% of
our subject apps) is displaying the complete URL; see Case 1 in
Figure 3. We consider this a GOOD practice as end users can see
the full URL without being misled by maliciously crafted favicons
or titles (see the BAD cases later).

NEUTRAL. Some apps may display additional information of
the corresponding web page (see Case 2, 3, and 4 in Figure 3; we
confirm that they show the complete URL even if the URLs contain
sub-domains and additional paths) including title, domain, favicon,
and even some page content. Although such additional information
might help in a legitimate URL, it could be also misleading in other
cases. For example, a fake lock favicon is displayed in the case of
LINE in Figure 3. That said, apps in this category also display the
1We notice cases in which a subject app displays URLs in different ways in different
activities (e.g., in a chat window and in a wall/post window), in which our analysis
result is based on its worst-case categorization.

Wechat

Twitter

Quora

Weibo

Facebook

LINE

KakaoTalk

1

2

3

4

5

6

7

Snapchat

8

Figure 3: Examples of displayed URLs before page opening
(T1).

complete URL for inspection by end users; we therefore consider the
practice of displaying the complete URL together with additional
(potentially misleading) information as NEUTRAL.

BAD. This category refers to apps that do not display the com-
plete URL (including cases with missing HTTP/HTTPS scheme).
For example, Snapchat (Case 5) only displays the title, favicon, and
domain name (and see the lock-looking favicon). It presents an
example in which end users are given no information about the
actual security of the URL. Twitter and Quora (Case 6 and 7) have
the scheme of the URL stripped off with only the domain name left.
Weibo (Case 8) displays an identical label for every URL, which is
also BAD in failing to provide adequate information of the URL.

iOS. Most of the apps perform exactly the same on Android
and iOS in this analysis, with the exception of VK Russia whose
Android version displays only the complete URL (GOOD) while its
iOS version displays the title and domain name as well (NEUTRAL).

Takeaway in §4.2: About 30% of the subject apps do NOT display
the complete URL, failing to provide the necessary security indi-
cators. Most of them omit the scheme (HTTP or HTTPS), while
two apps completely hide the URL content. Another 30% of the
apps, despite outputting the full URL, display additional favi-
con or title information, which potentially enables attackers to
maliciously craft a fake favicon/title to mislead end users.

4.3 Usability Risks on Page Displaying
As discussed in Section 3.2, this part of the analysis focuses on
the title and address bar developers typically add to enhance the

RAID ’21, October 6–8, 2021, San Sebastian, Spain Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao

Table 2: Cross-platform IABI test results in terms of their usability risks in opening, displaying, and navigating a web page.

Category App Name CCT/SF Own IABI
Before
opening

Detailed test results when the subject app uses its own IABI
Displaying a web page Navigating

T1: URL T2: URL T3: HTTPS T4: HTTP T5: SSL T6: Lock-title T7: Sub-domain T8: Login
CCT/SF * | * * | * * | * ✔| ✔ ✔| ✔ ✔| ✔ ✔| ✔ H#| ✔ ✔| ✔ ✗| H#

Chats

WeChat ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ ✗| ✗ H#| H# ✗| ✗
FB Messenger ✗| ✗ ✔| ✔ H#| H# ✔| ✔ ✔| ✔ ✗| ✗ ✔| ✔ ✗| ✔ ✗| ✔ ✗| ✗

QQ ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ ✗| ✗ H#| H# ✔| ✔
Snapchat ✗| ✗ ✔| ✔ ✗| ✗ ✔| ✔ ✗| ✔ ✗| ✗ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗
LINE ✗| ✗ ✔| ✔ H#| H# ✔| ✔ H#| H# H#| H# ✔| ✔ H#| H# ✔| ✔ ✗| ✗

Telegram ✔| ✔ ✗| * ✔| ✔ - | - - | - - | - - | - - | - - | - - | -
KakaoTalk ✗| ✗ ✔| ✔ H#| H# ✔| ✔ ✔| ✔ ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗
Hangouts ✔| ✔ ✗| * ✔| ✔ - | - - | - - | - - | - - | - - | - - | -

Social

Instagram ✗| ✗ ✔| ✔ H#| H# ✔| ✔ ✗| ✗ ✗| ✗ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗
Weibo ✗| ✗ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ ✗| ✗ H#| H# ✗| ✗

Facebook ✗| ✗ ✔| ✔ H#| H# ✔| ✔ ✔| ✔ ✔| ✔ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗
Twitter ✔| ✔ ✔| * ✗| ✗ (o)✔| - (o)H#| - (o)H#| - (o)H#| - (o)H#| - (o)✗| - (o)✗| -
Tumblr ✔| ✔ ✗| * ✗| ✗ - | - - | - - | - - | - (t)✔| - - | - - | -

VK Russia ✔| ✔ ✗| * ✔| H# - | - - | - - | - - | - - | - - | - - | -

Email

Gmail ✔| ✔ ✗| * ✔| ✔ - | - - | - - | - - | - - | - - | - - | -
163 Mail ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ ✗| ✗ H#| H# ✗| ✗
QQ Mail ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ ✗| ✗ H#| H# ✔| ✔
Mail.ru ✔| ✔ ✗| * ✔| ✔ - | - - | - - | - - | - - | - - | - - | -

Business Alipay ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✗| ✔ ✗| ✗ H#| H# ✗| ✗
LinkedIn ✔| ✗ ✔| ✔ H#| H# (o)✗| ✔ (o)✗| ✗ (o)✗| ✗ (o)✔| ✔ (o)✗| ✗ (o)H#| ✗ (o)✗| ✗

News

Toutiao ✗| ✗ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ H#| H# H#| H# ✗| ✗
Reddit ✔| ✔ ✔| * ✔| ✔ (o)✔| - (o)✔| - (o)✗| - (o)✔| - (o)✔| - (o)✗| - (o)✗| -
Baidu ✗| ✗ ✔| ✔ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✔| ✔ H#| H# H#| H# ✗| ✗
Zhihu ✗| ✗ ✔| ✔ ✗| ✗ ✗| ✗ ✗| ✗ ✗| ✗ ✗| ✔ ✗| ✗ ✗| ✗ ✗| ✗
Quora ✔| ✔ ✗| * ✗| ✗ - | - - | - - | - - | - (t)✔| - - | - - | -

Column “CCT/SF”: whether the subject app uses Chrome Custom Tabs (Android) or SFSafariViewController (iOS) to implement IABI.
Column “Own IABI”: whether the subject app uses its own implementation of IABI. Note that an app could present both CCT/SF and Own IABI behavior
(when the phone has and does not have Chrome/Safari installed, respectively). Since Safari is installed by default on iOS, the app’s “own IABI” status is
unknown when it already has SF implementation.
Row “CCT/SF”: analysis results when using CCT/SF to implement IABI. Note that all subject apps will present the same behavior when using CCT/SF.
Cell format: <analysis result on Android> | <analysis result on iOS>
Symbols: ✔= Good or Yes; H#= Neutral; ✗= Bad or No; ‘*’ = Unknown; ‘-’ = Same as CCT/SF; ‘(o)’ = Using (o)wn IABI if no Chrome; ‘(t)’ = CCT without (t)itle.

user interface of the app. We first examine the display of URL when
loading the web page (T2), and then test 4 types of URLs with HTTP
(T3), HTTPS (T4), SSL errors (T5), and special cases (T6 and T7).

4.3.1 T2: Displayed URLs during page opening. The importance
of proper display of URLs here is similar to that in T1, with three
notable differences. First, T2 focuses on the display of URL only
and leaves the analysis of scheme indicators to T3∼T5. Second,
web page redirection places an additional demand on the display of
URLs while pages are being opened. Third, a preview of the page no
longer adds any usability or functionality since the actual page is
now opened. Results on representative apps are shown in Figure 4.

ChromeCustomTabs and SFSafariViewController.Wefirst
take a look at how full-fledged browsers handle URL displays. Both
Chrome Custom Tabs (CCT) and SFSafariViewController (SF) al-
ways display the domain name in their address bars, which is con-
sidered a GOOD design. Customization of CCT allows showing or
hiding the title (using API setShowTitle(true)); see Case 1 and
2 in Figure 4). 10 of the 25 subject apps use CCT while 9 of them
use SF.

We now turn our attention to IABI with each application’s own
design and implementation without using CCT/SF. Note that not

1 CCT

163 Mail

Reddit
(Own IABI)

Toutiao

SF

2

3

4

5

6

7

8
LinkedIn

(iOS)

CCT

(No Title)

LINE

Figure 4: Examples of displayed URLs when a page is loaded
(T2).

all subject apps choose to provide their own IABI implementation;
see column “Own IABI” in Table 2. Similar to what we did with
T1, we categorize these implementations into buckets of GOOD,
NEUTRAL, and BAD, and present our findings on the Android

On the Usability (In)Security of In-App Browsing Interfaces in Mobile Apps RAID ’21, October 6–8, 2021, San Sebastian, Spain

CCT

CCT (No Title)

Facebook

KakaoTalk

LINE

Twitter (Own)

Instagram

163Mail

Toutiao

SF

Snapchat (iOS)

1

2

3

4

5

6

7

8

9

10

11

Figure 5: Examples of HTTPS indicators (T3). ‘(Own)’ refers
to the app’s own IABI, similarly hereinafter.

platform first followed by a comparison with corresponding iOS
apps.

GOOD. We consider it a GOOD design provided that either
complete URL or its domain is displayed. A total of 8 Android apps
satisfy this requirement (e.g., Case 3 in Figure 4) out of 18 subject
apps2 that provide their own IABI implementations.

BAD. The other 10 subject apps only display the title of the web
page without the URL (or domain name), e.g., 163Mail (Case 5), or
even no title/address bar at all, e.g., Baidu, which is a BAD design
for the same reasons discussed in T1. An interesting observation is
that 9 out of these 10 subject apps are from China.

Page redirection. Web page redirection is common, and IABIs
shall always display information of the URL of the final landing page
being opened. Our evaluation shows that all the subject apps pass
this test, should they use WebView.getUrl() to directly retrieve
the URL or use the arguments of a set of hook functions within
WebViewClient (onPageStarted() and onPageFinished()).

iOS. On iOS, LinkedIn displays the title and domain name on
the address bar (Case 8), which is GOOD (as opposed to its BAD
design on the Android counterpart). Other apps have exactly the
same performance on the two mobile platforms.

4.3.2 T3: HTTPS Indicators. Apps typically provide HTTPS in-
dicators in the form of text (“https” in the URL) or a lock icon.
Screenshots of representative apps in this analysis are shown in
Figure 5.

Chrome Custom Tabs and SFSafariViewController. Both
CCT and SF use a lock icon as the indicator of HTTPS, which is
not customizable or removable by the app developers (Case 1 and 2
in Figure 5). We consider them GOOD designs.

GOOD. Similar designs can be found in own IABI implementa-
tions in three apps, Facebook (Case 3), FB Messenger and KakaoTalk
(Case 4).

2Three apps (Twitter, LinkedIn and Reddit) provide both CCT/SF and own IABI
implementations.

CCT

CCT (No Title)

Facebook

FB Messenger

LINE

Kakao Talk

Twitter (Own)

SF

LinkedIn (iOS)

1

2

3

4

5

6

7

8

9

Figure 6: Examples of HTTP indicators (T4).

NEUTRAL. Some apps rely on the scheme portion of the full
URL (the text “https”) to indicate that HTTPS protocol is being used
(Case 5 and 6), which might not be very intuitive but suffice for
advanced users.

BAD. The absence of any HTTPS indicators (text or lock icon)
is a BAD design. Surprisingly, we found 12 out of the 18 subject
Android apps with their own IABI implementation falling into this
category, including Instagram developed by the Facebook company
(Facebook and FB Messenger are GOOD though).

iOS. The iOS version of Snapchat displays a lock icon in its own
IABI implementation, while its Android version does not have any
indicators. Other apps have identical behavior with respect to T2
on Android and iOS.

4.3.3 T4: HTTP Indicators. As discussed in Section 3.2, proper
indicators for HTTPS should not exempt an app from displaying
an HTTP indicator/prompt. In other words, an HTTP indicator
should always be displayed regardless of the presence or absence
of HTTPS indicators. Figure 6 shows screenshots of representative
apps in this analysis.

Chrome Custom Tabs and SFSafariViewController. CCT
uses an exclamation mark icon in place of the lock icon when the
URL does not meet TLS requirements; see Case 1 and 2 in Figure 6.
This icon is very intuitive and can give the user a clear warning.
Same as the lock icon for HTTPS, this exclamationmark icon cannot
be customized or removed by a developer. SFSafariViewController
uses the text “Not Secure” as the indicator; see Case 8. Both of them
scored GOOD in this test.

GOOD. Similar to the analysis of HTTPS indicators, a GOOD
design should always display an insecure indicator for HTTP. Un-
fortunately, Facebook is the only app scoring GOOD design in this
test (Case 3).

NEUTRAL. Displaying the complete URL with the scheme por-
tion of text “http” also serves the purpose with a less intuitive
interface, and is considered a neutral design in our analysis. LINE
and Twitter join this category (Case 4 and 5).

BAD. The absence of any HTTP indicator is considered a BAD
design, and we have 15 out of 18 apps with their own IABI im-
plementation in this category including FB Messenger. This is an
alarming finding.

RAID ’21, October 6–8, 2021, San Sebastian, Spain Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao

LINE

KakaoTalk

1

3

6

52

4

5

Facebook

SF

CCT

FB Messenger

Figure 7: Examples of displaying expired certificates (T5).

iOS. Similarly, Facebook is the only app with GOOD design here
with respect to HTTP indicators on iOS apps.

4.3.4 T5: Certificate Errors. As discussed in Section 3.2, an app is
supposed to inform end users upon certificate errors (with expired
or self-signed certificates, or with certificates of the wrong host).
We test all subject apps with URLs that contain such certificate
errors, and examine their corresponding prompts; see Figure 7 with
expired certificates as examples.

Chrome Custom Tabs and SFSafariViewController. Since
most layman end users do not possess the necessary technical
background to make informed decisions when they are prompted
with a certificate error, both CCT and SF (and the corresponding
full-fledged browsers) introduce “twisted” routes for end users to
proceed opening web pages with certificate errors. Cases 2 and 4
in Figure 7 show examples of the design of such “twisted” routes,
where an end user will have to choose “Advanced” or “ShowDetails”
before they are given the option to continue browsing. We consider
these GOOD designs with best security usability practice.

That said, both CCT and SF choose to remember such end user de-
cisions across all apps with CCT/SF implementation. In other words,
an app with CCT/SF implementation would skip the certificate
error warning if a user had chosen to proceed with browsing the
same URL on any other CCT/SF apps. Although the CCT/SF im-
plementation is generally considered GOOD, such a design choice
sacrifices security for usability.

GOOD. Here we relax the security requirement and consider
apps that either refuse to open the page or prompt end users with
various options as GOOD designs.

With such relaxation on the definition of GOOD designs, all but
3 subject apps with their own IABI implementations are in this
category. Among them are 7 apps that simply refuse to open the
page, and 8 apps that prompt the end users and give options to
proceed. There are two interesting observations worth noting when
we dig deeper into the latter group.

T6 SF

T7 Wechat

T6 CCT (No Title)

T7 SF

T7 LINE

T7 Twitter (Own)

T7 CCT

T6 Facebook

T6 LINE

T6 QQ

T6 FB Messenger

1

2

3

4

5

6

7

8

9

10

11

12

T6 CCT

Figure 8: Examples of displaying special URLs (T6 & T7).

First, 3 out of the 8 apps show details of specific certificate errors
(e.g., Facebook, Case 5) while the other 5 apps skip the details of
errors (e.g., KakaoTalk, Case 1). Second, all these apps remember the
user selection and would not display any SSL error indicators after
proceeding to open the web page, except Facebook (case 5) which
turns the domain name into red color and include a red exclamation
mark icon even after end user chooses to proceed.

NEUTRAL. Twitter instead chooses to launch the system default
browser to handle the web pages with certificate errors.We consider
this design acceptable (NEUTRAL) although the burden is now
shifted to the default browser.

BAD. Ignoring the certificate errors or directly opening the
insecure web page are both considered as BAD designs. In this
category we have Alipay which directly opens a web page with
wrong host certificates and Zhihu which indiscriminately displays
a prompt of visiting external websites regardless of presence of
absence of certificate errors.

iOS. Surprisingly, all iOS subject apps deliver GOOD designs
including Alipay and Zhihu whose Android versions are BAD. Both
two iOS apps show blank pageswhen attempting to open pageswith
certificate errors. We suspect that this better behavior of iOS apps
is due to stricter control for certificate errors on the iOS platform.

4.3.5 T6 & T7: Special URLs. As discussed in Section 3.2, T6 and T7
concern about special URLs where a lock emoji is part of the title,
and where extended sub-domain names are used, respectively. Fig-
ure 8 shows screenshots of representative apps when they process
such special URLs.

Chrome Custom Tabs and SFSafariViewController. CCT
could be configured with or without the title of the page being
visible. When the title is visible (Case 1 of Figure 8), the lock emoji
(part of the title) and the exclamation mark icon (due to the HTTP
protocol being used) show up next to each other, which is confusing
but not too bad as the warning is there. In absence of the page title,

On the Usability (In)Security of In-App Browsing Interfaces in Mobile Apps RAID ’21, October 6–8, 2021, San Sebastian, Spain

either due to developer configuration in CCT (Case 2) or due to SF
in use (Case 11), the HTTP warning is there without any confusion.

Regarding T7, both CCT and SF display the suffix of the URL
(with the long subdomain trimmed), which means that both CCT
and SF are immune to T7 attacks (see Cases 7 and 12).

GOOD. Regarding T6, a potential GOOD design we’d suggest is
to detect the use of lock (or similar) emojis in the title and replace
themwith unambiguous text or symbols. Unfortunately, none of the
subject apps has a similar design (not even the CCT/SF implementa-
tions). Therefore, we only consider their own IABI implementations
not showing the title as GOOD designs. Except for those CCT apps
which choose not to show the title, only Facebook (case 3 in Figure 8)
and KakaoTalk have a GOOD design in this test.

In T7, we consider designs that prioritize the display of domain
name over subdomain name GOOD. LINE is the only GOOD one in
our tests (Case 8).

NEUTRAL.When the lock emoji in the title is shown, we con-
sider it NEUTRAL if either the full URL or an HTTP indicator (e.g.,
exclamation mark icon) is also shown, so that end users still have
a way of telling that the page is insecure. Examples include CCT
implementation, LINE (Case 4), and Twitter.

In evaluating T7, we find that 9 of 18 apps with their own IABI
implementations only display the title of the page without the URL
(e.g., WeChat in Case 9), which strictly speaking does not fall short
on the extended subdomain but is still misleading. We therefore
categorize this as NEUTRAL.

BAD. In T6, 11 apps display the lock emoji without any HTTP
indicator or displaying the complete URL (e.g., Cases 5 and 6). End
users have a high chance of being misled by the lock emoji, and
we consider such designs BAD. Regarding T7, 8 of the subject apps
display the subdomain name with the domain name missing (Case
10).

iOS. Again, most apps have similar behavior on their Android
and iOS version, with the exception of FB Messenger iOS app which
only has the domain name on its address bar and is considered as a
GOOD design for T6. For T7, FB Messenger iOS app displays both
the head and the tail of the domain name, which is also a GOOD
design. LinkedIn iOS app, on the other hand, suffers with displaying
the subdomain (BAD) although its Android counterpart only shows
the title (NEUTRAL).

Takeaways in §4.3:
• Ten apps using Chrome Custom Tabs or SF perform
GOOD on nearly all the tests from T2 to T7.

• More than half of the remaining 15 apps do not display
the domain name in their own IABI implementation, and
nearly none of them provides HTTP and HTTPS indica-
tors. This makes it difficult for end users to differentiate
between secure and insecure pages. Fortunately, all apps
behave GOOD when handling URLs with certificate er-
rors.

• Moreover, nearly all those 15 apps have BAD perfor-
mance on handling a title with the fake lock emoji or
a long subdomain name, which could lead to insecure
pages being misinterpreted as secure ones.

CCT

QQMail

LINE

LinkedIn (Own)

SF

1

2

3

4

5

Figure 9: Examples of whether displaying specific warnings
in the title barwhen users browse a (potentially phishing) lo-
gin page (T8). We tested both HTTP andHTTPS login pages.

4.4 Usability Risks on Page Navigation
As mentioned in Section 3.3, our last test (T8) is to see how a
subject app’s IABI implementation reacts to dangerous operation
(e.g., password inputting) during the navigation of a web page.
Specifically, T8 tests whether IABIs would show a specific or extra
warning on a login page as compared with their normal behaviors
on a non-login page. Figure 9 shows the screenshots of some
representative IABIs.

ChromeCustomTabs and SFSafariViewController.As sho-
wn in Case 1 of Figure 9, CCT does not provide any additional
warning for password inputting when navigating both HTTP and
HTTPS login pages. That said, it has the same behaviors as pre-
viously in T3 and T4; see Figure 5 and 6. Therefore, we consider
CCT’s rating as BAD in this test. In contrast, SF performs slightly
better than CCT. As shown in Case 5 of Figure 9, SF highlights the
display of “Not Secure” (normally displayed for all HTTP pages;
see Case 8 in Figure 6) by changing its color to red when end users
navigate an HTTP login page, which is more striking for end users
to notice. However, SF does not have specific warnings on HTTPS
login pages. As a result, we assign NEUTRAL to SF’s performance
on T8.

GOOD.According to our specification in Section 3.3, we consider
those that provide specific warnings for both HTTP and HTTPS
login pages as GOOD designs. QQ Mail (Case 2) and QQ (both of
which are developed by Tencent) display such prompt when the
user enters username or password into both HTTP (URL8) and
HTTPS (URL10) web page, which are GOOD.

NEUTRAL. Some apps display an extra warning (other than
the normal HTTP indicator) during navigation of an HTTP login
page but fail to provide any warning on an HTTPS login page.
According to our specification in Section 3.3, we rate these apps’

RAID ’21, October 6–8, 2021, San Sebastian, Spain Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao

IABIs as NEUTRAL. For all tested apps, we find that only the apps
using SF have such performance.

BAD. The other apps score BAD in T8, includingWeChat which
is also developed by Tencent but they do not show any warnings in
this test. Upon further investigation, we find that this anti-fraud tip
which is used by the other two apps can be removed inWeChat if
the domain name is registered on the developer platform ofWeChat.
So maybe some developers have registered this domain name on
that platform so the prompt is removed.

iOS. iOS apps their with own IABI implementation behave the
same as their Android versions in this test.
Takeaway in §4.4: Most of the tested IABIs do not provide spe-
cific warnings to remind users of the risk of inputting pass-
words during navigating a login page, regardless it usesHTTPor
HTTPS. Even CCT/SF does not performwell in this teszhoumot.

5 APP DEVELOPERS’ RESPONSES
To understand developers’ reaction on our findings and to poten-
tially provide our recommendations on fixing severe IABI issues,
we issued security reports to all affected apps includingWeChat, FB
Messenger, QQ, Snapchat, Instagram (fixed as we reported),Weibo,
163 Mail, QQ Mail, Alipay, LinkedIn, Toutiao, and Baidu, through
their bug bounty programs or security contact emails3. Most of the
apps acknowledged our findings and agreed with our assessment,
but refused to recognize them as vulnerabilities, i.e., they consider
the reported issues out of the scope of their bug bounty programs.
By analyzing their responses in detail as follows, we find that de-
velopers’ willingness and readiness to fix usability security issues
are rather low compared to fixing technical vulnerabilities, which
is a puzzle in usability security research.

Facebook’s response. While the Facebook app performs well
in nearly all the tests, the other two apps from the same company,
namely FB Messenger and Instagram, did not use the same IABI
design and failed in our tests T3∼T4 and T6∼T8 (see §4). When
we prepared the security reports for these two apps on 4 February
2021, we found that the latest version of Instagram had changed
its IABI design to display a lock icon and an exclamation mark to
indicate the HTTPS and HTTP pages, respectively. This suggests
that they also noticed this problem (before our reporting) and made
an improvement. Therefore, we focus on the response to our reports
to FB Messenger.

There are two key points in the response given by the Facebook
security team. First, they appreciated our report but said that our re-
port does not qualify for their bug bounty program due to the social
engineering nature of our reported attacks. Second, they already
have a URL detection system called Linkshim, which could detect
potentially malicious URLs and thus defend against IABI attacks.
While we agree that the reported IABI usability issues would not
cause the same security consequences as in the technical WebView
vulnerabilities (e.g., [16, 19, 26, 27, 30]), the usability weaknesses in
FB Messenger’s IABIs we demonstrated in §4 definitely give attack-
ers ample rooms to successfully launch phishing attacks. Moreover,

3Apps using CCT/SF are generally secure; so we skip them. We failed to locate any
feedback channel for KakaoTalk and Zhihu and therefore have to skip them as well.

it is a puzzle to see that different apps developed by the same com-
pany make vastly different security decisions for seemingly the
same component.

Snapchat’s response. Compared with Facebook, the security
team of Snapchat is more concerned on IABIs’ usability security
issues with the following response (despite that a priority fix would
not be issued as similar to FB Messenger): “While this attack scenario
is quite interesting, we would consider this to be more of a defense-in-
depth issue, rather than a discrete security vulnerability in Snapchat
itself. Per our program rules, we generally don’t accept issues pertain-
ing to ‘Reports solely indicating a lack of a possible security defense’.
While we appreciate your suggestions here, we don’t feel that this
poses a severe enough risk to warrant a priority fix, and as such we’ll
be closing this report as Informative. We do appreciate your efforts
here, and we hope you’ll continue reporting security issues to us in
the future.”

LinkedIn’s response. Compared to Facebook and Snapchat, the
response from LinkedIn’s security team ismore positive. Specifically,
they consider patching it in the future versions of the LinkedIn app:
“Thank you for your detailed email and report, we appreciate it. We
regularly review incoming reports to identify opportunities to improve
our member experience and their safe interactions on the platform.
We have taken note of these items and included it for consideration in
our future roadmaps. Once again, we appreciate the detail and effort
that went into this research & report.”

SomeChinese IT companies’ responses.We also received re-
sponses from a few large Chinese IT companies, including Tencent
(developing QQ, WeChat, and QQ Mail apps), Alibaba (developing
Alipay), ByteDance (developing Toutiao), Sina (developingWeibo),
NetEase (developing 163 Mail), and Baidu. Most of them did not
take our security reports seriously — either indicating that it was a
known problem (by Tencent) or simply closed our reports without
an explanation (by Sina). The only exception goes to ByteDance,
whose security team responded that they just followed “the indus-
try’s standard” but will report this issue to their product team.

All these responses suggest a play down from app developers
when it comes to IABI usability security concerns.

6 SECURE IABI DESIGN PRINCIPLES
In this section, we propose a set of secure IABI design principles
and corresponding code-level implementations in this section to
help mitigate risky IABIs and guide future designs. Here we provide
implemenations in Android as examples, and iOS developers can
use corresponding counterparts in iOS.

Firstly, we recommend the use of Chrome Custom Tabs and
SFSafariViewController for their good performance in our tests
presented in this paper except for T8. The implementation guides
are CCT [3] and SF [4]. Comparing to building one’s own IABI,
CCT/SF are easy to incorporate with little effort while achieving
outstanding security design and optimized loading speed.

However, CCT and SF also have their limitations. CCT failed to
provide an extra prompt to alert users when entering passwords on
the web page. And they can only provide some basic customization
options while developers may need deeper customization to fit in
with their apps. In some region, Chrome (and therefore CCT) is not
available, e.g., in the mainland China market.

On the Usability (In)Security of In-App Browsing Interfaces in Mobile Apps RAID ’21, October 6–8, 2021, San Sebastian, Spain

Considering these shortcomings of CCT/SF, we propose the
following IABI design principles for those developers who need
their own IABI implementation. We devide them into three parts:
design principles before opening the URL, on page displaysing and
on page navigating. Considering these shortcomings of CCT/SF,
we propose the following IABI design principles for developers
who need their own IABI implemenation. We devide them into
three parts: design principles before opening the URL, on page
displaysing, and on page navigating.
1. Before Opening the URL: In the chatting, posting, email UI

and other possible UI that display the clickable URL, IABIs:
a) SHOULD display the complete URL and corresponding

indicators of URL schemes. It would be GOOD that the
indicator be more intuitive and eye-catching than title and
favicon.

b) SHOULD NOT display any extra pre-loading informa-
tion (e.g., favicion and title), unless that URL can be trusted.

2. On Page Displaying. After the user taps the URL, developers
could adopt the following five principles to better avoid the
potential usability security issues on page displaying:
a) SHOULD display the full URL in the address bar to

show the page origin. Developers can get the URL of the cur-
rent page through WebView.getURL() or the arguments in
the event handlers of WebViewClient (e.g., onPageFinished,
shown in Listing 1).

b) SHOULDdisplay theHTTPandHTTPS indicators, which
are intuitive for users to identify insecure web pages, po-
tentially in conjunction with the scheme text in the URL.
To this end, developers can override the onPageFinished
method [7]. Here we provide a simple example in Listing 1.

1 pu b l i c vo id onPageF in i shed (WebView view , S t r i n g
u r l) {

2 . . .
3 / / D i sp l ay u r l on the t i t l e bar .
4 add r e s sBa r . s e t T e x t (u r l) ;
5 / / o b t a i n the scheme
6 S t r i n g scheme = URL (u r l) . g e t P r o t o c o l () ;
7 i f (scheme . e qu a l s (" h t t p s ")) {
8 / ∗ Di sp l ay the HTTPS i n d i c a t o r ∗ /
9 } e l s e {
10 / ∗ Di sp l ay the i n s e c u r e i n d i c a t o r ∗ /
11 }
12 . . .
13 }

Listing 1: Display the URL and indicators.

c) SHOULD NOT directly open URLs with certificate er-
rors.
a. Show a prompt, like a dialog box or a special page,

which informs end users about SSL errors.
b. Provide end users with the option to continue opening

the URL in a covert manner, e.g., as in CCT which
only shows the continue option after clicking on the
“Advanced button” (Case 2 in Figure 7).

To handle the certificate errors in the WebView, developers
can override the event handler WebViewClient.onReceiv-
edSslError [8], and show a dialog to inform the user about
the error.

d) SHOULD handle the lock emoji in the title with extra
care by:

a. Replacing it with the text to avoid misinterpreting as
the HTTPS indicator; or

b. Disallowing emoji; or
c. Avoiding displaying the title.

Developers can override the onPageFinished method, ob-
tain the title of the web page by WebView.getTitle(), and
detect the emoji code in the title. For example, the Unicode
of the lock emoji is U+1F512. Another choice is to disallow
all the unicode in the title. We do not recommend it as it
will greatly damage the user experience.

e) SHOULD handle the long subdomain name with extra
care. by:
a. Providing scrolling capability for end uses to read the

complete domain name; or
b. Prioritizing the display of domain name over subdo-

main name.
To scroll the TextView (displaying the URL/domain name)in
Android apps, developers can set its attribute in the layout
xml file: android:ellipsize=‘‘marquee’’.
To Prioritize the domain name, developers can set the at-
tribute to: android:ellipsize=‘‘start’’.

3. On Page Navigating.When the user tries to enter the password
or other sensitive information in an web page, IABIs:
a) SHOULD showanadditionalwarning regardless ofHTTPS

or HTTP pages. Case 2 in Figure 9 is a good example.
To detect the input box of the password and username, de-
velopers can utilize the interaction between the Java and
JavaScript code, i.e., using WebView.loadUrl() to execute
JavaScript code to detect the ‘password’ type within the
web page and give a corresponding prompt. An example is
shown in Listing 2.

1 webView . l o a dU r l (
2 " j a v a s c r i p t : (f u n c t i o n () { " +
3 " var o b j s =document . getElementsByTagName (\ " i npu t \ ") ; "
4 + " f o r (var i = 0 ; i < o b j s . l e ng t h ; i ++) " + " { "
5 + " var type = ob j s [i] . g e t A t t r i b u t e (\ " type \ ") ; "
6 + " i f (type == \ " password \ ") { "
7 + " o b j s [i] . on focus = f un c t i o n () { "
8 + "PROMPT_TO_ENTERING_PASSWORD"
9 + " } "
10 + " } "
11 + " } "
12 + " }) () ") ;

Listing 2: Display a prompt when entering passwords.

7 DISCUSSION
In this section, we discuss threats to the validity of our study and
limitations. Specifically, the major threats are that we did not con-
duct a user study to evaluate IABIs and our ratings are subjective
assessments solely based on designs of the apps’ user interfaces
and corresponding logic. Additionally, we discuss our limitations
on the lack of a large dataset, automatic testing, and evaluation of
the IABI design principles.

User study. The usability problems mentioned in this paper are
not verified in a study with end users, resulting in the lack of direct
confirmation of our findings. For example, in T6, we did not test
whether an end user is actually misled by the fake lock emoji in
the title, even though an expert analysis on the app’s user interface

RAID ’21, October 6–8, 2021, San Sebastian, Spain Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao

strongly suggests the possibility. A possible extension of this work
is to design an IABI app practicing GOOD IABI principles and
compare end user reactions with those from popular apps tested in
this paper.

Ratings. Our evaluations, in particular, the setting of various
ratings, are based on previous work [9–11] and World Wide Web
(W3C) guidelines on mobile browsers [6]. We believe that some of
these settings are subjective assessments and do not advocate the
uniqueness of such settings.

Dataset.We conducted tests only on a relatively small dataset
with 25 mobile apps. However, these apps are all the most popular
ones containing IABIs and are used in daily life. Therefore, we be-
lieve that they capture IABIs’ representative behaviors experienced
by end users. It is worth noting that we do not consider the apps
that do not have IABIs, such as Whatsapp and Signal, because they
jump to default browsers when opening a web page.

Towards automatic testing.Ourmanual testing limits the scal-
ability of this paper. Here we explain briefly why an automatic
testing is non-trivial with either dynamic or static approaches.

Unlike existing work on generic dynamic analysis of mobile apps,
our analysis of IABI behavior requires triggering specific behavior
of mobile apps. This typically mandates signing up an account with
each app and triggering the processing of specific URLs, which is,
to say the least, non-trivial. For example, we cannot find a unified
(dynamic) way of precisely locating the (all) chat UI of each app.

Static analysis also encounters specific challenges, e.g., locating
the HTTP and HTTPS indicators, which typically do not present
themselves as layout files but images. Therefore, it is non-trivial to
perform backward tracing to find the relationship between these
indicators and the web pages.

Evaluating designprinciples.The principles in Section 6 present
lessons learned from our systematic analysis of the 25 high-profile
apps, but they have not been tested in real-world app development
or end-product user studies. We hope that our study can bring
attention to the community and promote more research on the
principles and guidelines for IABIs development.

8 RELATEDWORK
In this section, we review some closely related works on the security
indicators in regular mobile browsers, the general mobile WebView
and TLS security.

Security Indicators inMobile Browsers. Amrutkar et al. [11]
first measured the adequacy of critical security indicators in mobile
browsers. They found that mobile browser’s UI designs failed to
meet many security guidelines. Luo et al. [18] revealed a number of
UI vulnerabilities among mobile browsers, which attackers can use
to better social engineer users and collect sensitive information. Wu
et al. [29] evaluated the usability of mobile browsers’ address bars
for security guarantees. Different from these studies on standalone
mobile browser apps, our study is the first one targeting security
indicators in in-app browsing interfaces (IABIs). Moreover, we
show that the problems become worse when it comes to IABIs,
as many developers only care about the main functionality of the
app without putting too much effort into the design of browsing
interfaces.

Mobile WebView Security. Android WebView had been vul-
nerable to various attacks. Luo et al. performed the first study on
the attacks of WebView [19, 20], followed by the file-based cross-
zone scripting attack [26] and access control problem by Georgiev
et al. [14]. Wu and Chang [27] further studied the WebView vul-
nerabilities on the iOS platform. There are also many techniques to
prevent private data from leaking through JavaScript, for example,
BavelView [21], Spartan Jester [22], and HybriDroid [15]. Most
of the past research focused on the interaction between Java and
JavaScript but not on the usability security of the in-app browsing
interfaces. For example, Li et al. [17] proposed attacks that utilize
browsing interfaces for cross-app navigation from another Web-
View. Similarly, Yang et al. [30] found that iframe can navigate the
WebView to untrusted web pages.

Mobile App TLS Security. Many Android apps use SSL/TLS
to transmit sensitive information securely, but developers often
use their own, potentially insure, implementation to verify the
certificate. Georiev et al. showed that SSL certificate validation is
completely broken in various popular apps and libraries [13]. Thus,
many previous works studied the potential security threats caused
by the inadequate or insecure use of TLS in mobile browsers. They
provided various tools to detect potential vulnerabilities against
Man-In-The-Middle attacks caused by inadequate use of SSL/TLS,
including the dynamic MalloDroid [12] and SMV-Hunter [23] and
the static Amandroid [25] and BackDroid [28]. In this paper, we
find that most of the apps that use their own IABIs do not have any
security indicators about the schemes the website is using, to the
extent that the users cannot identify whether the current web page
they are browsing meet the TLS requirement.

9 CONCLUSION
In this paper, we conducted the first empirical study on the usability
(in)security of in-app browsing interfaces (IABIs) in both Android
and iOS apps. Atop a dataset of 25 high-profile mobile apps that
contain IABIs, we performed a systematic analysis that comprises
eight security tests and covers all the attack surfaces from opening,
displaying, to navigating an in-app web page. We obtained three
major security findings, including about 30% of the tested apps
fail to provide enough URL information before users open the
URL, nearly all custom IABIs have various problems in providing
sufficient indicators to faithfully display an in-app page to users,
and only a few IABIs give specific warnings to remind users of
dangerous operations (e.g., password inputting) during navigating a
login page. To helpmitigate risky IABIs and guide future designs, we
reported our findings to affected vendors, analyzed their responses,
and proposed a set of secure IABI design principles.

ACKNOWLEDGMENTS
We thank our shepherd, Yasemin Acar, for her comprehensive guid-
ance and the anonymous reviewers for their valuable comments
and suggestions. This research/project is partially supported by the
Singapore National Research Foundation under the National Satel-
lite of Excellence in Mobile Systems Security and Cloud Security
(NRF2018NCR-NSOE004-0001) and a direct grant (ref. no. 4055127)
from The Chinese University of Hong Kong.

On the Usability (In)Security of In-App Browsing Interfaces in Mobile Apps RAID ’21, October 6–8, 2021, San Sebastian, Spain

REFERENCES
[1] Access in 2021. WebView. http://developer.android.com/reference/android/

webkit/WebView.html.
[2] Accessed in 2021. Chrome Custom Tabs. https://developer.chrome.com/docs/

multidevice/android/customtabs/.
[3] Accessed in 2021. Chrome Custom Tabs Implementation Guide. https://developer.

chrome.com/docs/android/custom-tabs/integration-guide/.
[4] Accessed in 2021. SFSafariViewController. https://developer.apple.com/

documentation/safariservices/sfsafariviewcontroller.
[5] Accessed in 2021. UIWebView. https://developer.apple.com/documentation/uikit/

uiwebview.
[6] Accessed in 2021. W3C: Web Security Context: User Interface Guidelines. http:

//www.w3.org/TR/wsc-ui/.
[7] Accessed in 2021. WebViewClient.onPageFinished. https://developer.android.

com/reference/android/webkit/WebViewClient#onPageFinished(android.
webkit.Web-View,%20java.lang.String).

[8] Accessed in 2021. WebViewClient.onReceivedSslError. https://developer.android.
com/reference/android/webkit/WebViewClient#onReceivedSslError(android.
webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.
SslError)).

[9] Chaitrali Amrutkar, Patrick Traynor, and Paul Oorschot. 2013. An Empirical
Evaluation of Security Indicators in Mobile Web Browsers. In IEEE Trans. on
Mobile Computing.

[10] Chaitrali Amrutkar, Patrick Traynor, and Paul C Van Oorschot. 2012. Measur-
ing SSL indicators on mobile browsers: Extended life, or end of the road?. In
International Conference on Information Security.

[11] Chaitrali Amrutkar, Patrick Traynor, and Paul C. van Oorschot. 2015. An Empiri-
cal Evaluation of Security Indicators in Mobile Web Browsers. IEEE Transactions
on Mobile Computing (2015).

[12] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android:
An Analysis of Android SSL (In)Security. In Proc. ACM CCS.

[13] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security.

[14] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. 2014. Breaking and Fixing
Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks. In
Proc. ISOC NDSS.

[15] Sungho Lee, Julian Dolby, and Sukyoung Ryu. 2016. HybriDroid: Static analysis
framework for Android hybrid applications. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE).

[16] Tongxin Li, Xueqiang Wang, Mingming Zha, Kai Chen, XiaoFeng Wang, Luyi
Xing, Xiaolong Bai, Nan Zhang, and Xinhui Han. 2017. Unleashing the Walking

Dead: Understanding Cross-App Remote Infections on Mobile WebViews. In Proc.
ACM CCS.

[17] Tongxin Li, Xueqiang Wang, Mingming Zha, Kai Chen, XiaoFeng Wang, Luyi
Xing, Xiaolong Bai, Nan Zhang, and Xinhui Han. 2017. Unleashing the Walking
Dead: Understanding Cross-App Remote Infections on Mobile WebViews. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security.

[18] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis. 2017. Hind-
sight: Understanding the Evolution of UI Vulnerabilities in Mobile Browsers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security.

[19] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android system. In Proc. ACM ACSAC.

[20] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2013. Touch-
jacking Attacks on Web in Android, iOS, and Windows Phone. In Foundations
and Practice of Security.

[21] Claudio Rizzo, Lorenzo Cavallaro, and Johannes Kinder. 2018. BabelView: Evalu-
ating the Impact of Code Injection Attacks in Mobile Webviews. In Research in
Attacks, Intrusions, and Defenses.

[22] Julian Sexton, Andrey Chudnov, and David A. Naumann. 2017. Spartan Jester:
End-to-End Information Flow Control for Hybrid Android Applications. In 2017
IEEE Security and Privacy Workshops (SPW).

[23] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur
Khan. 2014. SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-
the-Middle Vulnerabilities in Android Apps. In Proc. ISOC NDSS.

[24] Thomas Steiner. 2018. What is in a Web View? An Analysis of Progressive Web
App Features When the Means of Web Access is not a Web Browser. In Proc.
ACM WWW.

[25] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proc. ACM CCS.

[26] Daoyuan Wu and Rocky K. C. Chang. 2014. Analyzing Android Browser Apps
for file:// Vulnerabilities. In Proc. Springer Information Security Conference (ISC).

[27] Daoyuan Wu and Rocky K. C. Chang. 2015. Indirect File Leaks in Mobile Appli-
cations. In Proc. IEEE Mobile Security Technologies (MoST).

[28] Daoyuan Wu, Debin Gao, Robert H. Deng, and Rocky K. C. Chang. 2021. When
ProgramAnalysis Meets Bytecode Search: Targeted and Efficient Inter-procedural
Analysis of Modern Android Apps in BackDroid. In Proc. IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).

[29] Min Wu, Robert C. Miller, and Simson L. Garfinkel. 2006. Do security toolbars
actually prevent phishing attacks?. In Proceedings of the SIGCHI conference on
Human Factors in computing systems. ACM.

[30] Guangliang Yang, Jeff Huang, and Guofei Gu. 2019. Iframes/Popups Are Danger-
ous in Mobile WebView: Studying and Mitigating Differential Context Vulnera-
bilities. In 28th USENIX Security Symposium.

http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
https://developer.chrome.com/docs/multidevice/android/customtabs/
https://developer.chrome.com/docs/multidevice/android/customtabs/
https://developer.chrome.com/docs/android/custom-tabs/integration-guide/
https://developer.chrome.com/docs/android/custom-tabs/integration-guide/
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/uikit/uiwebview
https://developer.apple.com/documentation/uikit/uiwebview
http://www.w3.org/TR/wsc-ui/
http://www.w3.org/TR/wsc-ui/
https://developer.android.com/reference/android/ webkit/WebViewClient#onPageFinished(android.webkit.Web-View,%20java.lang.String)
https://developer.android.com/reference/android/ webkit/WebViewClient#onPageFinished(android.webkit.Web-View,%20java.lang.String)
https://developer.android.com/reference/android/ webkit/WebViewClient#onPageFinished(android.webkit.Web-View,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebViewClient#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError))
https://developer.android.com/reference/android/webkit/WebViewClient#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError))
https://developer.android.com/reference/android/webkit/WebViewClient#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError))
https://developer.android.com/reference/android/webkit/WebViewClient#onReceivedSslError(android.webkit.WebView,%20android.webkit.SslErrorHandler,%20android.net.http.SslError))

	Abstract
	1 Introduction
	2 Background
	3 Overview of Our Analysis
	3.1 Analyzing Risks before Page Opening
	3.2 Analyzing Risks on Page Displaying
	3.3 Analyzing Risks on Page Navigating

	4 Cross-platform Analysis Results
	4.1 Test Apps and Overall Analysis Results
	4.2 Usability Risks before Page Opening
	4.3 Usability Risks on Page Displaying
	4.4 Usability Risks on Page Navigation

	5 App Developers' Responses
	6 Secure IABI Design Principles
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

