
Leakage-Resilient Easily Deployable and
Efficiently Searchable Encryption (EDESE)

Jiaming Yuan

Yingjiu Li

Jun Li

jiamingy@uoregon.edu

yingjiul@uoregon.edu

lijun@cs.uoregon.edu

Department of Computer Science

University of Oregon

Eugene, USA

Daoyuan Wu

Department of Computer Science and

Engineering

The Hong Kong University of Science

and Technology

Hong Kong, China

daoyuan@cse.ust.hk

Jianting Ning
∗

School of Cyber Science and

Engineering

Wuhan University

Wuhan, China

Faculty of Data Science

City University of Macau

Macau, China

jtning88@gmail.com

Yangguang Tian

School of Computer Science and

Electronic Engineering

University of Surrey

Guildford, UK

yangguang.tian@surrey.ac.uk

Robert H. Deng

School of Computing & Information

Systems

Singapore Management University

Singapore, Singapore

robertdeng@smu.edu.sg

Abstract
Easily Deployable and Efficiently Searchable Encryption (EDESE)

is a cryptographic primitive designed for practical searchable ap-

plications, offering efficient search and easy deployment. How-

ever, it remains vulnerable to Leakage-Abuse attacks, allowing

adversaries to exploit keyword-matching processes to extract sen-

sitive information. To address these vulnerabilities, we introduce

Leakage-Resilient EDESE (LR-EDESE) with 𝑘-indistinguishability

and controlled leakage functions.We then propose Volume Leakage-

Resilient EDESE (VLR-EDESE), a new scheme to protect against

both query and document volume leakage. Our experimental re-

sults demonstrate that at 𝑘 = 5000 (maximum security setting),

VLR-EDESE incurs an overhead of 63× compared to the baseline

EDESE without leakage protection, outperforming state-of-the-art

methods with 320× and 97× overhead, respectively. For smaller

𝑘 values (10, 20, 50, 100), storage and communication overhead

remain within 2× and 2.5× of the baseline EDESE, highlighting

VLR-EDESE’s flexibility. Finally, we present CloudSec, an imple-

mentation of VLR-EDESE that seamlessly integrates with cloud

storage platforms, using OneDrive as an example.

CCS Concepts
• Security and privacy→ Cryptography.

∗
Jianting Ning is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SACMAT ’25, Stony Brook, NY, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1503-7/2025/07

https://doi.org/10.1145/3734436.3734445

Keywords
Symmetric Searchable Encryption, Leakage-Abuse Attack Defense,

Leakage-Resilient, EDESE

ACM Reference Format:
Jiaming Yuan, Yingjiu Li, Jun Li, Daoyuan Wu, Jianting Ning, Yangguang

Tian, and Robert H. Deng. 2025. Leakage-Resilient Easily Deployable and

Efficiently Searchable Encryption (EDESE). In Proceedings of the 30th ACM
Symposium on Access Control Models and Technologies (SACMAT ’25), July
8–10, 2025, Stony Brook, NY, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3734436.3734445

1 Introduction
Easily Deployable and Efficiently Searchable Encryption. The
Easily Deployable and Efficiently Searchable Encryption (EDESE)

is a promising cryptographic primitive designed specifically for

practical symmetric searchable encryption (SSE) applications [3, 13,

20, 28, 31]. It offers two advantages: easy deployment and efficient
search. Compared to existing SSEs, easy deployment makes EDESE

the optimal choice for protecting existing searchable services.

The easy deployment of EDESE stems from minimal server in-

volvement: the server only stores encrypted data and performs

simple matching. When a client sends a query token for a keyword,

the server matches it directly against stored ciphertexts using bit-

wise comparison—mirroring the process on unencrypted data. This

compatibility enables seamless migration from existing systems to

EDESE-based searchable services. It leads to significantly reduced

deployment and maintenance costs, attracting both individual and

enterprise customers.

Another key benefit of EDESE is its remarkable search efficiency

on the server side, which leverages the inherent efficiency of SSE.

Due to the streamlined matching process employed by EDESE, the

search performance on the server side closely resembles that of

searching over plaintext. In contrast, most existing searchable en-

cryption schemes require the server to run complex test algorithms,

133

https://orcid.org/0000-0001-7674-9067
https://orcid.org/0000-0001-8256-6988
https://orcid.org/0000-0002-5308-5672
https://orcid.org/0000-0002-3752-0718
https://orcid.org/0000-0001-7165-398X
https://orcid.org/0000-0002-0701-6844
https://orcid.org/0000-0003-3491-8146
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3734436.3734445
https://doi.org/10.1145/3734436.3734445
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3734436.3734445&domain=pdf&date_stamp=2025-07-07

SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Jiaming Yuan et al.

which may involve decryption or other intricate mathematical oper-

ations For example, PIR-protected schemes [1, 14] require complex

computations on the server side. Consequently, EDESE outper-

forms other searchable encryption schemes as the most efficient

searchable encryption solution in practical scenarios.

Leakage-Abuse Attack. EDESE is vulnerable to Leakage-Abuse

attacks (LAAs), widely studied in numerous research works [2, 4,

12, 15, 19, 21, 23, 24, 26]. These attacks leverage leaked information

from searchable encryption schemes, including EDESE, to infer sen-

sitive data with the help of auxiliary information. In the context of

searchable encryption literature, “leakage” refers to any information

that an attacker can discern about query tokens, encrypted docu-

ments, and query responses. The auxiliary information consists of

a partial or complete set of source documents or a set of documents

with a distribution similar to that of the source documents.

LAAs encompass various types of leakage profiles, such as ac-

cess patterns, search patterns, volume patterns, co-occurrence pat-

terns, etc. Specifically, the access pattern leakage exposes which

encrypted document is associated with a query token. Search pat-

tern leakage implies whether two query tokens correspond to the

same keyword. Volume pattern leakage refers to the number of en-

crypted documents associated with a query token (or vice versa, the

number of query tokens associated with an encrypted document).

Co-occurrence pattern leakage illustrates how many encrypted

documents are associated with a pair of query tokens or how many

query tokens are associated with a pair of encrypted documents.

However, it is important to note that EDESE is more vulnerable

to LAAs than general searchable encryption (SE) schemes due to

its more stringent requirements. Its matching process on the server

restricts the data owners from employing complex approaches to

mitigating LAAs, and the only option for addressing LAAs is to

incorporate dummymessages into the server’s responses as ameans

of addressing such attacks.

Existing Approaches. Existing approaches to safeguard general

SE from LAAs cannot protect EDESE because these approaches

require additional server operations except for matching operations

or multiple communications between server and client, and cannot

be applied to EDESE [1, 3, 17, 21, 25, 28]. On the other hand, existing

countermeasures that fulfill the requirement of EDESE only focus

on query volume leakage [2, 4, 5, 12, 15]. They are not secure

against other leakages, such as document volume leakage [23] and

query/document co-occurrence leakage [4, 12, 26].

1.1 Our Contribution
Leakage-Resilient EDESE.To effectively strengthen EDESE against
LAAs while maintaining a balance between efficiency and security,

we introduce a novel security concept: Leakage-Resilient EDESE
(LR-EDESE), characterized by 𝑘-indistinguishability.

To avoid confusion, we clarify that “leakage-resilient” in this

paper differs from its conventional cryptographic meaning, which

typically refers to resistance against side-channel attacks that leak

memory or computation details. Here, it signifies that an EDESE

scheme remains secure against LAAs even when partial informa-

tion is exposed. Additionally, our notion of “𝑘-indistinguishability”

aligns more closely with 𝑘-anonymity, ensuring that each query

or document volume is indistinguishable from at least 𝑘 alterna-

tives, thereby limiting leakage exploitation.We rigorously formalize

LR-EDESE within a cryptographic framework under this definition.

Volume Leakage Hiding Methods. We propose a novel volume

leakage hiding method called modulo-based document partition

(MDBPar), which partitions document volumes based on a modulo

operation to hide document volume leakage, and a query volume

leakage hiding method, inspired by Bost et al.’s work [3], named

keyword clustering (KClu), which groups keywords into clusters to

obscure query volume patterns. Both approaches introduce dummy
documents alongside real keywords to effectively mask volume

leakage. We formally prove that MDBPar and KClu achieve 𝑘-

indistinguishability, ensuring robust mitigation of both document

and query volumes in EDESE.

Volume Leakage-Resilient EDESE. We construct a concrete

Volume Leakage-Resilient EDESE (VLR-EDESE). The VLR-EDESE

achieves the complete query response, concurrently thwarting

LAAs in terms of query volume and document volume leakages

through the incorporation of𝑘-indistinguishability. The VLR-EDESE

sequentially employs the proposed volume leakage hiding methods

to generate encrypted documents. Initially, VLR-EDESE applies

the MDBPar method to derive a set of semi-obfuscated documents

from the source documents. Then it takes this set as input for the

subsequent execution of the KClu method, producing a set of fully

obfuscated documents. These obfuscated documents comprise both

original and dummy documents, and the server storage overhead

of VLR-EDESE is linear to the count of the obfuscated documents.

Evaluations.We implement a prototype of VLR-EDESE and evalu-

ate its performance through both theoretical analysis and experi-

mental evaluation focusing on setup computation overhead, server

storage overhead, and communication overhead. Our theoretical

analysis demonstrates that VLR-EDESE achieves a setup complexity

of O(𝑚 log𝑚 +𝑚𝑛 + 𝑘𝑚 + 𝑘2), a storage overhead of O(𝑘𝑚 + 𝑛),
and a communication overhead of O(𝑘𝑚 + 𝑛), where𝑚 indicates

the number of keywords, 𝑛 denotes the number of documents, and

𝑘 is the indistinguishability parameter. We conducted experiments

using our prototype implementation on the Enron email dataset

[27], a widely used benchmark in SSE research. The results high-

light the efficiency of VLR-EDESE compared to state-of-the-art ap-

proaches, including PRT-EMM [16] and FP-EMM [25]. VLR-EDESE

takes around 1 hour to produce encrypted documents based on

the top 5,000 keywords and 37,172 source documents. With the

strongest security setting (𝑘 = 5000), VLR-EDESE incurs an overall

overhead of only 63× compared to the baseline EDESE without

volume leakage mitigation, significantly lower than the 320× and

97× overheads of adapted state-of-the-art schemes. This maximum

𝑘 value represents the theoretical security limit achievable by any

EDESE or ORAM-based scheme. Furthermore, we test with smaller

𝑘 values (specifically 10, 20, 50, and 100), significantly reducing stor-

age and communication overhead to no more than 2 times and 2.5

times that of the baseline scheme respectively. This demonstrates

VLR-EDESE’s flexibility in balancing efficiency and security.

CloudSec. We present CloudSec, which leverages the prototype

implementation of VLR-EDESE to offer a user-friendly application

tailored for the Windows platform. CloudSec enables seamless

134

Leakage-Resilient Easily Deployable and
Efficiently Searchable Encryption (EDESE) SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

integration with various cloud storage platforms that provide REST

APIs, such as OneDrive, Dropbox, Google Drive, and IDrive. In

this paper, we highlight CloudSec’s integration with Microsoft

OneDrive, demonstrating its ability to interact effectively with

cloud services.

2 Related Work
In this section, we conducted a comprehensive review of exist-

ing symmetric searchable encryption (SSE) schemes against LAAs.

Our examination reveals two limitations when these schemes are

applied to protect EDESE against LAAs:

Limitations in Applying SSE Schemes to EDESE. Firstly, exist-
ing SSE schemes [1, 3, 5–8, 16, 17, 21, 25, 28] are often inadequate

for protecting EDESE due to the nature of server operations extend-

ing beyond simple matching. SSE schemes designed to mitigate

LAAs typically require additional server-side operations. For ex-

ample, ORAM-protected SSE schemes [10, 14, 16, 30] introduce

significant overhead through supplementary computations, state

maintenance on the server, and increased client-server commu-

nication. However, EDESE primarily relies on the fundamental

operations of a storage server, including storage and matching. In

such cases, ORAM-protected SSE schemes fail to effectively safe-

guard EDESE. Designing appropriate EDESE schemes to defend

LAAs is still challenging.

Limited Protection Coverage of Document Retrieval Phase.
Many existing SSE schemes [3, 5, 7, 9, 16, 18, 22, 25, 29] are cate-

gorized as structured encryption (STE) schemes, where relation-

ships between keywords and documents are represented as map-

pings to document indices. While STE secures the index retrieval

phase—allowing users to retrieve document indices matching a

searched keyword—it introduces a potential vulnerability during

document retrieval, when users access documents based on their

indices. STE schemes, such as encrypted multi-maps (EMMs) [6, 11,

16], enable outsourcing encrypted structural data to an untrusted

server while allowing the data owner to perform operations on

the encrypted data. In these schemes, the <keyword, document

credential> relationships, known as search indexes, are outsourced,

and the client queries encrypted keywords (trapdoors) to retrieve

document indices. This process, known as index retrieval, is crucial

for SSE systems.

However, the query phase in EDESE includes both index and

document retrieval, requiring protection for each to prevent leakage.

Thus, using STE alone is insufficient. If EDESE protects only the

search index with STE but naively outsources encrypted documents,

attackers can observe retrieved documents and infer index patterns.

To prevent this, our EDESE schemes securely outsource encrypted

documents to mitigate leakage during document retrieval.

3 Models and Definitions
In this section, we first introduce the essential pre-definitions for

EDESE presentations. Then, we present the systemmodel of EDESE

along with the formal definition of its syntax. Next, we describe

the adversarial models of LAAs. Finally, we provide the formal

definition of leakage-resilient security.

3.1 Pre-defined Notions
To illustrate proposed approaches more clearly, there are three

predefined notions.

• Given a set of documents𝐷 ,𝐾 (𝐷) denotes the set of all keywords
in 𝐷 . Besides, if given a set of encrypted documents 𝐸𝐷 , 𝐾 (𝐸𝐷)
denotes all query tokens associated with 𝐸𝐷 .

• 𝑉𝑒𝑐 (𝐷,𝑑) represents all keywords associated with document 𝑑 ∈
𝐷 . 𝑉𝑒𝑐 (𝐷,𝑘𝑤) is defined to represent all documents associated

with keyword 𝑘𝑤 ∈ 𝐾 (𝐷). Similarly, 𝑉𝑒𝑐 (𝐸𝐷, 𝑒𝑑) indicates all
query tokens associated with an encrypted document 𝑒𝑑 ∈ 𝐸𝐷
and 𝑉𝑒𝑐 (𝐸𝐷,𝑞𝑡) indicates all encrypted documents associated

with a query token 𝑞𝑡 . In one word,𝑉𝑒𝑐 represents four functions

based on its inputs.

• A volume function 𝑉𝑜𝑙 is defined to denote the number of key-

words (resp. query tokens) associated with a document (resp. en-

crypted document) or the number of documents (resp. encrypted

documents) associated with a keyword (resp. query tokens). This

is referred to as query volume or document volume.

3.2 System Model of EDESE
EDESE involves two entities, a client and a server, and employs

five core algorithms: key generation, setup, query token generation,

matching, and final result algorithms. These algorithms are grouped

into two distinct phases: setup phase and query phase, as shown in

Fig. 1.

Setup Phase Query Phase

 qt

C
li

en
t

KGen

SetupSource

documents

QueryTK

(kw)

Recover

Associated

documents

 sk

S
er

v
er

Encrypted documents & keywords Match
Encrypted

documents

Figure 1: System model of EDESE.

In the setup phase, the client first runs the key generation algo-

rithm, KGen, to produce a secret key 𝑠𝑘 , which is kept confidential.

Subsequently, the client executes the setup algorithm, Setup, using
a collection of source documents as input. This process generates

a collection of encrypted documents, which are then sent to and

stored by the server.

During the query phase, the client encrypts a queried keyword

𝑘𝑤 into a query token 𝑞𝑡 using the query token generation algo-

rithm, QueryTK, together with the secret key 𝑠𝑘 . The query token

is sent to the server, which uses the matching algorithm, Match,
to identify all encrypted documents related to 𝑞𝑡 and returns them

to the client. Finally, the client applies the recovery algorithm, Re-
cover, with the secret key 𝑠𝑘 as input to retrieve all documents

associated with the queried keyword from the received encrypted

documents.

135

SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Jiaming Yuan et al.

3.3 Algorithms of EDESE
An easily deployable and efficiently searchable encryption (EDESE)

Σ𝐸𝐷𝐸𝑆𝐸=(KGen, Setup, QueryTk, Match, Recover) is composed

of five polynomial-time algorithms as below:

• KGen(1𝝀) → 𝒔𝒌: This probabilistic algorithm, run by the client,

takes as input a security parameter 𝜆 and outputs a secret key 𝑠𝑘 .

• Setup(𝒔𝒌, 𝑫) → 𝑬𝑫 : It takes as inputs a secret key 𝑠𝑘 and a

set of documents 𝐷 , and outputs a set of encrypted documents

𝐸𝐷 combined with the encrypted keywords. It is a probabilistic

algorithm run by the client who outsources 𝐸𝐷 to a server.

• QueryTK(𝒔𝒌, 𝒌𝒘) → 𝒒𝒕 : This deterministic algorithm takes as

inputs the secret key 𝑠𝑘 and a keyword 𝑘𝑤 , and outputs a query

token 𝑞𝑡 . This algorithm is run by the client.

• Match(𝑬𝑫, 𝒒𝒕) → 𝒄𝒕 : It takes as inputs the encrypted docu-

ments 𝐸𝐷 and a query token 𝑞𝑡 , and outputs a response 𝑐𝑡 , which

is a subset of 𝐸𝐷 . This algorithm is run by the server.

• Recover(𝒔𝒌, 𝒄𝒕) → 𝒑𝒕 : It takes as inputs the secret key 𝑠𝑘 and

the response 𝑐𝑡 , and outputs a set of documents 𝑝𝑡 . This algorithm

is run by the client.

Correctness. For any𝑘𝑤 , 𝑠𝑘 , and𝐷 , it calculates𝐸𝐷 ← Setup(𝑠𝑘,
𝐷), 𝑞𝑡 ← QueryTK(𝑠𝑘, 𝑘𝑤), 𝑐𝑡 ← Match(𝐸𝐷,𝑞𝑡), and 𝑝𝑡 ←
Recover(𝑠𝑘, 𝑐𝑡). Then, a Σ𝐸𝐷𝐸𝑆𝐸 is correct if and only if 𝑝𝑡 is

identical to the search result 𝐷 (𝑘𝑤), which indicates the set of

documents related to the keyword 𝑘𝑤 in 𝐷 .

3.4 LAAs on EDESE
In recent years, numerous studies have demonstrated that underly-

ing keywords of query tokens can be retrieved by exploiting the

vulnerabilities of EDESE schemes, given prior knowledge about

the targeted database [2, 4, 5, 12, 15, 23]. This prior knowledge

includes either a partially or fully encrypted database being tar-

geted, along with auxiliary information. Specifically, the targeted

encrypted database is obtained from the server in the setup phase

or observed via communications between the client and the server

during the query phase.

Attack models can be categorized into two types based on the

extent of knowledge contained in the auxiliary information: known-

data attacks and inference attacks. In a stronger attack model [2],

known as the known-data attack, the auxiliary information is par-

tially or the entire underlying plaintext of the targeted encrypted

database. In a weaker attack model, known as the inference attack,

the auxiliary information is a similar database that has the same or

close distribution as the targeted database.

In general, the attacker learns the leakage patterns, including

access pattern, search pattern, volume pattern, co-occurrence pat-

tern, etc., from the targeted encrypted database and the auxiliary

information via leakage functions, which we will formalize the

commonly used leakage functions at the end of this subsection.

The attacker’s objective is to establish the mapping relationships

between the query tokens and the keywords.

In this paper, we consider a strong LAA model on EDESE, char-

acterized by the complete observation of the targeted encrypted

database and utilizing the entire underlying plaintext database as

auxiliary information. This attack model encompasses both the

setup phase and the query phase, as the target encrypted database

is acquired through these stages. It is worth noting that during the

query phase, certain dummy information can be filtered out.

This paper focuses solely on addressing volume leakage, leav-

ing aside search, access, and co-occurrence patterns. This choice

aligns with the nature of EDESE, as methods to mitigate these other

patterns would undermine its efficiency and easy deployment. For

example, ORAM-based searchable encryption can hide multiple

patterns but introduces significant communication overhead, com-

promising EDESE’s efficiency. Similarly, randomized query token

generation could help with search and access pattern leakage, but re-

quires additional mapping and mathematical computations, which

counteract the ease of deployment of EDESE. Moreover, preventing

volume pattern leakage alone is adequate to protect EDESE against

LAAs [2, 4, 5, 12, 15, 23].

Leakage Functions. To better demonstrate leakage functions, our

common math functions are defined, including: 1) 𝐸𝑞(𝑎, 𝑏) = 1 if

𝑎 = 𝑏; otherwise, 𝐸𝑞(𝑎, 𝑏) = 0; 2) given amatrix𝑀𝑚×𝑛 ,𝑅𝑜𝑤 (𝑀, 𝑖) =
(𝑀𝑖,1, ..., 𝑀𝑖,𝑛); 3)𝐶𝑜𝑙 (𝑀, 𝑖) = (𝑀1,𝑖 , ..., 𝑀𝑚,𝑖); 4) and given a vector

or an array 𝑉 , |𝑉 | counts the number of elements in 𝑉 .

• Search pattern leakage function. The search pattern leakage

function L𝑆 identifies whether two queries 𝑞𝑡1, 𝑞𝑡2 refer to the

same keyword, i.e. L𝑆 (𝑞𝑡1, 𝑞𝑡2) = 𝐸𝑞(𝑞𝑡1, 𝑞𝑡2).
• Access pattern leakage function. The access pattern leakage

function L𝐴 produces a matrix 𝑀 (𝑚,𝑛) , reflecting the relation-

ships between a set of 𝑛 encrypted documents 𝐸𝐷 and a set of𝑚

query tokens 𝑄 , such that𝑀𝑖, 𝑗 = 1 if 𝑞𝑡𝑖 ∈ 𝑉𝑒𝑐 (𝐸𝐷, 𝑒𝑑 𝑗); other-
wise𝑀𝑖, 𝑗 = 0, where 𝑞𝑡𝑖 ∈ 𝑄, 𝑒𝑑 𝑗 ∈ 𝐸𝐷, 𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛].
• Volume pattern leakage function. These functions capture
the number of associations in the access pattern matrix𝑀 . The

query token volume leakage function L𝑄𝑉 (response volume)

computes the number of encrypted documents linked to each

query token: L𝑄𝑉 (𝑞𝑡𝑖) = |𝑅𝑜𝑤 (𝑀, 𝑖) |, where 𝑖 ∈ [1,𝑚], 𝑞𝑡𝑖 ∈ 𝑄 .
Similarly, the document volume leakage function L𝐷𝑉 outputs

the number of query tokens linked to each encrypted document:

L𝐷𝑉 (𝑒𝑑 𝑗) = |𝐶𝑜𝑙 (𝑀, 𝑗) |, where 𝑗 ∈ [1, 𝑛], 𝑒𝑑 𝑗 ∈ 𝐸𝐷 .
• Co-occurrence pattern leakage function. These functions

measure overlap between query tokens or documents. The query

token co-occurrence leakage L𝑄𝐶 yields a matrix 𝑀 (𝑄𝐶) ∈
Z𝑚×𝑚 where for all 𝑗1, 𝑗2 ∈ [1, 𝑛], 𝑀 (𝑄𝐶)𝑖1,𝑖2

= |𝑅𝑜𝑤 (𝑀, 𝑖1) ∩
𝑅𝑜𝑤 (𝑀, 𝑖2) |. The document co-occurrence leakage L𝐷𝐶 simi-

larly produces 𝑀 (𝐷𝐶) ∈ Z𝑛×𝑛 , with 𝑀 (𝐷𝐶)
𝑗1, 𝑗2

= |𝐶𝑜𝑙 (𝑀, 𝑗1) ∩
𝐶𝑜𝑙 (𝑀, 𝑗2) |.

3.5 Leakage-Resilient EDESE
We demonstrate the Leakage-Resilient EDESE (LR-EDESE) with

𝑘-indistinguishability and leakage function L in Definition 3.1.

Definition 3.1 (𝑘-ind L-resilient EDESE). Let Σ = (KGen, Setup,
QueryTK,Match, Final) be an EDESE scheme, 𝜆 ∈ N be the security

parameter,𝑘 be a threshold number,L be a polynomial time leakage

function,A be a probabilistic polynomial time adversary, and C be

a polynomial time challenger with the response capability of the

following oracle.

• OQTGen (· · ·): A submits a keyword 𝑘𝑤𝑖 ∈ 𝐾 (𝐷), where 𝑖 ∈
[1, |𝐾 (𝐷) |]. C returns a deterministic query token 𝑞𝑡 (𝑖,𝛼 ′) , where
L(𝑞𝑡 (𝑖,1) , 𝐸𝐷) = · · · = L(𝑞𝑡 (𝑖,𝑚) , 𝐸𝐷) = L(𝑞𝑡𝑖 , 𝐸𝐷), 𝛼 ′ = 𝛼 + 𝑙

136

Leakage-Resilient Easily Deployable and
Efficiently Searchable Encryption (EDESE) SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

mod 𝑚,𝑚 indicates the total number of query tokens satisfying

the equivalent leakage to 𝑞𝑡𝑖 , 𝑚 ⩾ 𝑘 , 𝑞𝑡 (𝑖,𝛼) = 𝑞𝑡𝑖 , and 𝑞𝑡𝑖 ←
QueryTK(𝑠𝑘, 𝑘𝑤𝑖).

We consider the following experiment LRΣ
A (𝜆, 𝑘,L):

Experiment LRΣ
A (𝜆, 𝑘, L) :

𝑠𝑘 ← KGen(1𝜆), 𝑙 ∈𝑅 [0, 𝑘 − 1]
𝐸𝐷 ← Setup(𝑠𝑘, 𝐷)

where OQTGen (·) on input 𝑘𝑤𝑖 :

if 𝑖 ∉ [1, |𝐾 (𝐷) |], return ⊥
else 𝑖 ← 𝑖 + 1, return 𝑞𝑡 (𝑖,𝛼 ′)

𝑙 ′ ← AOQTGen (𝐷, 𝐸𝐷)
if 𝑙 ′ = 𝑙, return 1

else, return 0

We say that Σ is a 𝑘-ind L-resilient EDESE if for all probabilistic

polynomial time A,

AdvLRA (𝜆, 𝑘,L) =
����P[LRΣ

A (𝜆, 𝑘,L) = 1] − 1

𝑘

���� ⩽ 𝑛𝑒𝑔𝑙 (𝜆).

For Definition 3.1, the challenger C runs Setup algorithm to

produce obfuscated and encrypted documents 𝐸𝐷 based on the

documents 𝐷 generated by A. Then, C chooses a random number

𝑙 from 0 to 𝑘 − 1. In the query phase, A queries the oracle OQTGen
multiple times by all keywords in 𝐷 . OQTGen will output a query

token 𝑞𝑡 corresponding to the given keyword 𝑘𝑤 based on the

secret key 𝑠𝑘 , 𝐸𝐷 , theQueryTK algorithm, and the chosen number

𝑙 , such that 𝑞𝑡 have the same leakage as the query token based

on 𝑘𝑤 . In the guess phase, A guesses 𝑙 ′ for 𝑙 . If 𝑙 = 𝑙 ′, A wins

the security game, which means A can distinguish a query token

based on a given keyword from a randomly chosen query token

when both of them have the same leakage regarding the given

leakage function. Otherwise, then we say the EDESE scheme is

𝑘-ind L-Resilient secure.

4 VLR-EDESE
An EDESE scheme qualifies as a Volume Leakage-Resilient EDESE

(VLR-EDESE) when it achieves 𝑘-ind L𝑄𝑉 resilient security and

𝑘-ind L𝐷𝑉 resilient security simultaneously. Thus, a VLR-EDESE

must integrate both a query volume leakage hiding method and a

document volume leakage hiding method.

The remainder of this section introduces a novel document vol-

ume leakage hiding method and a query volume leakage hiding

method inspired by Bost et al.’s work [3]. We then present a con-

crete construction of VLR-EDESE along with its security analysis.

Furthermore, we discuss padding strategies for optimizing VLR-

EDESE’s efficiency and security.

4.1 Document Volume Hiding Method
A modulo-based partition approach is defined to hide document

volume pattern leakages, which achieves the intermediate compu-

tational complexity and the intermediate number of obfuscated

documents (duplicated documents + dummy documents) compared

to 1) no partitioning approach and 2) a flexible partition approach

which partitions keywords associated with a document into flexible

sized disjoint subsets.

Modulo-BasedDocument Partition (MBDPar)Algorithm.Given
a set of source documents 𝐷𝑛 and the set of associated keywords

𝐾𝑚 , the algorithm produces a set of obfuscated documents 𝐷′
𝑛′ and

the corresponding modulus 𝑝∗, which is shown in Algorithm 1.

Algorithm 1:Modulo-based document partition algorithm

MBDPar

Data: a set of source documents 𝐷𝑛 and the set of

corresponding keywords 𝐾𝑚 .

Result: a set of obfuscated documents 𝐷′
𝑛′ , the optimal

modulus 𝑝∗.
1 computes the maximum document volume value

𝑣∗ = max𝑑∈𝐷𝑛
𝑉𝑜𝑙 (𝑑);

2 forall 𝑝 ∈ [1, 𝑣∗] do
3 initialize 𝑂𝑝 ← {0}𝑝 ,𝑂′𝑝 ← {0}𝑝 ;
4 forall 𝑖 ∈ [1, 𝑛] do
5 𝑂𝑝 [𝑝] ← 𝑂𝑝 [𝑝] + ⌊𝑉𝑜𝑙 (𝐷,𝑑𝑖)𝑝 ⌋;
6 if 𝛾 > 0, then, 𝑂𝑝 [𝛾] ← 𝑂𝑝 [𝛾] + 1, where

𝛾 = 𝑉𝑜𝑙 (𝐷,𝑑𝑖) mod 𝑝;

7 end
8 if 𝑂𝑝 [𝑣] > 0, then, set 𝑂 ′𝑝 [𝑣] ←𝑚𝑎𝑥 (𝑘 −𝑂𝑝∗ [𝑣], 0);

otherwise, 𝑂 ′𝑝 [𝑣] ← 0, where ∀𝑣 ∈ [1, 𝑝];
9 compute 𝑛′𝑝 ←

∑𝑝
𝑣=1

𝑂𝑝 [𝑣] +𝑂 ′𝑝 [𝑣];
10 end
11 select the 𝑝∗ such that 𝑛′

𝑝∗ is minimum;

12 initialize 𝐷′ ← ∅;
13 forall 𝑑𝑖 ∈ 𝐷𝑛 do
14 compute 𝑢𝑖 ← ⌈𝑉𝑜𝑙 (𝐷,𝑑𝑖)𝑝∗ ⌉; set 𝑉 ← 𝑉𝑒𝑐 (𝐷,𝑑𝑖);
15 forall 𝑖′ ∈ [1, 𝑢𝑖] do
16 𝑑𝑖,𝑖′ ←𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑑𝑖 ;

17 if 𝑖′ < 𝑢𝑖 , then, update 𝑉𝑜𝑙 (𝐷′, 𝑑𝑖,𝑖′) ← 𝑝∗;
otherwise,
𝑉𝑜𝑙 (𝐷′, 𝑑𝑖,𝑖′) ← 𝑉𝑜𝑙 (𝐷,𝑑𝑖) − (𝑖 − 1) × 𝑝∗;

18 update 𝑉𝑒𝑐 (𝐷′, 𝑑𝑖,𝑖′) with first 𝑉𝑜𝑙 (𝐷′, 𝑑𝑖,𝑖′)
elements of 𝑉 ; 𝑉 ← 𝑉 \𝑉𝑒𝑐 (𝐷′, 𝑑𝑖,𝑖′);

19 end
20 end
21 forall 𝑣 ∈ [1, 𝑝∗], do, generate 𝑂 ′𝑝 [𝑣] dummy documents

𝑑𝑑1, · · · , 𝑑𝑑𝑂 ′𝑝 [𝑣] and updates 𝑉𝑒𝑐 (𝐷, ∗) and 𝑉𝑜𝑙 (𝐷, ∗)
functions for each of them with randomly selected 𝑣

non-repeated keywords from 𝐾𝑚 , then put them into 𝐷′;
output 𝑝∗ and 𝐷′

𝑛′ where 𝑛
′ ← 𝑛′

𝑝∗ .

The algorithm first computes the optimal modulus value 𝑝∗ such
that the total number of result documents is minimal, which is

represented by 𝑛′𝑝 . Then, the MBDPar algorithm partitions the

keyword vector associated with each source document to produce

multiple disjoint subsets associated with multiple duplicated doc-

uments. There is no more than one sub-vector whose size is less

than 𝑝∗ while the sizes of others are 𝑝∗, following the modulo cal-

culation. After that, the MDBPar algorithm associates keywords in

each sub-vector with a duplication of the source document.

Next, the algorithm counts occurrences of values from 1 to 𝑝∗ in
document volume values. If the occurrence of a value 𝑣 is less than

137

SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Jiaming Yuan et al.

𝑘 and greater than 0, the algorithm creates new dummy documents

associated with 𝑣 keywords randomly selected from 𝐾𝑚 to reach 𝑘 .

Finally, it outputs the obfuscated document 𝐷′
𝑛′ , which contains all

duplicated documents and dummy documents, where 𝑛′ represents
the number of documents in 𝐷′.
Computational Complexity and Boundaries. The computa-

tional complexity of theMDBPar algorithm isO
(
𝑚𝑛
𝑝∗ + 𝑛 + 𝑝

∗ (𝑘 − 1)
)
.

The number of obfuscated documents produced by the MBDPar

algorithm is bounded by O
(
𝑚𝑛
𝑝∗ + 𝑛 + 𝑝

∗𝑘
)
. The total number of

keyword-document pairs in the obfuscated documents is bounded

by O(𝑚𝑛 + 𝑘𝑝∗2).
For further details, refer to A.1.

4.2 Query Volume Hiding Method
There are many query volume hiding algorithms, such as rounding

padding, group padding, and bucket padding approaches. To achieve

𝑘-ind query volume resilient secure, recall the definition 3.1, we

need to guarantee each qurery volume occurs at list 𝑘 times, which

is exactly idea of group padding.

Algorithm 2: keyword clustering algorithm KClu

Data: a set of source documents 𝐷𝑛 , the set of

corresponding keywords 𝐾𝑚 , and a dummy

document capacity 𝑝∗.
Result: a set of obfuscated documents 𝐷′

𝑛′ .

1 sort 𝑘𝑤 in 𝐾𝑚 by the ascending order of the 𝑉𝑜𝑙 (𝐷𝑛, 𝑘𝑤) to
obtain 𝐾 ′𝑚 ;

2 construct a weighted directed graph 𝐺 = (𝑉 , 𝐸,𝑊), where
𝑉 = [0,𝑚], 𝐸 = {(𝑒1, 𝑒2) |𝑒1 ∈ [0,𝑚 − 𝑘],
𝑒2 ∈ [𝑒1 + 𝑘,min(𝑒1 + 2𝑘 − 1,𝑚)]}, and the weighting

function is defined as

𝑊 (𝑒1, 𝑒2) =
∑𝑒2
𝑒=𝑒1+1 (𝑉𝑜𝑙 (𝐷𝑛, 𝑘𝑤𝑒2) −𝑉𝑜𝑙 (𝐷𝑛, 𝑘𝑤𝑒)));

3 calculate the shortest weighted path 𝑃∗ from the start vertex

0 to the end vertex𝑚 by Dijkstra’s Algorithm, where

𝑃∗ = {𝑒0, 𝑒1, · · · , 𝑒𝜇 } and 𝑒0 = 0, 𝑒𝜇 =𝑚;

4 the optimal collection of keyword groups is generated as

G = {𝑔𝑖 }𝑖∈[1,𝜇] , where 𝑔𝑖 = {𝑘𝑤𝑒 }𝑒∈[𝑒𝑖−1+1,𝑒𝑖] ;
5 calculate 𝑂 [𝑒] = 𝑉𝑜𝑙 (𝑘𝑤𝑒𝑖) −𝑉𝑜𝑙 (𝑘𝑤𝑒) for 𝑘𝑤𝑒 ∈ 𝑔𝑖 ;
6 initialize 𝐷′ ← 𝐷𝑛,𝑇 ← ∅;
7 forall 𝑖 ∈ [1, 𝜇], 𝑒 ∈ [𝑒𝑖−1 + 1, 𝑒𝑖] do
8 if 𝑂 [𝑒] > |𝑇 |, then generate total (𝑂 [𝑒] − |𝑇 |) dummy

documents and append them into 𝑇 and 𝐷′;
9 select the first𝑂 [𝑒] dummy documents from𝑇 to form a

set 𝑇 ′ and update 𝑉𝑒𝑐 (𝐷′, 𝑘𝑤𝑒) ←
𝑉𝑒𝑐 (𝐷,𝑘𝑤𝑒) ∪𝑇 ′,𝑉𝑜𝑙 (𝐷′, 𝑘𝑤𝑒) ← 𝑉𝑜𝑙 (𝑘𝑤𝑒𝑖);

10 forall 𝑑 ∈ 𝑇 ′, if 𝑉𝑜𝑙 (𝑇 ′, 𝑑) = 𝑝∗, then, 𝑇 ← 𝑇 \ {𝑑};
11 end
12 output 𝐷′

𝑛′ where 𝑛
′ =

∑𝜇

𝑖=1
(𝑒𝑖 − 𝑒𝑖−1)𝑉𝑜𝑙 (𝑘𝑤𝑒𝑖).

VLR-EDESE employs a group padding algorithm, called keyword

clustering algorithm (KClu), inspired by [3] and enhanced with our

padding strategy. Given a keyword set 𝐾𝑚 , a document set 𝐷𝑛 ,

and a dummy document capacity 𝑝∗ (i.e., the maximum number of

keywords that can be associatedwith a dummy document), the KClu

algorithm outputs a set of obfuscated documents 𝐷′
𝑛′ , as described

in Algorithm 2.

KClu computes an optimal grouping of keywords to minimize

the number of dummy documents needed while ensuring that all

keywords within the same group share the same volume. To achieve

this, it constructs a weighted directed graph based on sorted key-

words where 1) nodes represent keywords plus a start node, 2)

edges indicate keyword groups, and 3) the weight function calcu-

lates the number of keyword-document pairs required to be padded

for a group. The algorithm then applies Dijkstra’s shortest path

algorithm to identify the optimal grouping 𝑃∗. Each group con-

tains at least 𝑘 and at most 2𝑘 − 1 keywords, leading to a total of

(𝑚 − 2𝑘)𝑘 + 𝑘 (𝑘−1)
2

edges in the graph.

Once the optimal grouping is determined, KClu pads dummy doc-

uments with capacity 𝑝∗ to form the obfuscated document set 𝐷′
𝑛′ ,

including both dummy and source documents, where 𝑛′ denotes
the total number of obfuscated documents.

Computational Complexity and Boundaries. The computa-

tional complexity of the KClu algorithm is O
(
𝑚 log𝑚 + 𝑘𝑚 + 𝑘2

)
.

The total number of obfuscated documents generated by the

KClu algorithm is O(𝑚𝑛𝑝∗ +𝑛). Additionally, the number of keyword-

document pairs is bounded by O(𝑚𝑛).
For further details, refer to A.2.

4.3 Construction of VLR-EDESE
We apply the proposed volume-hiding methods to construct a con-

crete VLR-EDESE scheme. VLR-EDESE employs a symmetric en-

cryption scheme Σ𝑆𝐸 = (KGen, Enc,Dec) for document encryption

and decryption, along with a collision-resistant hash functionH
to generate query tokens. The detailed algorithms of VLR-EDESE

are presented in Figure 2.

VLR-EDESE utilizes Σ𝑆𝐸 to generate the secret key 𝑠𝑘 , encrypt

and decrypt documents, and process query tokens. To mitigate vol-

ume pattern leakage, the Setup algorithm first applies the MDBPar

algorithm to transform the source document set 𝐷𝑛 into a semi-

obfuscated document set 𝐷′
𝑛′ . Next, the KClu algorithm further

obfuscates 𝐷′
𝑛′ to produce the final document set 𝐷′′

𝑛′′ . The Setup
algorithm then encrypts documents in 𝐷′′

𝑛′′ using Σ𝑆𝐸 .Enc and

hashes the associated keywords usingH .

4.4 Security Analysis
We prove the security of VLR-EDESE using an expanding strategy.

First, we prove that the scheme achieves 𝑘-ind L𝐷𝑉 resilience over

a set of 𝑘 documents in Lemma B.1. Next, we extend this result

by demonstrating that a collection of such disjoint document sets

remains 𝑘-ind L𝐷𝑉 resilient secure in Lemma B.2.

Similarly, we prove the 𝑘-ind L𝑄𝑉 resilience for query volume

leakage. By combining these two results, we establish that the

constructed VLR-EDESE satisfies 𝑘-ind volume leakage resilient

secure, ensuring robust security against LAAs.

For further details, refer to B.

4.5 Padding Strategy
Padding with dummy query tokens becomes ineffective because an

attacker can easily filter them out by observing that those dummy

138

Leakage-Resilient Easily Deployable and
Efficiently Searchable Encryption (EDESE) SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

Figure 2: Concrete construction of the VLR-EDESE
• KGen(1𝝀) → 𝒔𝒌:
KGen takes a security parameter 𝜆. Then it runs 𝑠𝑘 ← Σ𝑆𝐸 .𝐾𝐺𝑒𝑛(1𝜆) and outputs 𝑠𝑘 .

• Setup(𝒔𝒌, 𝑫) → 𝑬𝑫 :
(1) It initializes 𝐾𝑚 ← 𝐾 (𝐷), 𝐷𝑛 ← 𝐷 where𝑚 = |𝐾 (𝐷) |, 𝑛 = |𝐷 |.
(2) Then, for each document 𝑑 ∈ 𝐷𝑛 , it extracts a set of keywords 𝑆 and updates 𝑉𝑒𝑐 (𝑑) ← 𝑆,𝑉𝑒𝑐 (𝑘𝑤) ← 𝑉𝑒𝑐 (𝑘𝑤) ∪ {𝑑},∀𝑘𝑤 ∈ 𝑆 .
(3) Next, it computes 𝐷′

𝑛′ , 𝑝
∗ ← MBDPar(𝐷𝑛, 𝐾𝑚), 𝐷′′𝑛′′ ← KClu(𝐷′

𝑛′ , 𝐾𝑚, 𝑝
∗).

(4) After that, the algorithm encrypts 𝐷′′ into 𝐸𝐷 as 𝐸𝐷 ← {𝑒𝑑 |𝑒𝑑 = 𝑟 |𝑒𝑑 |𝑞𝑡1 | · · · |𝑞𝑡𝑉𝑜𝑙 (𝑑) , 𝑟
𝑅←− R, 𝑒𝑑 = Σ𝑆𝐸 .𝐸𝑛𝑐 (𝑠𝑘 |𝑟, 𝑑), 𝑞𝑡𝑖 =

H(𝑠𝑘 |𝑘𝑤𝑖), 𝑘𝑤𝑖 ∈ 𝑉𝑒𝑐 (𝑑), 𝑖 ∈ [1,𝑉𝑜𝑙 (𝑑)],∀𝑑 ∈ 𝐷′′}.
• QueryTk(𝒔𝒌, 𝒌𝒘) → 𝒒𝒕 :
The algorithm encrypts 𝑘𝑤 into a query token 𝑞𝑡 . It calculates 𝑞𝑡 = H(𝑠𝑘 |𝑘𝑤) and outputs it.

• Match(𝑬𝑫, 𝒒𝒕) → 𝒄𝒕 :
The server finds the set of encrypted documents 𝑐𝑡 associated with the given 𝑞𝑡 from 𝐸𝐷 .

• Final(𝒔𝒌, 𝒄𝒕) → 𝒑𝒕 :
The client decrypts all encrypted documents in 𝑐𝑡 and filters out dummy ones. It initializes 𝑝𝑡 ← ∅. Afterwards, for each 𝑒𝑑 ∈ 𝑐𝑡 ,
it parses 𝑒𝑑 to 𝑟 |𝑒𝑑 |𝑞𝑡1 | · · · |𝑞𝑡𝑉𝑜𝑙 (𝑑) and then obtain the document as 𝑑 = Σ𝑆𝐸 .𝐷𝑒𝑐 (𝑠𝑘 |𝑟, 𝑒𝑑). If 𝑑 is a real document, it put 𝑑 in 𝑝𝑡 ;

otherwise, do nothing. Finally, 𝑝𝑡 will only hold all documents related to the queried keyword 𝑘𝑤 .

query tokens are never queried. In addition, padding with neither

dummy documents nor dummy query tokens places an additional

burden on the client to identify whether a responded document

associates with the query token. Taking into account the above

reasons, the proposed VLR-EDESE adopts a padding strategy that

exclusively utilizes dummy documents, ensuring that only query

responses are padded with dummy entries.

5 Evaluation
5.1 Overhead of EDESE
There are three critical overheads of EDESE, including setup com-

putational overhead, server storage overhead, and communication

overhead.

• Setup computational Overhead. In EDESEs, computational

overhead refers to the computational costs associated with the

setup phase. It is determined by the computational complexity

of the KGen and Setup algorithms.

• Server Storage Overhead. In EDESEs, server storage overhead

indicates the data size of encrypted documents. In this paper, we

use the number of encrypted documents instead.

• Communication Overheads. The communication overheads

include client communication (query) overhead and server com-

munication (response) overhead. For EDESE, client communica-

tion overhead is represented by the average length of a search

request. Server communication overhead is represented by the

average associated encrypted documents of a search request.

It can be calculated by (the number of document-query_token

mappings)/(the number of query tokens).

5.2 Theoretical Evaluation
We analyze the complexities of the proposed VLR-EDESE in terms

of computational, storage, and communication overheads in Section

5.1. The setup computation complexity isO
(
𝑚 log𝑚 +𝑚𝑛 + 𝑘𝑚 + 𝑘2

)
.

The server storage complexity is O(𝑘𝑚 + 𝑛) . The client commu-

nication complexity remains constant at O(1), while the server

communication complexity is O(𝑘𝑚 + 𝑛).
For further details, refer to Section A.3.

5.3 Experimental Evaluation
In our experiments, we utilize the Enron email dataset [27], fol-

lowing the methodology of previous studies [4, 23, 26, 32]. This

dataset comprises 37,470 emails exchanged by 150 employees of

the Enron Corporation between 2000 and 2002. To preprocess the

data, we adopt the approach used in [4, 23, 32], extracting the top

5,000 keywords after removing stop words. We then implement

VLR-EDESE using these 5,000 keywords and the complete set of

37,470 emails as source documents.

Evaluation with Varied Parameters. We evaluate the prototype

implementation of the proposed VLR-EDESE using varying percent-

ages of source documents and varying values of 𝑘 . The percentage

of source documents ranges at 0.1%, 0.5%, 1%, 5%, 10%, 50%, and

100%. Similarly, the 𝑘 values are set to 10, 20, 50, and 100. Our eval-

uation focuses on three key aspects: computation overhead, server

storage overhead, and communication overhead.

Table 1 and Figure 3 show that VLR-EDESE is particularly ef-

fective for large-scale datasets, especially when 𝑘 is not too large.

Specifically, as highlighted in the blue row of Table 1, for 𝑘 ∈
{10, 20, 50, 100} and the completed dataset (37,470 documents), VLR-

EDESE achieves the following.

• Storage overhead (number of documents) is limited to at most 2

times the source dataset size.

• Communication overhead (number of indices) does not exceed

2.5 times the number of source indices.

• The computational overhead (run-time) is approximately 1 hour.

• Memory consumption does not exceed 8 GB, fitting comfortably

within the typical 16 GB RAM of modern PCs.

Furthermore, as demonstrated by the trend lines in Figures 3a and

3b, the communication and storage overheads of VLR-EDESE

139

SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Jiaming Yuan et al.

decrease as the number of source documents increases. Mean-

while, Figures 3c and 3d show that runtime and memory require-

ments scale almost linearly with the number of source documents.

Moreover, Figures 3e, 3f, and 3h indicate that the rates of ob-

fuscated keyword-document pairs (resp. obfuscated documents)

relative to their original counterparts, as well as memory usage,

exhibit a linear relationship with 𝑘 . Finally, Figure 3g confirms that

the value of 𝑘 does not impact the runtime of the setup phase.

The flexibility of VLR-EDESE allows for tunable security param-

eters that balance privacy and efficiency. By selecting a moderate

𝑘 value (e.g., 100), overheads can be significantly reduced. This

adaptability enables VLR-EDESE to surpass other schemes in pro-

viding adjustable security guarantees alongside optimized storage,

communication, and computational efficiency.

Comparison with Existing Schemes. This section presents a

comparative analysis of the VLR-EDESE against two state-of-the-

art SSE schemes, PRT-EMM [16] and FP-EMM [25], along with the

baseline EDESE scheme. To adapt these SSE schemes to the EDESE

setting and preserve their security guarantees within the EDESE

framework, we apply a straightforward transformation: replacing

encrypted indices in each scheme with encrypted documents, en-

suring that identical encrypted indices map to the same encrypted

document. This adaptation does not account for additional com-

putational overhead incurred on the server. Besides, the baseline

EDESE scheme is the EDESE without any leakage protection.

As shown in Table 2, VLR-EDESE outperforms PRT-EMM
and FP-EMM in terms of overall efficiency, which encompasses

server storage, query communication, and server response over-

heads, as well as setup complexity. Compared to PRT-EMM and

FP-EMM, while VLR-EDESE incurs a storage overhead of at most

138× compared to the baseline EDESE, it significantly reduces setup

costs and achieves superior efficiency in query processing. Specifi-

cally, VLR-EDESE matches the baseline EDESE in client query com-

munication overhead while achieving the lowest server response

overhead, equivalent to that of PRT-EMM.

The compared schemes are implemented as follows.

• Baseline EDESE. The baseline EDESE encrypts each document

along with its associated query tokens without incorporating

dummy or duplicate documents. This scheme serves as a baseline

for evaluating the efficiency of other schemes.

• PRT-EMM. We adopt the most storage-efficient parameter con-

figuration from the original PRT-EMM work with 𝛼 = 0.5.

• FP-EMM. FP-EMM employs a full padding strategy, ensuring

that all query response lengths are padded to the maximum

observed query response length. Each query requires two token

transmissions—one for each table—while the server responds

twice, returning the maximum possible document set.

Both PRT-EMM and FP-EMM achieve 𝑘′-query volume RL se-

curity, where 𝑘′ = 5000. To ensure a fair comparison, VLR-EDESE

is configured to provide the same 𝑘′-indistinguishability in both

query volume and document volume pattern leakage. This 𝑘′ value
represents the theoretical security limit achievable by any EDESE

or ORAM-based scheme. Each encrypted document is standardized

to a size of 1KB to isolate the impact of document encryption.

6 CloudSec
In this section, we introduce CloudSec,a real-world application that

integrates the prototype implementation of VLR-EDESE, enabling

secure keyword searches on popular cloud storage services.

6.1 System Design
CloudSec consists of three modules, including the user interface

management module (UIM module), the cloud service module (CS

module), and the encryption module, as illustrated in Figure 4.

• UIM module manages interactions between UIs, including the

cloud platform management UI, file upload UI, search UI, file

viewer, and menu UI. Specifically, the cloud platform manage-

ment UI allows users to configure connections to cloud storage

services. The file upload UI enables users to upload directories

to a specified cloud storage platform. The search UI receives

search keyword and selected storage platforms from users. The

file viewer displays files from the search result. The menu UI

provides access to all functionalities.

• CS module handles cloud storage interactions, including user
authentication and file operations with the cooperation of the

cloud service platform. File operations include uploading, key-

word search, and downloading.

• Encryption module integrates the prototype implementation

of VLR-EDESE and manages user secret keys, ensuring secure

keyword search functionality.

6.2 User Workflow
Similar to EDESE, CloudSec operates in two phases: setup and

query. The workflow is illustrated with OneDrive.

In setup phase, when launching CloudSec, the encryption mod-

ule runs KGen to generate and store the user’s secret key. Before

uploading files, the user authorizes CloudSec to access OneDrive.

The UIM module redirects the “Add Cloud→ OneDrive” action to

the CS module, which invokes OneDrive’s authentication. After

the user grants access, the CS module stores the resulting token.

The user selects a folder, the encryption module encrypts the files,

and the CS module uploads them using the stored token.

In query phase, the user inputs a keyword via the UIM search box

and selects OneDrive. The encryption module generates a query

token, which the CS module sends along with the stored token to

OneDrive’s search interface. Upon receiving results, the CS module

downloads the files via returned URLs. The encryption module then

decrypts and filters the files before displaying them in File Explorer.

6.3 Implementation
This section outlines key details of the CloudSec implementation.

We developed CloudSec in C# for the Windows platform, inte-

grating OneDrive as a cloud storage service. CloudSec interacts

with OneDrive via its REST API for seamless file management.

To enhance the user experience, CloudSec is designed as a tray

application, enabling convenient menu access and robust hotkey

functionality for streamlined operations.

Encryption module. The encryption module of CloudSec im-

plements VLR-EDESE using AES-CBC-256 for symmetric encryp-

tion and HMAC-SHA-256 for query token generation. Specifically,

140

Leakage-Resilient Easily Deployable and
Efficiently Searchable Encryption (EDESE) SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

Table 1: Performance of VLR-EDESE.

Data No. of Indices1 No. of Documents Memory(GB)2 Runtime(s)3

Pct.
Source4

𝑘s5 Source 𝑘s 𝑘s 𝑘s

10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

0.001 2246

5286 8826 19438 38522

37

328 594 1384 2772

0.01 0.02 0.05 0.09 24.5 23.74 22.36 20.15

(2.35) (3.93) (8.65) (17.15) (8.86) (16.05) (37.41) (74.92)

0.005 11995

16350 24207 47817 87173

187

613 1020 2251 4321

0.09 0.09 0.18 0.35 336.42 338.12 332.03 317.61

(1.36) (2.02) (3.99) (7.27) (3.28) (5.45) (12.04) (23.11)

0.01 19761

21899 31133 59789 107504

374

745 1193 2600 4961

0.35 0.35 0.35 0.47 564.96 561.03 545.09 529.66

(1.11) (1.58) (3.03) (5.44) (1.99) (3.19) (6.95) (13.26)

0.05 112242

130253 185181 398322 762503

1873

2369 3071 6603 12991

0.47 0.47 0.86 1.72 1454.34 1514.67 1450.9 1421.78

(1.16) (1.65) (3.55) (6.79) (1.26) (1.64) (3.53) (6.94)

0.1 221540

239690 313172 627262 1209040

3747

4224 4955 8513 16638

1.72 1.72 1.72 2.17 1676.92 1670.76 1655.18 1613.32

(1.08) (1.41) (2.83) (5.46) (1.13) (1.32) (2.27) (4.44)

0.5 1102810

1127398 1235006 1744237 2831602

18735

19498 20409 24442 33467

2.84 3.06 3.49 4.43 2927.11 2906.1 2828.16 2858.69

(1.02) (1.12) (1.58) (2.57) (1.04) (1.09) (1.3) (1.79)

1 2193545

2245102 2437223 3253320 4901463

37470

38411 39776 45263 56648

5.81 5.96 6.53 7.79 3743.62 3752.6 3696.84 3661.42

(1.02) (1.11) (1.48) (2.23) (1.03) (1.06) (1.21) (1.51)

1
"Indices" indicates keyword-document pairs.

2
"Memory(GB)" represents the peak of memory consumed in gigabytes.

3
"Runtime(s)" stands for the runtime to setup VLR-EDESE in seconds.

4
"Source" indicates the numbers of original indices and documents without any hiding approaches.

5
"𝑘s" denotes various 𝑘 values, including 10, 20, 50, 100.

0.00 0.25 0.50 0.75 1.00

5.0

10.0

15.0
10
20
50
100

(a) Rates of keyword-document
pairs to ones in the baseline
EDESE.

0.00 0.25 0.50 0.75 1.00
0.0

20.0

40.0

60.0
10
20
50
100

(b) Rates of the obfuscated docu-
ments to the source documents.

0.00 0.25 0.50 0.75 1.00
0.0

1K

2K

3K

10
20
50
100

(c) Run times.

0.00 0.25 0.50 0.75 1.00
0.0

2.0

4.0

6.0

8.0
10
20
50
100

(d) Memories.

20 40 60 80 100

5.0

10.0

15.0
0.001
0.005
0.01
0.05
0.1
0.5
1

(e) Rates of keyword-document
pairs to ones in the Baseline
EDESE.

20 40 60 80 100
0.0

20.0

40.0

60.0
0.001
0.005
0.01
0.05
0.1
0.5
1

(f) Rates of the obfuscated docu-
ments to the source documents.

20 40 60 80 100
0.0

1K

2K

3K
0.001
0.005
0.01
0.05
0.1
0.5
1

(g) Run times.

20 40 60 80 100
0.0

2.0

4.0

6.0

8.0
0.001
0.005
0.01
0.05
0.1
0.5
1

(h) Memories.

Figure 3: Experiment performances in the number of keyword-document pairs, the number of obfuscated documents, setup
running times, andmemory peaks setup required. (a, b, c, d) indicate performance over percentage numbers of source documents.
(e, f, g, h) demonstrate performances over 𝑘 values.

Table 2: Comparisions of state-of-art SSE schemes and the VLR-EDESE

Scheme Setup Complexity Storage (Server) Query Communication
Overall*Client (query) Server (response)

Baseline O(𝑚𝑛) 36.6 MB (1x) 32 B (1x) 438 KB (1x) 1

PRT-EMM O(𝑣𝑛2) 30.7 GB (860x) 1.6 MB (50Kx) 22 MB (50x) 320

FP-EMM O((1 + 𝛼)𝑚𝑛2) 3.3 GB (94x) 3 KB (99x) 42 MB (99x) 97

VLR-EDESE O
(
𝑚 log𝑚 +𝑚𝑛 + 𝑘𝑚 + 𝑘2

)
5.1 GB (138x) 32 B (1x) 22 MB (50x) 63

overall rate = (server storage rate + client query rate + server response rate) / 3.

141

SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Jiaming Yuan et al.

Figure 4: The Architecture of CloudSec.

AES-CBC-256 ensures secure encryption and decryption of doc-

uments, while HMAC-SHA-256functions as a keyed hash mech-

anism for generating query tokens. In addition, a cryptograph-

ically secure random number generator (RNG) is employed for

secret key generation. All cryptographic operations utilize the Sys-

tem.Security.Cryptography namespace in C#.

The encryption module encrypts both file names and content to

ensure data confidentiality. Consequently, all files stored on cloud

platforms retain encrypted filenames and contents. To optimize effi-

ciency, the module decrypts only file names to filter out dummy and

duplicate entries, eliminating unnecessary file content decryption.

UIM. The UIM module manages the menu UI, cloud service man-

agement UI, file upload UI, and search UI, ensuring seamless user

interaction. Specifically, the menu UI, accessible via the tray ap-

plication’s right-click menu, provides options for cloud service

management, file upload, search, and exit. The cloud service man-

agement UI allows users to add or remove connections to cloud

storage platforms. The file upload UI includes cloud storage plat-

form selection and a directory selection dialog for specifying files

to upload. The search UI presents a search box containing a text

input field, checkboxes for selecting target cloud platforms, and a

submission button for executing searches.

CS. The CS module facilitates cloud storage integration by utilizing

REST APIs, which employ standard HTTP methods for resource

operations. Each API request is stateless, meaning it contains all

necessary information for execution, as the server does not retain

client context between requests. REST APIs are widely used in

cloud service development, e.g., OneDrive, Dropbox, IDrive, and

Google Drive.

For OneDrive integration, CloudSec employs OneDrive REST

APIs with JSON as the data exchange format, which is efficiently

handled in C# using Json.NET. The CS module requests OneDrive

user authentication through the HTTP URL:

login.microsoftonline.com/common/oauth2/v2.0/authorize.

For small file (<4 MB) uploading, the CS module sends request to

[PUT /me/drive/items/parent-id:/filename:/content] while [POST

/me/drive/items/itemId/createUploadSession] for large file upload-

ing. The searching RESTAPI is [GET /me/drive/root/search(q=’query-

token’)]. By leveraging these APIs, the CS module enables secure

authentication, efficient file management, and keyword search func-

tionality within CloudSec.

6.4 Achievements
In this section, we outline the key achievements of CloudSec in
terms of security, usability, and flexibility.

• Security. As an application of VLR-EDESE, CloudSec preserves

the same level of security, specifically volume leakage-resilient

EDESE. In alignment with the EDESE design, CloudSec only

outsources encrypted files and encrypted file names to cloud

storage platforms. All encryption and decryption processes are

confined to the local environment, ensuring data confidentiality.

• Usability. CloudSec offers a seamless user experience of secure

keyword searches on cloud storage platforms. Firstly, the ap-

plication presents a search textbox, which is similar to existing

file search tools, such as Everything and Listary, and minimizes

the user learning curve. Then, files of the search result are pre-

sented in a File Explorer window as if searching on plaintext files,

providing a seamless and intuitive experience for users.

• Flexibility. CloudSec’s design prioritizes adaptability and ease

of integration with existing systems. On one hand, the CS module

is capable of connecting with popular cloud storage platforms

through REST APIs, enabling it to work seamlessly with cur-

rent cloud services without complex modifications. On the other

hand, following the VLR-EDESE model, CloudSec requires only

basic operations—uploading, downloading, and searching—on

cloud storage platforms. No additional platform-specific config-

urations are needed, simplifying implementation and ensuring

compatibility with all existing cloud storage providers.

7 Conclusion
In this paper, we introduced a novel leakage resilience security con-

cept for EDESE, designed to prevent leakage abuse attacks while

preserving the key advantages of EDESE, considering the trade-off

between storage and communication overheads. Then, we proposed

a novel document volume hiding approach called modulo-based

document partitioning and integrated it with a group padding ap-

proach for query document volume hiding. Using these methods,

we constructed VLR-EDESE, a volume-leakage-resilient EDESE. We

have implemented the prototype of VLR-EDESE and conducted

experiments to evaluate its performance. Our experiments and eval-

uations demonstrated the suitability of VLR-EDESE for large-scale

EDESE by effectively balancing privacy with computation, storage,

and communication overheads, achieving flexible 𝑘 indistinguisha-

bility. Furthermore, we integrated the prototype into CloudSec for

real-world use, enabling secure keyword searches on popular cloud

storage services, such as OneDrive, Google Drive, Dropbox, and

IDrive, via REST APIs.

Acknowledgments
We thank anonymous reviewers for helpful comments. Jianting

Ning was supported in part by the National Natural Science Foun-

dation of China (Grant No. 12441101, 62372108, 62425205). Yingjiu

Li was supported in part by the Ripple University Blockchain Re-

search Initiative.

142

Leakage-Resilient Easily Deployable and
Efficiently Searchable Encryption (EDESE) SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

References
[1] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with com-

pressed queries and amortized query processing. In 2018 IEEE symposium on
security and privacy (SP). IEEE, 962–979.

[2] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2019. Revisiting leakage

abuse attacks. Cryptology ePrint Archive (2019).
[3] Raphael Bost and Pierre-Alain Fouque. 2017. Thwarting Leakage Abuse Attacks

against Searchable Encryption–A Formal Approach and Applications to Database

Padding. Cryptology ePrint Archive (2017).
[4] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. 668–679.

[5] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In Advances in Cryptology–CRYPTO 2013:
33rd Annual Cryptology Conference. Proceedings, Part I. Springer, 353–373.

[6] Melissa Chase and Seny Kamara. 2010. Structured encryption and controlled

disclosure. In Advances in Cryptology-ASIACRYPT 2010: 16th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16. Springer, 577–594.

[7] Guoxing Chen, Ten-Hwang Lai, Michael K Reiter, and Yinqian Zhang. 2018.

Differentially private access patterns for searchable symmetric encryption. In

IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 810–
818.

[8] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions. In

Proceedings of the 13th ACM conference on Computer and communications security.
79–88.

[9] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and

Michael Steiner. 2015. Rich queries on encrypted data: Beyond exact matches.

In Computer Security–ESORICS 2015: 20th European Symposium on Research in
Computer Security, Proceedings, Part II 20. Springer, 123–145.

[10] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: efficient oblivious RAM in two rounds with applications to searchable

encryption. In Annual International Cryptology Conference. Springer, 563–592.
[11] Marilyn George, Seny Kamara, and Tarik Moataz. 2021. Structured Encryption

and Dynamic Leakage Suppression. In Advances in Cryptology – EUROCRYPT
2021, Anne Canteaut and François-Xavier Standaert (Eds.). Springer International
Publishing, Cham, 370–396.

[12] Zichen Gui, Kenneth G Paterson, and Sikhar Patranabis. 2023. Rethinking search-

able symmetric encryption. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 1401–1418.

[13] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Song. 2014.

Shadowcrypt: Encrypted web applications for everyone. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 1028–1039.

[14] Thang Hoang, Attila A Yavuz, Betul F Durak, and Jorge Guajardo. 2017. Oblivious

dynamic searchable encryption via distributed PIR and ORAM. Cryptology ePrint
Archive (2017).

[15] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

pattern disclosure on searchable encryption: ramification, attack and mitigation..

In Ndss, Vol. 20. Citeseer, 12.
[16] Seny Kamara and Tarik Moataz. 2019. Computationally volume-hiding structured

encryption. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part II 38. Springer, 183–213.

[17] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and dynamic search-

able symmetric encryption. In Financial Cryptography and Data Security: 17th
International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers 17. Springer, 258–274.

[18] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM conference on
Computer and communications security. 965–976.

[19] Steven Lambregts, Huanhuan Chen, Jianting Ning, and Kaitai Liang. 2022. Val:

Volume and access pattern leakage-abuse attack with leaked documents. In

European Symposium on Research in Computer Security. Springer, 653–676.
[20] Billy Lau, SimonChung, Chengyu Song, Yeongjin Jang,Wenke Lee, andAlexandra

Boldyreva. 2014. Mimesis Aegis: A Mimicry Privacy Shield-A System’s Approach

to Data Privacy on Public Cloud. In 23rd usenix security symposium (USENIX
Security 14). 33–48.

[21] Chang Liu, Liehuang Zhu, MingzhongWang, and Yu-an Tan. 2014. Search pattern

leakage in searchable encryption: Attacks and new construction. Information
Sciences 265 (2014), 176–188.

[22] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. 2014. Dynamic

searchable encryption via blind storage. In 2014 IEEE Symposium on Security and
Privacy. IEEE, 639–654.

[23] Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu Li, Jian Weng,

and Robert H Deng. 2021. LEAP: leakage-abuse attack on efficiently deployable,

efficiently searchable encryption with partially known dataset. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
2307–2320.

[24] Simon Oya and Florian Kerschbaum. 2022. IHOP: Improved Statistical Query

Recovery against Searchable Symmetric Encryption through Quadratic Optimiza-

tion. In 31st USENIX Security Symposium (USENIX Security 22). 2407–2424.
[25] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

leakage in secure cloud-hosted data structures: Volume-hiding for multi-maps

via hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 79–93.

[26] David Pouliot and Charles V Wright. 2016. The shadow nemesis: Inference

attacks on efficiently deployable, efficiently searchable encryption. In Proceedings
of the 2016 ACM SIGSAC conference on computer and communications security.
1341–1352.

[27] Jitesh Shetty and Jafar Adibi. 2004. The Enron Email Dataset Database Schema

and Brief Statistical Report. https://api.semanticscholar.org/CorpusID:59919272

[28] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Proceeding 2000 IEEE symposium on
security and privacy. S&P 2000. IEEE, 44–55.

[29] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2013. Practical dy-

namic searchable encryption with small leakage. Cryptology ePrint Archive
(2013).

[30] Zhiqiang Wu and Rui Li. 2023. OBI: a multi-path oblivious RAM for forward-

and-backward-secure searchable encryption.. In NDSS.
[31] Jiaming Yuan, Yingjiu Li, Jianting Ning, and Robert H Deng. 2022. M-EDESE:

Multi-Domain, Easily Deployable, and Efficiently Searchable Encryption. In In-
ternational Conference on Information Security Practice and Experience. Springer,
606–623.

[32] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All your

queries are belong to us: the power of File-Injection attacks on searchable en-

cryption. In 25th USENIX Security Symposium (USENIX Security 16). 707–720.

A Complexities and Boundaries
A.1 MDBPar Algorithm

Computational Complexity. The computational complexity of

the MDBPar algorithm includes two procedures, optimizing the

modulus and padding.

The optimization process consists of two nested iterations, in a

computational complexity of O(𝑣∗𝑛), which is bounded by O(𝑚𝑛).
The padding process firstly partitions document volumes and up-

date 𝑉𝑒𝑐,𝑉𝑜𝑙 functions for them. The complexity of this process

is given by O
(∑𝑛

𝑖=1

⌈
𝑉𝑜𝑙 (𝑑𝑖)
𝑝∗

⌉)
. Since

⌈
𝑉𝑜𝑙 (𝑑𝑖)
𝑝∗

⌉
⩽ 𝑣∗

𝑝∗ + 1, we can

further bound the complexity as O
(∑𝑛

𝑖=1

⌈
𝑉𝑜𝑙 (𝑑𝑖)
𝑝∗

⌉)
⩽ O

(
𝑚𝑛
𝑝∗ + 𝑛

)
.

Additionally, the padding process includes the addition of dummy

documents and 𝑉𝑒𝑐,𝑉𝑜𝑙 function updating with a computational

complexity of O
(∑𝑝∗

𝑣=1
𝑂 ′
𝑝∗ [𝑣]

)
. Recall that the calculation is given

by𝑂 ′
𝑝∗ [𝑣] ←𝑚𝑎𝑥 (𝑘−𝑂𝑝∗ [𝑣], 0), which ensures that 0 ⩽ 𝑂 ′

𝑝∗ [𝑣] ⩽
𝑘 − 1. As a result, the computational complexity of adding dummy

documents is O
(∑𝑝∗

𝑣=1
𝑂 ′
𝑝∗ [𝑣]

)
⩽ O(𝑝∗ (𝑘 − 1)).

Combining these computational complexities, the computational

complexity of MDBPar is O
(
𝑚𝑛
𝑝∗ + 𝑛 + 𝑝

∗ (𝑘 − 1)
)
.

Boundaries.The number of obfuscated documents produced by the

MBDPar algorithm is proportional to the number of computations

required for updating the𝑉𝑒𝑐 and𝑉𝑜𝑙 functions, the complexity of

which was previously calculated as

∑𝑛
𝑖=1

⌈
𝑉𝑜𝑙 (𝑑𝑖)
𝑝∗

⌉
+∑𝑝∗

𝑣=1
𝑂 ′
𝑝∗ [𝑣].

This is bounded by O
(
𝑚𝑛
𝑝∗ + 𝑛 + 𝑝

∗𝑘
)
. Additionally, The total num-

ber of keyword-document pairs in the obfuscated documents is

given by

∑𝑛
𝑖=1𝑉𝑜𝑙 (𝑑𝑖)+

∑𝑝∗
𝑣=1

𝑣𝑂 ′
𝑝∗ [𝑣], which is bounded byO(𝑚𝑛+

𝑘𝑝∗2).

143

https://api.semanticscholar.org/CorpusID:59919272

SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Jiaming Yuan et al.

A.2 KClu Algorithm

Computational Complexity. The computational complexity of

the KClu algorithm includes two procedures, choosing optimal

groups forming and padding. The KClu algorithm utilizes Dijk-

stra’s algorithm to find the optimal groups, whose complexity is

O
(
(𝑚 + 1) log(𝑚 + 1) + (𝑚 − 2𝑘)𝑘 + 𝑘 (𝑘−1)

2

)
⩽ O(𝑚 log𝑚 +𝑘𝑚 +

𝑘2) and is not effected by the parameter 𝑝∗. Then, the algorithm
adds dummy documents and updates 𝑉𝑒𝑐,𝑉𝑜𝑙 functions for each

keywords. The number of updates is𝑚.

In a conclusion, the computational complexity of the KClu algo-

rithm is calculated as O
(
𝑚 log𝑚 + 𝑘𝑚 + 𝑘2

)
.

Boundaries. The total number of obfuscated documents generated

by the KClu algorithm can be determined by dividing the total

number of keyword-document pairs in obfuscated documents by

the capacity of a dummy document 𝑝∗, expressed as O(𝑚𝑛𝑝∗ + 𝑛).
Besides, the number of keyword-document pairs is bounded by

O(𝑚𝑛).

A.3 VLR-EDESE

Setup Computation Complexity. The setup computation com-

plexity equals the sum of the complexities of the KGen and the

Setup algorithms.

Since the KGen algorithm runs the Σ𝑆𝐸 .KGen algorithm, its

computation complexity is identical to the complexity of Σ𝑆𝐸 .KGen,
denoted as O(1). Recall the complexity of the MDBPar algorithm

is and the complexity of the KClu algorithm in section 4.1 and 4.2,

the complexity of the setup computation is calculated as:

O
(
𝑚𝑛

𝑝∗
+ 𝑛 + 𝑝∗ (𝑘 − 1)

)
+ O

(
𝑚 log𝑚 + 𝑘𝑚 + 𝑘2

)
,

Considering 𝑝∗ is an optimal value such that the number of docu-

ments in MDBPar’s output, the first part is bounded by O(𝑘𝑚 + 𝑛)
where 𝑝∗ =𝑚. Thus, the setup complexity is:

O
(
𝑚 log𝑚 +𝑚𝑛 + 𝑘𝑚 + 𝑘2

)
.

Server Storage Complexity. The server storage complexity equals

the number of obfuscated documents generated by the KClu algo-

rithm based on the output of the MBDPar algorithm. Therefore, the

number of documents fromMBDPar is substituted in the calculation

of server storage complexity, shown as:

O
©«
𝑚 · O

(
𝑚𝑛
𝑝∗ + 𝑛 + 𝑝

∗𝑘
)

𝑝∗
+ O

(
𝑚𝑛

𝑝∗
+ 𝑛 + 𝑝∗𝑘

)ª®®¬ ⩽ O(𝑘𝑚 + 𝑛).
Communication Complexity. The client communication com-

plexity is O(1), while the server communication complexity is

calculated as:

O
(
𝑚 · O

(
𝑚𝑛

𝑝∗
+ 𝑛 + 𝑝∗𝑘

)
·𝑚−1

)
⩽ O(𝑘𝑚 + 𝑛) .

B Security Analysis
Lemma B.1. Given a set 𝑆 (𝑒𝑑) of 𝑘 encrypted documents, it is 𝑘-

ind L𝐷𝑉 resilient secure if and only if 𝑉𝑜𝑙 (𝑒𝑑1) = 𝑉𝑜𝑙 (𝑒𝑑2) = · · · =
𝑉𝑜𝑙 (𝑒𝑑𝑘) where 𝑒𝑑1, 𝑒𝑑2, · · · , 𝑒𝑑𝑘 ∈ 𝑆 (𝑒𝑑) .

Proof. Since the document volume leakage function L𝐷𝑉 (𝑑)
calculates 𝑉𝑜𝑙 (𝑒𝑑), we have 𝑣∗ = L𝐷𝑉 (𝑒𝑑1) = L𝐷𝑉 (𝑒𝑑2) = · · · =
L𝐷𝑉 (𝑒𝑑𝑘). Consequently, the adversary A cannot leverage the

leakage function L𝐷𝑉 to extract any information beyond 𝑣∗. Given
an CPA secure symmetric encryption scheme Σ𝑆𝐸 , such as AES-

CBC A cannot distinguish the order of encrypted documents in

𝑆 (𝑒𝑑) . Thus, 𝑆 (𝑒𝑑) maintains 𝑘-ind L𝐷𝑉 resilient security.

Lemma B.2. Given a collect C(𝑒𝑑) of encrypted document sets, it is
𝑘-ind L𝐷𝑉 resilient secure if and only if 𝑆 (𝑒𝑑)

𝑖
is at least 𝑘-ind L𝐷𝑉

resilient secure and 𝑆 (𝑒𝑑)
𝑖
∩ 𝑆 (𝑒𝑑)

𝑗
= ∅ where ∀𝑖, 𝑗 ∈ [1, 𝑢] with 𝑖 ≠ 𝑗

and 𝑢 indicates the number of encrypted document sets in C(𝑒𝑑) .

Proof. According to Definition 3.1, since each set of encrypted

documents are 𝑘-ind L𝐷𝑉 resilient secure, adversary A can not

identify 𝛼 produced for ∀𝑆 (𝑒𝑑) ∈ C(𝑑) with known 𝛼 ′. Therefore,
A has no ability of inferring 𝑙 for all 𝑆 (𝑒𝑑) ∈ C(𝑑) . In such case,

the probability to win the security game is P[LRΣ
A (𝜆, 𝑘,L𝐷𝑉) =

1] = AdvCPAA,Σ𝑆𝐸 (𝜆) + 1

𝑘
. Then, AdvLRA (𝜆, 𝑘,L𝐷𝑉) ⩽ 𝑛𝑒𝑔𝑙 (𝜆) .

Corollary B.2.1. If a set of encrypted documents can be divided
into a number of disjoint subsets and each subset is 𝑘-ind L𝐷𝑉 re-
silient secure, then this set of document is 𝑘-ind L𝐷𝑉 resilient secure.

Proof. Suppose a set 𝑆 (𝑒𝑑) of encrypted documents can be di-

vided into a collect C(𝑒𝑑) of disjoint subsets, such that 𝑆 (𝑒𝑑) =

⋓𝑖∈[1,𝑢]𝑆
(𝑒𝑑)
𝑖

and 𝑆
(𝑒𝑑)
𝑖
∩ 𝑆 (𝑒𝑑)

𝑗
= ∅ where ∀𝑖, 𝑗 ∈ [1, 𝑢]with 𝑖 ≠ 𝑗 .

According to Lemma B.2, if ∀𝑆 (𝑒𝑑) ∈ C(𝑒𝑑) is 𝑘-ind L𝐷𝑉 resilient

secure, C(𝑒𝑑) is 𝑘-ind L𝐷𝑉 resilient secure. Consequently, 𝑆 (𝑒𝑑) is
also 𝑘-ind L𝐷𝑉 resilient secure.

Corollary B.2.2. If a set of query tokens can be divided in to
a number of disjoint subsets and each subset is 𝑘-ind L𝑄𝑉 resilient
secure, then this set of query tokens is 𝑘-ind L𝑄𝑉 resilient secure.

The Corollary B.2.2 can be proved following the same proof

processing. Note that 𝑘-ind L𝑄𝑉 resilient security relies on crypto-

graphic hash function, which is modeled as a random oracle. This

means that the hash function is assumed to provide unpredictable

and consistent outputs.

Theorem B.3. The constructed VLR-EDESE scheme is 𝑘-ind vol-
ume leakage resilient secure.

Proof. Recall the construction of VLR-EDESE in Figure 2, MDB-

Par algorithm outputs the semi-obfuscated documents 𝐷′
𝑛′ , such

that each document volume value occurs at least 𝑘 times (described

in Algorithm 1). Therefore, 𝐷′
𝑛′ is 𝑘-ind L𝐷𝑉 resilient secure.

After that, KClu algorithm produces the obfuscated documents

𝐷′′
𝑛′′ based on 𝐷′

𝑛′ . KClu algorithm only adds new dummy docu-

ments associated with existing query tokens, therefore, no new

document volume values emerges (limited by the modulus 𝑝 as Al-

gorithm 2). Consequently, 𝐷′′
𝑛′′ is also 𝑘-ind L𝐷𝑉 resilient secure.

In addition, KClu algorithm produces 𝐷′′
𝑛′′ such that each key-

word volume value occurs at least 𝑘 times. Therefore, 𝐷′′
𝑛′′ is 𝑘-ind

L𝑄𝑉 resilient secure.

Since 𝐷′′
𝑛′′ is 𝑘-ind L𝐷𝑉 resilient secure and 𝑘-ind L𝑄𝑉 resilient

secure, the encryption of 𝐷′′
𝑛′′ is 𝑘-ind volume leakage resilient se-

cure. Hence, the proposed VLR-EDESE is a volume leakage-resilient

EDESE with 𝑘 indistinguishability.

144

	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 Models and Definitions
	3.1 Pre-defined Notions
	3.2 System Model of EDESE
	3.3 Algorithms of EDESE
	3.4 LAAs on EDESE
	3.5 Leakage-Resilient EDESE

	4 VLR-EDESE
	4.1 Document Volume Hiding Method
	4.2 Query Volume Hiding Method
	4.3 Construction of VLR-EDESE
	4.4 Security Analysis
	4.5 Padding Strategy

	5 Evaluation
	5.1 Overhead of EDESE
	5.2 Theoretical Evaluation
	5.3 Experimental Evaluation

	6 CloudSec
	6.1 System Design
	6.2 User Workflow
	6.3 Implementation
	6.4 Achievements

	7 Conclusion
	Acknowledgments
	References
	A Complexities and Boundaries
	A.1 MDBPar Algorithm
	A.2 KClu Algorithm
	A.3 VLR-EDESE

	B Security Analysis

