SoK: Evaluating Jailbreak Guardrails for Large Language Models

Xunguang Wang*, Zhenlan Ji*, Wenxuan Wang', Zongjie Li*, Daoyuan Wu!, Shuai Wang*$
*The Hong Kong University of Science and Technology, tRenmin University of China, iLingnan University
{xwanghm, zjiae, z1igo, shuaiw}@cse.ust .hk, wangwenxuan@ruc.edu.cn, daoyuanwu@ln.edu.hk

Abstract—Large Language Models (LLMs) have achieved re-
markable progress, but their deployment has exposed critical
vulnerabilities, particularly to jailbreak attacks that circum-
vent safety alignments. Guardrails—external defense mech-
anisms that monitor and control LLM interactions—have
emerged as a promising solution. However, the current land-
scape of LLM guardrails is fragmented, lacking a unified
taxonomy and comprehensive evaluation framework. In this
Systematization of Knowledge (SoK) paper, we present the
first holistic analysis of jailbreak guardrails for LLMs. We
propose a novel, multi-dimensional taxonomy that categorizes
guardrails along six key dimensions, and introduce a Security-
Efficiency-Utility evaluation framework to assess their practi-
cal effectiveness. Through extensive analysis and experiments,
we identify the strengths and limitations of existing guardrail
approaches, provide insights into optimizing their defense
mechanisms, and explore their universality across attack types.
Our work offers a structured foundation for future research
and development, aiming to guide the principled advancement
and deployment of robust LLLM guardrails.

1. Introduction

Large Language Models (LLMs) have demonstrated re-
markable capabilities across a wide range of applications,
revolutionizing fields from natural language understanding
to content generation [1], [2], [3], [4], [5], [6]. However,
their increasing sophistication and widespread adoption have
also exposed significant vulnerabilities. A prominent con-
cern is their susceptibility to jailbreak attacks [7], [8], where
adversaries craft malicious inputs to bypass safety align-
ments and elicit harmful, biased, or unethical responses. The
proliferation of such attacks underscores the urgent need
for robust defense mechanisms. Among various defense
strategies, guardrails [9], [10], [11] have emerged as a
promising approach, aiming to monitor and control LLM
interactions without altering the underlying model’s weights
or core functionalities.

Guardrail-based defenses offer a distinct advantage over
other defense methods (e.g., tuning-based approaches [12])
as they can effectively filter jailbreak attempts while pre-
serving the integrity of the target LLM’s original output
capabilities. Despite their potential, the current landscape
of LLM guardrails is characterized by siloed innovation.

§ Corresponding author.

Numerous research teams and organizations have proposed
various guardrail solutions, often tailored to specific scenar-
ios, attack vectors (e.g., focusing primarily on single-turn at-
tacks), or proprietary systems. This ad-hoc development has
resulted in a fragmented ecosystem of defense mechanisms,
lacking a unified understanding or a systematic classification
framework to position and compare these disparate efforts.
The absence of a systematic perspective contributes
directly to a critical limitation in existing guardrails: a
general lack of universality. Many solutions are not readily
adaptable across different LLMs, attack types, or deploy-
ment contexts. Furthermore, current evaluation practices for
LLM guardrails often fall short of reflecting real-world
operational constraints. Evaluations predominantly focus on
raw defense efficacy against specific jailbreak benchmarks,
frequently overlooking crucial factors such as computational
cost (e.g., inference latency, GPU resource consumption)
and utility (e.g., the rate of misclassifying benign prompts as
malicious, thereby degrading user experience). This narrow
evaluation scope hinders a comprehensive understanding of
the practical trade-offs involved in deploying guardrails.
To address these critical gaps, this Systematization of
Knowledge (SoK) paper provides the first comprehensive
analysis and structuring of the rapidly evolving field of
jailbreak guardrails for LLMs. We aim to consolidate the
disparate research efforts, offering a clear and structured
understanding of the current state-of-the-art. Our primary
contributions are threefold: (1) we propose a novel, multi-
dimensional taxonomy for classifying LLM guardrails, en-
abling a nuanced understanding of their design character-
istics; (2) we introduce a holistic evaluation framework
centered on the Security-Efficiency-Utility trifecta, promot-
ing more practical and comprehensive assessments; and (3)
we conduct extensive analysis based on our framework,
yielding valuable insights into the performance of existing
guardrails and identifying promising avenues for future re-
search. Specifically, our contributions are as follows:

e A Multi-Dimensional Guardrail Taxonomy: We pro-
pose the first comprehensive taxonomy to categorize LLM
guardrails along six critical dimensions:

— Intervention Stage: Characterizing when the guardrail
operates (Pre-processing, Intra-processing, or Post-
processing of LLM interactions).

— Technical Paradigm: 1dentifying the underlying mech-
anism (Rule-based, Model-based, or LLM-based).

— Safety Granularity: Defining the scope of the guardrail

detection (Token-level, Sequence-level, or Session-
level).

— Reactivity: Distinguishing between static (pre-defined)
and dynamic (adaptive) defense strategies.

— Applicability: Considering the guardrail’s requirements
regarding LLM access (White-box vs. Black-box).

— Interpretability: Assessing the transparency of the
guardrail’s decision-making process.

« A Security-Efficiency-Utility (SEU) Evaluation Frame-
work: We introduce a novel framework for evaluating
guardrails that balances three crucial aspects:

— Security: Measuring the defense performance against a
diverse range of jailbreak attacks.

— Efficiency: Quantifying the operational overhead, in-
cluding inference delay and GPU memory consump-
tion.

— Utility: Assessing the impact on legitimate user interac-
tions, primarily through the false positive rate on benign
queries.

« Experimental Findings and Optimization Insights: We
leverage our taxonomy and evaluation framework to ana-
lyze existing guardrails and explore future directions:

— We conduct a tri-objective (SEU) evaluation of main-
stream guardrail methods to identify balanced solutions
and those effective against diverse jailbreak categories.

— We investigate specific hypotheses, such as the efficacy
of session-level guardrails against multi-turn attacks,
the influence of intervention stage on latency, the im-
pact of technical paradigms on resource consumption,
and the relationship between safety granularity and
utility.

— We explore the universality of guardrails by assessing
their performance against other attack modalities, such
as prompt injection attacks.

This SoK aims to provide researchers and practition-
ers with a clear roadmap for understanding, developing,
and deploying LLM jailbreak guardrails. By systematiz-
ing existing knowledge and proposing a comprehensive
evaluation methodology, we hope to foster more princi-
pled advancements in this critical area of LLM security.
The code is available at https://github.com/xunguangwang/
SoK4JailbreakGuardrails.

2. Jailbreak Attacks in LLMs

In this section, we first formally describe the jailbreak in
LLMs and then introduce several typical jailbreak methods.
Jailbreak Formulation. The jailbreak phenomenon indi-
cates that specific malicious instructions can bypass the
safety mechanisms of LLMs, leading to the generation of
harmful or unethical outputs. This is particularly concern-
ing as it highlights the potential for adversaries to exploit
vulnerabilities in LLMs to produce toxic or harmful con-
tent. The jailbreak process can be viewed as a two-step
procedure: (1) crafting an adversarial prompt P that elicits
a harmful response from the LLM, and (2) evaluating the
generated response R against a predefined harmful objective

G using a classifier JUDGE. JUDGE returns ‘True’ if the
generated response R meets the harmful objective G, i.e.,
JUDGE = True, otherwise ‘False’. Let T represent the
LLM’s vocabulary. Formally, we can define the classifier
JUDGE : T* x T* — {True,False}. The adversary’s
goal is to maximize the probability of generating responses
classified as satisfying the harmful objective G. This can be
expressed mathematically as:

sup Pr [JUDGE(R,G) = True], (1

PeT+ RVLLM(P)

where Pr denotes the probability, which accounts for the
inherent stochasticity of the LLM’s outputs when process-
ing the input prompt P. The adversary iteratively refines
prompts to identify those that maximize the likelihood of
producing outputs deemed harmful by the classifier.
Existing Jailbreak Attacks. Jailbreak attacks can be
broadly categorized into two types: single-turn and multi-
turn jailbreaks. Single-turn jailbreaks involve crafting a
single prompt to elicit harmful responses, while multi-
turn jailbreaks exploit the interactive nature of LLMs by
engaging in a dialogue with the model over multiple turns.
Due to the maturity of research on single-turn attacks and
the relative scarcity of multi-turn attack studies, a further
breakdown of the single-turn attack is necessary. Building
on prior works [11], [13] that categorize jailbreak attacks by
their technical paradigms, we divide single-turn attacks into
similar four types: manual, optimization-based, generation-
based and implicit jailbreaks.

o Manual Jailbreaks. These attacks involve crafting
prompts that exploit vulnerabilities in LLMs [14], [15],
[16], [17], [18]. Wei et al. [15] identified two key
weaknesses—out-of-distribution inputs and conflicts be-
tween safety objectives and model capabilities—to inform
prompt design. Deng et al. [18] introduced AIM (Al-
ways Intelligent and Machiavellian), a proof-of-concept
jailbreak prompt that served as a foundation for generating
additional adversarial prompts. Shen et al. [17] proposed
JailbreakHub, a crowdsourcing framework for collecting
diverse jailbreak prompts.
Optimization-based Jailbreaks. These methods itera-
tively refine adversarial prompts using techniques like
gradient-based optimization or search strategies [7], [8],
[19], [20], [21]. GCG [7] introduced a greedy coordi-
nate gradient method to optimize adversarial suffixes, en-
abling transferable jailbreaks across models and prompts.
Sitawarin et al. [19] extended this with GCG++, lever-
aging a proxy model to enhance optimization. Beyond
gradient-based techniques, JSAA [20] employed random
search for suffix optimization and BON [22] induces jail-
breaks by repeatedly sampling augmentations of a harmful
instruction until one succeeds, while AutoDAN [8] used
a hierarchical genetic algorithm to create human-readable
jailbreak prompts. RLbreaker [23] utilized reinforcement
learning to efficiently search for adversarial prompts, out-
performing stochastic methods like JSAA and AutoDAN.
o Generation-based Jailbreaks. These attacks use auxil-
iary LLMs to produce adversarial prompts [18], [24],

[25], [26], [27], [28]. PAIR [25] employs a feedback
loop where the attacking LLLM adjusts outputs based on
the target LLM’s responses. Mehrotra et al. [26] en-
hanced this approach using tree-of-thought reasoning [29].
LLM-Fuzzer [30] automates adversarial prompt genera-
tion by mutating human-written templates. Additionally,
Advprompter [27] trains a fine-tuned LLM to create both
effective and human-readable adversarial prompts.

o Implicit Jailbreaks. This class of attacks is derived
from the Linguistics-based and Encoding-based jailbreak
categories identified in JBShield [13]. Given that both
strategies conceal malicious intent within the query text to
circumvent LLM safety mechanisms, they are collectively
categorized as implicit jailbreaks. For instance, Handa et
al. [31] demonstrated word substitution as a simple eva-
sion method. DrAttack [32] decomposes harmful prompts
into smaller, less detectable sub-prompts. Puzzler [33]
embeds clues within queries to guide the LLM toward
producing harmful outputs indirectly. Another approach
involves translating harmful prompts into languages where
LLM safety mechanisms are weaker [15], [34], [35], [36],
[37], [38]. Deng et al. [34] and Yong et al. [35] found
that low-resource languages, such as Zulu, often exhibit
less robust safety alignment. Obfuscation techniques [39],
including encoding or encrypting harmful prompts, further
reduce LLM sensitivity to malicious inputs [15], [38].

o Multi-turn Jailbreaks. One multi-turn attack strategy is
the fine-grained task decomposition, which decomposes
the original malicious query into several less harmful
sub-questions [40], [41], [42]. While this decomposition
strategy successfully circumvents current safety mecha-
nisms, it may be easily mitigated by including these finer-
grained harmful queries in safety training data. Alterna-
tively, researchers propose to use human red teamers to
expose vulnerabilities of LLMs against multi-turn attacks
[43]. Moreover, Yang et al. [44] depend on the heuris-
tics from [25] and its seed examples to implement their
attacks. Crescendo [45] gradually steers benign initial
queries towards more harmful topics. The implementation
of Crescendo is based on the fixed and human-crafted seed
instances, making it challenging to generate diverse and
effective attacks. By contrast, ActorAttack [46] proposes
to discover diverse attack clues inside the model’s prior
knowledge. X-Teaming [47] achieves more effective and
diverse multi-turn attacks by adaptive collaborative agents
for planning, attack optimization, and verification.

3. Definition, Taxonomy & Evaluation

3.1. Jailbreak Defense

Jailbreak defense comprises methods to protect LLMs
from jailbreak attacks intended to elicit harmful or policy-
violating content. We classify these defenses based on their
point of application into four categories: prompt-based,
tuning-based, refining-based defenses, and guardrails, which
respectively focus on modifying prompts, optimizing model

P t-based Tuning-based Refining-based
P g g
Defense Defense Defense

4 4 4

Adversary Jailbreak Prompt Targe:\ LLm LLm Résponse SEU Evaluation

How to make a)
& - &
v

o Ve
Step 1: Gather
Materials... I} 5:

L

e
] Sorry, |
{ cannot
@ assist...
> —

Guardrail Refusal

y

Figure 1. Illustration of a guardrail pipeline.

parameters, controlling model outputs, and external moni-
toring.

Prompt-based defenses alter the input prompt to en-
hance the LLM’s adherence to safety guidelines [16], [48],
[49], [50]. For instance, Self-Reminder [48] prepends ethical
reminders, while ICD [16] provides examples of harmful
queries and safe responses. Tuning-based defenses opti-
mize the LLM’s parameters to improve its inherent safety.
This includes techniques like reinforcement learning from
human feedback (RLHF) [51], [52], machine unlearning
to erase harmful knowledge [53], model editing to patch
vulnerabilities [54], supervised fine-tuning on curated safety
datasets [55], [56], and adversarial training to bolster robust-
ness against attacks [12]. Refining-based defenses steer the
output generation process in real-time [57], [58], [59]. For
example, RAIN [57] uses token-level evaluation to guide
rewinds for safer generation, whereas Aligner [5S9] employs
a lightweight model to correct initial responses towards
alignment. Guardrails are external modules that monitor
and control the interaction [9], [10], [60]. As illustrated
in Figure 1, they can operate on inputs (pre-processing),
internal model states (intra-processing), or outputs (post-
processing). Distinct from the other categories, guardrails do
not modify the target LLM’s inference; rather, they detect
harmfulness and filter the interaction to prevent jailbreaks.

3.2. Jailbreak Guardrail Definition

A “Jailbreak Guardrail” refers to a specialized security
mechanism designed for LLM systems, specifically to detect
and prevent “jailbreak™ attacks [9], [10], [11], [60]. Such
guardrails typically function as a defensive layer, scruti-
nizing user inputs before they reach the LLM or vetting
the model’s outputs before they are presented to the user.
The primary objective is to ensure that the LLM does not
generate harmful, unethical, or policy-violating content.

In the context of the jailbreak formulation introduced in
Section 2, where an adversary crafts a prompt P aiming to
elicit a response R = LLM(P) such that JUDGE(R, G) =
True (indicating a harmful outcome based on objective G),
a jailbreak guardrail introduces an additional checkpoint.
Let Gr denote the guardrail system, and Assess(Gr, X) be
its assessment function, which returns allow if content X
(either P, R, or the internal feature F' of the LLM) is
deemed permissible, and block otherwise. When block is

executed, the final response R is replaced by a safe re-
sponse R/, such as “Sorry, I cannot assist with
that”, as shown in Figure 1.

A jailbreak attack is considered successful in the pres-
ence of such a guardrail if, and only if, the protective
mechanisms of both the target LLM (i.e., its inherent safety
alignment) and the guardrail are circumvented. This means
the guardrail must deem the interaction (either the input
prompt or the generated output) as acceptable, while the
target LLM still produces content classified as harmful.
More formally, if the guardrail inspects the input prompt
P, a successful jailbreak occurs when:

Assess(Gr, P) = allow A JUDGE(R,G) = True. (2)

Alternatively, if the guardrail inspects the model’s internal
features F' or output R = LLM(P), a successful jailbreak
is characterized respectively by:

Assess(Gr, F') = allow A JUDGE(R,G) = True, (3)
Assess(Gr, R) = allow A JUDGE(R,G) = True. (4)

This highlights that a successful adversary must not only
craft a prompt that bypasses the LLM’s internal safety
measures but also deceive the guardrail into permitting the
harmful interaction or content.

As jailbreak techniques become increasingly sophisti-
cated and diverse (as noted in Section 2), these guardrails
face mounting challenges. They must evolve beyond detect-
ing overtly malicious requests to identify subtle and nuanced
jailbreak patterns and adversarial manipulations. The contin-
uous enhancement of jailbreak guardrails is therefore critical
for improving the safety, security, and regulatory compliance
of Al applications.

3.3. Jailbreak Guardrail Taxonomy

This section categorizes existing guardrail approaches
along several key dimensions. Our taxonomy considers:

« Intervention Stages: This dimension delineates when
the guardrail operates within the LLM interaction
pipeline—either at pre-processing (before the input
reaches the LLM), intra-processing (during the LLM’s
inference), or post-processing (after the LLM generates
an output).

o Technical Paradigms: This refers to the underlying
methodology employed by the guardrail. Approaches are
classified as rule-based (relying on predefined rules or
patterns), model-based (using statistical models or classi-
fiers), or LLM-based (leveraging another LLM for analy-
sis and decision-making).

o Safety Granularity: This specifies the level of detail at
which the safety analysis is performed. It can be token-
level (examining individual words or sub-word units),
sequence-level (evaluating entire prompts or responses),
or session-level (considering the context of the entire
conversation history).

« Reactiveness: This dimension distinguishes how a
guardrail responds to potentially harmful inputs. Static

defenses analyze inputs without modification, whereas
dynamic defenses actively alter inputs—for example,
through mutation or perturbation—to neutralize adversar-
ial properties while aiming to preserve overall semantic
meaning.

o Applicability: This criterion assesses the guardrail’s suit-
ability for different LLM access models, with a particular
emphasis on whether the mechanism can be effectively
applied to black-box LLMs (i.e., closed-source models or
those accessed via remote APIs where internal states are
not accessible).

« Explainability: This focuses on whether the guardrail
method provides interpretable insights into its safety judg-
ments or offers clear rationales for the decisions it makes.

This multi-faceted classification provides a comprehensive
framework for understanding and navigating the landscape
of LLM guardrails. We have comprehensively compiled
existing works on jailbreak guardrails by this taxonomy, as
summarized in Table 1.

3.4. Guardrail Evaluation Framework

To enable a comprehensive and practical assessment of

LLM guardrails, we propose the Security-Efficiency-Utility
(SEU) Evaluation Framework. This framework is designed
to capture the essential trade-offs involved in deploying
guardrails in real-world LLM systems, moving beyond the
narrow focus on raw defense efficacy. Below, we detail the
three core dimensions of our framework and the specific
metrics used for each.
Security: Defense Effectiveness. The primary objective of
any guardrail is to enhance the security of LLM systems by
mitigating jailbreak attacks. We evaluate defense effective-
ness using two complementary metrics:

o Attack Success Rate (ASR): ASR measures the propor-
tion of adversarial attempts that successfully bypass the
guardrail and elicit harmful or unethical responses from
the target LLM. Formally, it is defined as the percentage
of attack queries for which the LLM system equipped
with the guardrail fails to block or mitigate the attack. A
lower ASR indicates a stronger defense.

o Pass Guardrail Rate (PGR): PGR measures the pro-
portion of jailbreak attempts that successfully bypass the
guardrail, indicating that the guardrail has classified the
attempt as safe. For pre-processing and intra-processing
guardrails, this refers to the proportion of malicious re-
quests that the guardrail incorrectly identifies as benign.
For post-processing guardrails, this refers to the pro-
portion of instances where the guardrail fails to detect
harmful content in the LLM’s response to a jailbreak
attempt. A lower PGR signifies a more effective guardrail
in blocking attacks.

Efficiency: Computational Overhead. In practical deploy-
ments, the operational efficiency of guardrails is a critical
consideration, as excessive overhead can degrade user expe-
rience and increase infrastructure costs. We assess efficiency
along two axes:

« Extra Delay: This metric captures the additional response
latency introduced by the guardrail. It is computed as the
difference between the end-to-end response time of the
guardrail + LLM system and that of the standalone target
LLM. Formally,

Extra Delay = Tgyardrail + LLM — TLLM, (%)

where Tyuararait+ 1 and Typv denote the average re-
sponse times with and without the guardrail, respectively.

e GPU Memory Overhead: This metric measures the
increase in peak GPU memory consumption resulting
from the integration of the guardrail. It is defined as the
difference between the maximum GPU memory usage of
the guardrail + LLM system and that of the target LLM
alone:

GPU Overhead = Mgyardrait + LM — Mrim, — (6)

where Mgyadrait + LLm and My represent the peak GPU
memory usage with and without the guardrail, respec-
tively.

Utility: Impact on Benign Queries. A robust guardrail

should not only block malicious inputs but also preserve the

utility of the LLM for legitimate users. We quantify utility
loss using the following metric:

« False Positive Rate (FPR): FPR measures the proportion
of benign (non-malicious) queries that are incorrectly
flagged or blocked by the guardrail. It is defined as the
percentage of normal user queries that are misclassified as
attacks. A lower FPR indicates better utility preservation,
as the guardrail minimally disrupts legitimate interactions
with the LLM.

Discussion. By jointly considering Security, Efficiency, and

Utility, the SEU Evaluation Framework provides a holis-

tic basis for comparing and optimizing LLM guardrails.

This tri-objective perspective enables the identification of

solutions that achieve a balanced trade-off, rather than ex-

celling in only one dimension at the expense of others.

In our experimental analysis (§5 & §6), we employ this

framework to systematically evaluate mainstream guardrail

methods, offering actionable insights for both researchers
and practitioners.

Alignment with Taxonomy Dimensions. The proposed

taxonomy in §3.3 is intentionally structured to align with

the empirical evaluation dimensions of the SEU framework,
which form the core contribution of this work. Particularly,
we would analyze the first three taxonomy dimensions (In-
tervention Stage, Technical Paradigm, and Safety Granular-
ity) in depth, because they have a direct, measurable impact
on Security, Efficiency, and Utility, forming the foundation
of our quantitative analysis. In contrast, the latter three
dimensions (i.e., Reactiveness, Applicability, and Explain-
ability) are more qualitative in nature and represent critical
future research directions for enhancing the adaptability,
deployment flexibility, and transparency of guardrail sys-
tems. By focusing our empirical analysis on the dimensions
most directly tied to operational performance, we provide

a principled and actionable foundation for evaluating and

optimizing jailbreak guardrails in practice.

4. Guardrail Analysis Based on Taxonomy

4.1. Intervention Stages

Guardrail mechanisms can be deployed at different

stages of the LLM interaction pipeline, including pre-
processing, intra-processing, and post-processing. Each
stage serves a distinct purpose in identifying and mitigating
jailbreak attempts:
Pre-processing Guardrails. These mechanisms operate on
user inputs before they reach the target LLM, functioning
as the first line of defense against jailbreak attempts. Pre-
processing guardrails typically employ detection algorithms
to identify potentially harmful prompts and then block them
entirely. These guards are particularly valuable for their
ability to prevent harmful prompts from ever reaching the
model, thus conserving computational resources and reduc-
ing potential risks.

Early methods, such as Detecting Perplexity [64] and
Perplexity Filter [65], compute the perplexity of input
prompts to detect potential adversarial inputs. However, this
approach is limited to GCG [7], [19], [28] attacks with
unreadable adversarial suffixes amplifying the perplexity.

A more direct approach is to identify the semantic
harmfulness of input sequences. Some methods focus on
directly identifying toxic phrases or excerpts within the input
text [11], [60], [88], while others assess the overall semantic
harmfulness of the entire input [10], [60], [61], [62], [66],
[731, [74], [79], [80], [82], [83], [84], [87], [89], [91], [100].
For instance, PromptGuard [80] and OpenAl Moderation
[62] fine-tune pre-trained classifiers to assess the safety
of input prompts. However, pre-processing guardrails may
struggle with novel jailbreak techniques that do not exhibit
clear patterns, e.g., implicit attack DrAttack [32] conceals
malicious content within benign-looking prompts.

A more fundamental approach is to analyze the true
intent of the query to filter out jailbreak requests, based
on the premise that jailbreak attempts always involve ma-
licious output targets. Leveraging the powerful language
understanding capabilities of LLMs, we can directly utilize
LLMs to identify the real intentions of requests to determine
whether they are jailbreak attempts [11], [78], [95], [100].
For example, SelfDefend [11] with the intent prompt first
summarizes the input intention and then assesses whether it
constitutes a jailbreak request. Recently, some studies have
employed LLM reasoning capabilities to analyze input intent
[92], [93], [99] before the safety judgments. For instance,
X-Guard [93] employs deep thinking to evaluate potential
harms.

Summary 1: Pre-processing guardrails are the first line of
defense against jailbreak attempts, operating on user inputs
before they reach the target LLM. They have evolved from simple
perplexity detection to semantic harmfulness identification and,
most recently, to LLM-based reasoning for analyzing input in-
tent. This evolution is driven by the need to address increasingly
sophisticated and covert attack methods.

TABLE 1. WORKS ON GUARDRAILS CATEGORIZED BY 6 DIMENSIONS. THE BLACK CIRCLE INDICATES THE GUARDRAIL BELONGS TO THIS
DIMENSION, AND THE WHITE CIRCLE OTHERWISE.

Ve ‘ Intervention Stages
‘enue

‘Technical Paradigms‘ Safety Granularity ‘ Reactiveness ‘

Paper

A:ﬁm“ bility

‘Pra—processing Intra-processing Postfprocessing‘Rule Model LLM ‘Tokan Sequence Session‘Slatic Dynamic‘ ‘

Perspective API [61]
OpenAl Moderation [62]
Self Defense [63]
Detecting Perplexity [64]
Perplexity Filter [65]

KDD’22 (2202.11176)
AAAT23 (2208.03274)
arXiv:2308.07308
arXiv:2308.14132
arXiv:2309.00614
COLM’24 (2309.02705)
arXiv:2310.03684
EMNLP’23 (2310.10501)
arXiv:2312.06674
ACL24 (2402.13494)
arXiv:2402.16192
arXiv:2403.00826
NeurIPS’24 (2403.00867)
arXiv.2403.04783

erase-and-check [66]
SmoothLLM [67]
NeMo Guardrails [9]
Llama Guard [10]
GradSafe [68]
SemanticSmooth [69]
LLMGuard [70]
Gradient Cuff [71]
AutoDefense [72]

RigorLLM [73] ICML’24 (2403.13031)
Aegis [74] arXiv:2404.05993
LLMGuardrail [75] CCS’24 (2405.04160)
RSAA [76] CAMLIS’24 (2406.03230)

Circuit Breaking [77]
SelfDefend [11]
GuardAgent [78]
‘WildGuard [60]
R2-Guard [79]

Prompt Guard [80], [81]
PrimeGuard [82]
ShieldGemma [83]
Adaptive Guardrail [84]

NeurIPS’24 (2406.04313)
USENIX Security’25 (2406.05498)
ICML’25 (2406.09187)
NeurIPS’24 (2406.18495)
ICLR’25 (2407.05557)
Hugging Face (22 July 2024)
arXiv:2407.16318
arXiv:2407.21772
arXiv:2408.08959

EEG-Defender [85]
HSF [86]
MolE [87]

ICONIP’25 (2408.11308)
WWW’25 (2409.03788)
AIES’24 (2409.17699)

Rapid Response [88]
Pretrained Embeddings [89]
Token Highlighter [90]
Aegis2.0 [91]

COT Fine-Tuning [92]
GuardReasoner [93]
Constitutional Classifiers [94]
IBShield [13]

EDDF [95]

CURVALID [96]
MirrorShield [97]
JailGuard [98]

X-Guard [99]

Continuous Detector [100]
Active Monitoring [100]

arXiv:2411.07494
arXiv:2412.01547
AAAT'25 (2412.18171)
arXiv:2501.09004
arXiv:2501.13080
arXiv:2501.18492
arXiv:2501.18837
USENIX Security’25 (2502.07557)
ACL Fingdings’25 (2502.19041)
arXiv:2503.03502
arXiv:2503.12931
TOSEM’25 (19 March 2025)
arXiv:2504.08848
arXiv:2504.19440
arXiv:2504.19440

0000000000000 0000000000000 00000 000000V V00O 0
eJo)elel JeJol Jeolelelel Jelolel X Jolelolelelelelel X X JOlelel Jolel JCI0lel0lel0le)e]e)

L X X X JeJolelel X JoI Jololelelelele] Jolel X Jolelelelel Jol JoX X JoI X X JoJelof X ¥)

[cJololelelololelolololelolel lelololelelolelelelolelelolelelolele) Jololelel JO)el0lelele)
000000000000 00000000 00000000000 OO0 OO O00OON 0
([X X Jelelolelel X X ¥ Jolol Jelolelel X Joleol X X Jolojel X X JeJleX JoI X JoI Jelol Je)e)
0000000000 OeOOOOOOLOOOOOOLeOOOOOOOOOLLOeOOOOOO
000000000000 00000000000000000000000000 000000
[X _Jololelelelelel JoI Jelolelelelel X 1ol 16X JoIeIelele] 10l010)e1ele) 10I010)e10101e)e)
0000000000000 000000000000000000 0000000 000000
ool X Jelolelelelolele] JoI leololclelololelelololeleololelel Jeolelel Jolel X X Jelolelele)
0000000000000 0000000000000 00000000 000000000
(JOX X X X X X JOoI X ¥ Jolojelelel Jol X JoX Jol X JoJof Y X X X X JOoI X JoI JoX X JOJIe)e)

Intra-processing Guardrails. These guardrails operate dur-
ing the LLM’s inference process, analyzing internal model
features or gradients to detect potential jailbreak attempts.
Unlike pre-processing methods, intra-processing guardrails
can observe how the model processes inputs internally,
providing deeper insights into potential vulnerabilities.

On one hand, intra-processing guardrails rely on gradient
information to identify potential jailbreak attempts. These
methods analyze the gradients of the model’s inputs or
parameters during inference to identify unusual patterns or
anomalies that may indicate adversarial inputs. For example,
GradSafe [68] computes the similarity between the input’s
gradient w.r.t. the safety-critical parameters and the unsafe
reference gradients. Gradient Cuff [71] compares the gra-
dient norm of refusal loss w.r.t. the query prompt with a
threshold. Token Highlighter [90] uses the gradient norm
of the affirmation loss for each token in the user query to

locate the jailbreak-critical tokens.

On the other hand, intra-processing guardrails can an-
alyze the model’s internal states for jailbreak detection
[13], [75], [76], [77], [85], [86]. These methods leverage
the model’s hidden states or other internal representations,
to identify patterns indicative of jailbreak attempts. For
example, Circuit Breaking [77] interrupts the LLM to out-
put harmful content when harmful states are detected. JB-
Shield [13] analyzes the differences of the LLM’s internal
states between the jailbreak prompts and the benign queries.
These approaches can provide more nuanced insights into
the model’s behavior and vulnerabilities, enabling more ef-
fective detection of sophisticated jailbreak techniques. How-
ever, these approaches typically require white-box access to
the target model, which limits their applicability to open-
source LLMs or scenarios where model internals are acces-
sible.

Summary 2: [Intra-processing guardrails operate during the
LLM’s inference process, analyzing internal model features or
gradients to detect potential jailbreak attempts. They provide
deeper insights into vulnerabilities but require white-box access
to the model, limiting their applicability.

Post-processing Guardrails. These mechanisms evaluate
the LLM’s generated outputs to identify and filter harmful
content. As jailbreak attacks inherently aim to produce
harmful outputs, post-processing guardrails serve as a cru-
cial last line of defense. This ensures that even if malicious
prompts circumvent earlier detection stages, their resultant
outputs can still be intercepted.

Given that post-processing guardrails scrutinize the
LLM’s generated outputs, a primary strategy involves the
direct detection of harmfulness within these responses. The
most elementary of these methods employ keyword-based
detectors to assess the safety of the LLM’s outputs, pri-
marily focusing on determining its jailbroken state [67],
[70]. Building upon this foundational technique, a more
sophisticated approach involves training dedicated classifiers
to distinguish between harmful and harmless responses [61],
[62], [70], [79]. For instance, initiatives like the Perspective
API [61] and OpenAl Moderation [62] have developed
transformer-based classifiers engineered to predict the prob-
ability of harmful content appearing in an LLM’s response.
Similarly, R2?-Guard [79] embeds safety knowledge into
probabilistic graphical models, enabling the computation of
unsafe probabilities for any given LLM outputs. Elevating
this classification paradigm further, albeit with increased
computational demands, some techniques leverage the rea-
soning capabilities of other LLMs to assess response safety
[91, [10], [601, [63], [69], [72], [74], [83], [91], [93], [94],
[99], [100]. Self Defense [63], for example, filters harmful
content by querying an LLM about the harmfulness of the
initial response. Llama Guard [10] takes a more contextual
approach by considering the input prompt in conjunction
with the output to determine the risk category of the re-
sponse. Progressing towards even more thorough analysis,
GuardReasoner [93] and X-Guard [99] employ chain-of-
thought reasoning before rendering a safety judgment on
the LLM’s output.

Beyond directly assessing the semantic harmfulness of
the response, an alternative category of methods ingeniously
leverages the discrepancies in outputs that arise from dis-
rupting the adversarial characteristics of the initial jail-
break prompt [67], [69], [97], [98]. SmoothLLM [67], for
instance, operates by randomly perturbing or permuting
multiple copies of a given input prompt to generate a set
of responses; the safety of the original request is then
determined by a voting mechanism based on these perturbed
responses. Advancing this concept, SemanticSmooth [69]
and JailGuard [98] implement more complex mutations than
the simple character-level alterations used by SmoothLLM,
such as paraphrasing the prompt or translating it into other
languages. In a similar vein, MirrorShield [97] generates
“mirror” prompts that aim to preserve the syntactic struc-
ture of the input while ensuring its semantic safety. These

mutation-based methods capitalize on the inherent properties
of jailbreak prompts to identify adversarial inputs, render-
ing them particularly effective against sophisticated attacks.
Nevertheless, they may incur additional computational over-
head due to the requirement for numerous response evalua-
tions or intricate input transformations.

Although detecting the output of LLMs may appear
more straightforward than deciphering ambiguous prompts
and internal features, later methodologies will integrate the
input prompts to thoroughly evaluate the safety of the
query. However, post-processing safeguards may incur more
latency than other paradigms due to the requirement of
awaiting the LLM’s response. Furthermore, mutation-based
techniques that mandate multiple response evaluations are
suspected to exacerbate this latency.

Summary 3: Post-processing guardrails, by operating on the
LLM’s generated outputs to identify and filter harmful content,
act as an essential safeguard. They intercept potentially harmful
outputs that bypass earlier detection stages. However, over-
reliance on the nature of responses may cause noticeable delay,
particularly when employing mutation-based techniques that
need multiple evaluations.

Drawing upon a classification by intervention stages, our
analysis reveals a critical gap in the current literature, which
motivates the RQ below. As no prior work has systemati-
cally investigated this specific dimension, we undertake a
thorough examination in this paper.

RQ 1: Pre-processing guardrails can reject harmful inputs
before they reach the target LLM, intra-processing mechanisms
operate concurrently during LLM inference, and post-processing
techniques must await LLM’s outputs. This raises a pertinent
question: To what extent does the specific intervention stage
of a guardrail, be it pre-processing, intra-processing, or post-
processing, influence overall response latency?

4.2. Technical Paradigms

Guardrail mechanisms employ diverse technical ap-
proaches to detect and mitigate jailbreak attempts, including
rule-based, model-based, and LLM-based approaches.
Rule-based Guardrails. These guardrails operate by em-
ploying predefined rules, patterns, or heuristics to detect
potentially harmful inputs or outputs of LLMs. A typical
rule-based approach includes utilizing keywords or regular
expressions to identify specific patterns tied to harmful
content. For instance, SmoothLLM, as referenced in [67],
leverages keyword-based detectors to assess the safety of the
LLM’s outputs, primarily to determine its jailbroken state.
Similarly, the PII Detector mentioned in [70] uses regular
expressions to identify personally identifiable information,
such as phone numbers and emails. This method mirrors the
approach taken by the baseline Regex in [88], which also
utilizes regular expressions to mitigate jailbreak attacks.

Transitioning from specific examples to an evaluation
of their effectiveness, it is evident that while these meth-
ods benefit from straightforward and transparent pattern
matching—attributes that contribute to their computational

efficiency and interpretability—their reliance on predefined
patterns can be a significant drawback. Specifically, these
rule-based systems may falter when encountering novel
jailbreak techniques that deviate from known patterns which
inherently limit their capability to combat more sophisti-
cated attacks.

Summary 4: Rule-based guardrails, while beneficial for their
computational efficiency and ease of interpretation, face chal-
lenges when dealing with innovative jailbreak techniques that
do not match existing predefined patterns.

Model-based Guardrails. These guardrails adopt classifiers
or statistical characteristics to distinguish between benign
and harmful queries. Model-based approaches can capture
more complex patterns than rule-based methods, enabling
them to generalize better to novel jailbreak attempts. Learn-
ing a text-based classifier is a common approach for jail-
break detection. On one hand, we can use traditional ma-
chine learning models as the classifiers [73], [76], [79],
[86], [87], [88], [89]. For instance, K-Nearest Neighbors
(KNN) in RigorLLM [73], LightGBM in RSAA [76] and
Random Forest in PretrainedEmbeddings [89]. On the other
hand, neural networks are also widely applied for the safety
classification [61], [62], [66], [70], [75], [80], [86], [88],
[96]. For example, HSF [86] and CURVALID [96] use
a simple Multilayer Perceptron (MLP) as the classifier.
PromptGuard [80] and erase-and-check [66] fine-tune the
pre-trained model (i.e, mDeBERTa and DistilBERT, respec-
tively) to distinguish the safe and unsafe inputs. Besides,
other methods used statistical characteristics to design their
own algorithms on safety distinguish [13], [68], [71], [84],
[85], [90], [95], [97], [98]. Detecting Perplexity [64] and
Perplexity Filter [65] classify the input as a jailbreak re-
quest if the perplexity is higher than a threshold. Gradient
discrepancies between safe prompts and adversarial prompts
are employed in GradSafe [68], GradientCuff [71] and To-
kenHighlighter [90]. JailGuard [98] identifies the jailbroken
state of responses by computing their KL-divergence. EEG-
Defender [85], JBShield [13] and MirrorShield [97] take the
model’s internal feature similarities between the input and
the jailbreak prompt as judgment basis.

The essence of model-based guardrails is to find a clas-
sification standard in distinguishing the benign and harmful
requests, whether to learn a classifier or design a statistical
algorithm. Compared with rule-based methods, model-based
approaches can capture more complex patterns and gener-
alize better to novel jailbreak attempts. They can also adapt
to evolving threats by retraining or fine-tuning the classi-
fiers. However, these methods typically require substantial
training data and computational resources, especially when
using deep learning models.

Summary 5: Model-based guardrails, by adopting classifiers
or statistical characteristics to distinguish between benign and
harmful queries, can capture more complex patterns than rule-
based methods, enabling them to generalize better to novel
Jjailbreak attempts. However, these methods typically require
substantial training data and computational resources, espe-

cially when using deep learning models.

Observation: Intra-processing guardrails are basically model-
based guardrails, which use LLM’s internal features to detect
potential jailbreak attempts. This is because model-based meth-
ods analyze the features and build classifiers instead of using
simple character matching or a more complex LLM.

LLM-based Guardrails. LLM-based guardrails represent a
sophisticated approach to security, harnessing the inherent
inferring capabilities of LLMs themselves to identify and
counteract jailbreak attempts. Within this paradigm, research
has progressed through distinct phases, each characterized
by evolving methodologies.

Initially, methods tended to focus on directly determin-
ing the harmfulness of a request or providing a summary
analysis after the judgment. For example, Self Defense [63]
directly employs the target LLM to assess the safety of its
own generated responses and subsequently furnish an expla-
nation for its findings. In a similar vein, Llama Guard [10]
operates by first identifying an unsafe text and then assign-
ing it to a harmfulness category. Complementing these ap-
proaches, WildGuard [60] offers a multi-faceted assessment,
simultaneously reporting the harmfulness status of the input
prompt, the generated response, and whether the response
was ultimately refused.

More recently, however, there has been a discernible
shift towards methodologies that conduct a more detailed,
upfront analysis before arriving at a safety judgment. Illus-
trating this trend, SelfDefend [11] first summarizes the un-
derlying intention of the input and then assesses whether this
intention constitutes a jailbreak request. Building upon this
principle of preliminary in-depth analysis, both GuardRea-
soner [93] and X-Guard [99] employ chain-of-thought rea-
soning. This allows them to meticulously trace and analyze
potential harms associated with a query, culminating in a
final safety judgment.

Undeniably, the strength of these LLM-driven techniques
lies in the excellent language understanding intrinsic to the
models themselves. As a result, these approaches demon-
strate considerable efficacy in detecting a diverse range
of jailbreak attempts and notably improve the explainabil-
ity of the safety judgments they provide. Nevertheless, a
crucial trade-off exists. While effective and explainable,
these advanced guardrails may introduce substantially more
computational overhead when compared to rule-based and
model-based techniques.

Summary 6: Employing the reasoning capabilities of LLMs,
LLM-based guardrails not only detect and mitigate jailbreak
attempts effectively but also improve the explainability of safety
judgments. Nonetheless, they introduce significantly greater
computational overhead than traditional rule-based and model-
based methods.

We now present one RQ that focuses on the cost of
LLM-based guardrails, which is a crucial aspect of their
practical deployment. This RQ is particularly relevant given
the increasing complexity and resource demands of LLM-

based approaches, especially in environments with limited
computational resources.

RQ 2: Given that rule-based, model-based, and LLM-based
guardrails inherently possess different levels of computational
complexity and resource requirements, a significant practical
question emerges: To what extent does the choice of technical
paradigm directly influence the GPU memory footprint of LLM
guardrail mechanisms during their operational deployment?

4.3. Safety Granularity

Guardrail mechanisms can operate at 3 different levels
of detection granularity: token-level for individual words or
tokens, sequence-level for an entire prompt or response, and
session-level for entire conversation sessions.

Token-level Guardrails. These guardrails analyze individ-
ual tokens or small token groups to identify potentially
harmful elements within inputs or outputs. Token-level
approaches can pinpoint specific problematic components
within a text, enabling more precise interventions. For in-
stance, Token Highlighter [90] identifies specific tokens that
contribute to harmful outputs. These fine-grained approaches
enable targeted interventions but may miss harmful content
that emerges from the broader context rather than specific
tokens.

Sequence-level Guardrails. These guardrails evaluate en-
tire prompts or responses as cohesive units, considering the
overall semantic meaning rather than individual components.
Sequence-level approaches can capture harmful content that
emerges from the interaction between different parts of a
text. For example, Llama Guard [10] and ShieldGemma [83]
assess the holistic safety of the prompt sequence, while Con-
stitutional Classifiers [94] evaluate outputs against prede-
fined safety principles. These approaches can better capture
contextual harms but may provide less granular insights into
specific problematic elements.

Session-level Guardrails. These guardrails monitor entire
conversation sessions, tracking the evolution of dialogue
across multiple turns to identify potential jailbreak attempts
that unfold gradually. Session-level approaches can detect
sophisticated multi-turn attacks that might appear benign
when individual messages are analyzed in isolation. For in-
stance, Adaptive Guardrail [84] maintains conversation state
to identify harmful patterns across turns. These comprehen-
sive approaches are particularly valuable against advanced
jailbreak techniques that exploit the sequential nature of
conversations but typically require more complex implemen-
tation and greater computational resources. We now present
two RQs that explore the impact of safety granularity on the
effectiveness and utility of guardrail mechanisms.

RQ 3: To what extent are current session-level guardrails truly
effective in defending against sophisticated multi-turn jailbreak
attacks?

RQ 4: How does the choice of safety granularity (i.e., token,
sequence, or session-level) impact the utility of LLMs when
implementing guardrail mechanisms?

4.4. Reactiveness

Static Guardrails operate by analyzing inputs or out-
puts of LLMs without modifying them. For example, Ope-
nAl Moderation [62] uses a fine-tuned model to classify
input prompts into safety categories without altering the
original query. In contrast, Dynamic Guardrails actively
modify inputs or outputs to neutralize adversarial properties
while preserving semantic meaning, which is beneficial for
better identification of jailbreak attacks. The modification on
the input prompt or the output response can be divided into
character-level, token-level, word-level, and sentence-level
changes.

Character-level changes involve randomly introducing
and altering characters within the text input, such as ty-
pos, inserting new characters or character swaps, to disrupt
adversarial prompts without changing the overall mean-
ing [67], [69]. A prominent example is SmoothLLM [67],
which perturbs multiple copies of the input prompt through
character-level changes and uses a voting mechanism to
determine safety. Token-level changes involve substituting,
inserting, or deleting specific tokens to neutralize adver-
sarial prompts. For instance, erase-and-check [66] removes
potentially harmful tokens from the input prompt to con-
struct multiple sanitized versions for safety voting like
SmoothLLM. Word-level changes involve substituting words
with synonyms or related terms to neutralize adversarial
prompts [69], [98]. For instance, SemanticSmooth [69]
converts all verbs into the past tense and substitutes both
verbs & nouns with their semantic equivalents. Sentence-
level changes involve modifying and rewriting the entire
input query to expose the embedded attack intent [9], [69],
[73], [88], [98], [99]. For example, NeMo Guardrails [9]
encodes the input prompt into a structured format to clarify
the request’s intent. RigorLLM [73] paraphrases or sum-
marizes the input to identify potential jailbreak attempts.
X-Guard [99] translates the non-English input into English.
Naturally, textual modifications can be applied simultane-
ously at multiple levels of granularity, including character,
word, and sentence levels, such as in SemanticSmooth [69]
and JailGuard [98]. From a broader perspective, dynamic
guardrails can be viewed as a form of input/output augmen-
tation that enhances the robustness of jailbreak detection by
exposing hidden attack intents.

4.5. Applicability

The applicability of a guardrail is largely determined by
its dependency on model internals. White-box guardrails
require access to the target LLM’s internal states, such as
gradients or hidden activations, to detect jailbreak attempts.
For instance, GradSafe [68] analyzes gradient patterns of
safety-critical parameters, while JBShield [13] compares
internal state divergences between benign and malicious
queries. These methods can achieve high detection accu-
racy but are limited to scenarios where model internals
are accessible. In contrast, black-box guardrails operate
solely on input and output text, making them suitable for

TABLE 2. THE DETAILS OF OUR COLLECTED BENCHMARK DATASETS.

Dataset # Prompts Jailbreak Methods
JailbreakHub [17] 1000 P [17]
GCG [7], AutoDAN [8]
JailbreakBench [101] 100 TAP [26]. LLM-Fuzzer [30]
DrAttack [32]
X-Teaming [47]
MultiJail [34] 315 MultiJail
SafeMTData [46] 600 ActorAttack [46]
AlpacaEval [102] 805 Normal Prompts
OR-Bench [103] 1000 Normal Prompts

proprietary or API-based LLMs. Examples include Prompt
Guard [80], which uses a lightweight classifier to filter
malicious inputs, and WildGuard [60], which moderates
both prompts and responses via a separate LLM. Black-
box approaches offer broader deployment flexibility but may
sacrifice granularity in detection. This dimension is critical
for practical deployment: organizations using closed-source
models like GPT-4 must rely on black-box guardrails, while
those with custom LLMs can leverage white-box methods
for finer control.

4.6. Explainability

Explainability refers to the ability of a guardrail to pro-
vide transparent, interpretable rationales for its safety judg-
ments. Opaque guardrails, such as many model-based clas-
sifiers, output binary decisions without justification, which
can hinder trust and debugging. For example, MoJE [87]
employs simple linguistic statistical techniques to classify
inputs as safe or unsafe without explaining its reasoning.
While opaque guardrails can be efficient and effective,
their lack of transparency may limit adoption in high-
stakes applications where understanding failure modes is
crucial. In contrast, explainable guardrails enhance us-
ability by providing reasoning traces or confidence scores.
GuardReasoner [93] employs chain-of-thought reasoning to
step through potential harms before rendering a judgment,
while SelfDefend [11] summarizes the intent of a query
before assessing its risk. Such transparency helps developers
understand failure modes, refine safety policies, and comply
with regulatory requirements.

5. Benchmark & Leaderboard

5.1. Evaluation Setup

Datasets and Target Models. Based on the five categories
of existing jailbreak attacks we surveyed in §2 — manual,
optimization-based, generation-based, implicit, and multi-
turn jailbreaks — we identify representative jailbreak at-
tack methods in each category. We then collect six bench-
mark datasets, JailbreakHub [17], JailbreakBench [101],
SafeMTData [46], MultiJail [34], AlpacaEval [102] and
OR-Bench [103], from which we use their user prompts
to build test queries for diverse guardrails. Table 2 lists the

details of our collected benchmark datasets. JailbreakHub
is a framework that collects and categorizes wild jailbreak
prompts designed to bypass safety restrictions in LLMs.
To refine ASR/PGR to three decimal places, we randomly
sample 1,000 in-the-wild prompts (IJP) from JailbreakHub
as manual attacks. JailbreakBench is an open-source ro-
bustness benchmark specifically designed to evaluate and
measure the vulnerability of LLMs to jailbreak attacks.
We use all 100 harmful instructions from JailbreakBench
to drive optimization-based jailbreaks (GCG [7] and Auto-
DAN [8]), generation-based jailbreaks (TAP [26] and LLM-
Fuzzer [30]), implicit jailbreak attack DrAttack [32], and
multi-turn jailbreak attack X-Teaming [47]. SafeMTData is
a dataset contains the initial multi-turn jailbreak prompts
produced by ActorAttack [46]. We choose all 600 queries
from SafeMTData as multi-turn jailbreak attacks. MultiJail
is the first manually-created multilingual jailbreak dataset,
covering both high-resource and low-resource languages.
We choose all 315 jailbreak prompts in Bengali from Mul-
tiJail as multilingual jailbreaks. AlpacaEval is an automatic
evaluation framework designed to assess the performance
of instruction-following LLMs. We use all 805 instructions
from AlpacaEval as normal prompts. OR-Bench is the first
large-scale benchmark measuring LLMs’ over-refusal of
80,000 seemingly toxic but benign prompts across mul-
tiple categories. We randomly select 1,000 prompts from
OR-Bench as normal prompts to also calculate ASR/PGR
to three decimal places. We evaluate the defense perfor-
mance of guardrails on open-source LLMs (i.e., Llama-3-
8B-Instruct [4] and Vicuna-13b-v1.5 [2]) and a closed-
source LLM (i.e., GPT-4-0125-Preview [104]), covering
diverse model architectures and sizes. For evaluations on
Vicuna-13b-v1.5 and GPT-4-0125-Preview, please refer to
Appendix A and Appendix B, respectively.

Metrics. We measure the defense performance of guardrails
by the attack success rate (ASR), i.e., the frequency with
which jailbreak prompts in a benchmark dataset bypass the
guardrail and the target LLM. The lower the ASR, the
stronger the defense performance. Adopting the method-
ology from prior studies ([46], [47], [105]), we leverage
GPT-40’s robust evaluation capabilities for assessment. This
involves supplying GPT-40, acting as a judge, with harmful
objectives and the corresponding model outputs. The judge
assigns a score from 1 to 5, where higher scores denote
more harmful and detailed model responses. An attack is
deemed successful if it receives a score of 5 from the GPT-
40 Judge. For a detailed explanation of the scoring rubric,
please see [46], [105].

Attack Configuration. To assess the jailbreak defense per-
formance of guardrails, we employ the most widely used
jailbreak attacks, including a manual attack (IJP [17]),
optimization-based attacks (GCG [7] and AutoDAN [8]),
generation-based attacks (TAP [26] and LLM-Fuzzer [30]),
implicit attacks (DrAttack [32] and MultiJail [34]), and
multi-turn attacks (ActorAttack [46] and X-Teaming [47]).
In the context of IJP, 1,000 adversarial queries were ran-
domly sampled from the forbidden question set with jail-
break prompts [106], curated by JailbreakHub. Regarding

TABLE 3. THE ASR ({) / PGR (]) RESULTS FOR THE TARGET LLM (LLAMA-3-8B-INSTRUCT) WITH DIFFERENT GUARDRAILS AGAINST FIVE MAJOR
CATEGORIES OF JAILBREAK ATTACKS, INCLUDING ROW AVERAGES. (PRE) AND (POST) DENOTE THE PRE-PROCESSING AND POST-PROCESSING
VERSIONS OF THE GUARDRAILS, RESPECTIVELY. (DIRECT) AND (INTENT) DENOTE THE DIRECT PROMPT AND INTENT PROMPT BASED VERSIONS OF
SELFDEFEND [11], RESPECTIVELY.

. Manual Optimization-based Generation-based Implicit Multi-turn
Guardrails — - Average
1Jp GCG AutoDAN TAP LLM-Fuzzer DrAttack MultiJail ActorAttack X-Teaming
Llama-3-8B-Instruct 0.078/- 0.130/- 0.020/- 0.140/- 0.490/- 0.100/- 0.044/- 0.227/- 0.910/- 0.238/-
PerplexityFilter 0.078/1.000 | 0.100/0.620 0.020/1.000 | 0.140/1.000 0.480/1.000 | 0.100/1.000 0.044/1.000 | 0.227/1.000 0.960/1.000 | 0.239/0.958
SmoothLLM 0.115/0.261 | 0.020/0.020 0.030/0.110 | 0.140/0.170 0.500/0.810 | 0.150/0.660 0.032/0.575 | 0.893/0.893 0.850/0.910 | 0.303/0.490
Llama Guard (Pre) 0.062/0.563 | 0.100/0.390 0.020/0.480 | 0.140/0.460 0.450/0.680 | 0.100/0.840 0.044/0.952 | 0.220/0.967 0.910/1.000 | 0.227/0.704
Llama Guard (Post) | 0.061/0.061 | 0.090/0.090 0.020/0.020 | 0.150/0.150 0.390/0.390 | 0.090/0.090 0.041/0.041 | 0.223/0.223 0.960/0.960 | 0.225/0.225
GradSafe 0.077/0.599 | 0.130/0.770 0.010/0.040 | 0.070/0.580 0.450/0.580 | 0.100/0.420 0.044/0.917 | 0.188/0.863 0.950/0.990 | 0.224/0.640
GradientCuff 0.016/0.058 | 0.080/0.140 0.000/0.020 | 0.070/0.090 0.360/0.480 | 0.030/0.130 0.016/0.149 | 0.118/0.648 0.640/0.710 | 0.148/0.269
SelfDefend (Direct) 0.020/0.267 | 0.030/0.080 0.010/0.120 | 0.080/0.180 0.090/0.140 | 0.070/0.590 0.038/0.752 | 0.133/0.702 0.970/0.990 | 0.160/0.425
SelfDefend (Intent) 0.022/0.285 | 0.030/0.070 0.010/0.130 | 0.120/0.180 0.030/0.130 | 0.010/0.130 0.032/0.584 | 0.152/0.767 0.940/0.970 | 0.150/0.361
WildGuard (Pre) 0.004/0.033 | 0.020/0.020 0.000/0.020 | 0.030/0.060 0.000/0.000 | 0.080/0.500 0.044/0.797 | 0.150/0.757 0.960/0.980 | 0.143/0.352
WildGuard (Post) 0.020/0.020 | 0.050/0.050 0.010/0.010 | 0.060/0.060 0.090/0.090 | 0.060/0.060 0.035/0.035 | 0.148/0.148 0.950/0.950 | 0.158/0.158
Prompt Guard 0.000/0.000 | 0.000/0.080 0.020/0.420 | 0.170/0.940 0.000/0.000 | 0.100/0.940 0.044/1.000 | 0.225/0.995 0.910/1.000 | 0.163/0.597
GuardReasoner (Pre) | 0.000/0.009 | 0.000/0.000 0.000/0.010 | 0.030/0.070 0.010/0.020 | 0.080/0.360 0.029/0.349 | 0.143/0.740 0.920/0.960 | 0.135/0.280
GuardReasoner (Post) | 0.023/0.023 | 0.040/0.040 0.000/0.000 | 0.050/0.050 0.050/0.050 | 0.030/0.030 0.022/0.022 | 0.107/0.107 0.950/0.950 | 0.141/0.141
GCG, its individual variant was selected, and the adver- tailored to either Llama-3-8B, Vicuna-13b or GPT-4. As
sarial suffix was optimized against the target LLM em- such, guardrails receive uniform inputs when defending the

ploying a batch size of 512 and subjected to 500 op-
timization iterations. For the AutoDAN methodology, the
hierarchically-guided genetic algorithm variant, specifically
AutoDAN-HGA, was adopted. The genetic algorithm inte-
gral to AutoDAN-HGA operates with a crossover probabil-
ity of 0.5, a mutation probability of 0.01, and undergoes 500
optimization iterations. For GCG and AutoDAN, we migrate
jailbreak prompts optimized for Vicuna-13b to attack GPT-
4. Concerning TAP, the Vicuna-13b-v1.5 model [2] was
utilized as the attacking agent. The parameters for TAP
were configured with a maximum depth of 5, a maximum
width of 5, and a branching factor of 4. The designated
target models for TAP included Llama-3-8B-Instruct [4],
Vicuna-13b-v1.5 [2] or GPT-4-0125-Preview [104]. In the
case of LLM-Fuzzer, GPT-3.5 served as the auxiliary model
for generating mutational inputs, and the query limit di-
rected at the target LLMs was established at 200. For
DrAttack, jailbreak prompts were formulated using GPT-
4o0. With respect to MultiJail, the entirety of the 315
available queries in the Bengali language was selected.
For the ActorAttack strategy, a corpus of 600 queries was
sourced from the SafeMTData dataset [46] (specifically,
the SafeMTData/Attack_600. json file available on
Hugging Face). For X-Teaming, we set the attacking model
as Qwen2.5-32B-Instruct [6] and use the TextGrad-based
text optimization to refine jailbreak prompts. Regarding
AlpacaEval, all 805 questions within the AlpacaEval dataset
were utilized. For OR-Bench, a subset of 1,000 prompts
was randomly selected from the OR-Bench dataset [103]
(specifically, the or-bench-80k.csv file on Hugging
Face).

It is pertinent to note that: The prompts associated with
IJP, MultiJail, ActorAttack, AlpacaEval, and OR-Bench are
static in nature. Consequently, all guardrail mechanisms
encounter identical input stimuli, irrespective of whether
they are safeguarding Llama-3-8B, Vicuna-13b or GPT-4.
In contrast, GCG, AutoDAN, and DrAttack are specifically

same designated target LLM. Conversely, TAP, LLM-Fuzzer,
and X-Teaming represent adaptive attack methodologies.
This implies that guardrail systems are presented with varied
inputs, even when applied to the identical target LLM.

Baselines. We evaluate our framework with popular jail-
break defense methods, including Perplexity Filter [65],
SmoothLLM [67], Llama Guard [10], GradSafe [68],
GradientCuff [71], SelfDefend [11], WildGuard [60],
Prompt Guard [80], and GuardReasoner [93]. Specif-
ically, Perplexity Filter leverages a Llama-2-7b model to
calculate the perplexity of the input prompt. A jailbreak is
considered to happen when the perplexity exceeds a thresh-
old. We set this threshold at the maximum perplexity of any
prompt in the JailbreakBench dataset of harmful behavior
prompts. SmoothLLM perturbs the jailbreak prompts with
character-level changes to enable the target LLM to per-
form defense. In this paper, we set SmoothLLM to conduct
character swapping with a 10% perturbation percentage.
Llama Guard is a fine-tuned Llama-2-7b model designed
to detect the toxicity category of input prompts. GradSafe
is a gradient-based detection method that identifies unsafe
or jailbreak prompts in LLMs by analyzing the consistent
gradient patterns of safety-critical parameters when paired
with compliance responses. GradientCuff is a method for
detecting jailbreak attacks on LLMs by analyzing the re-
fusal loss landscape, leveraging gradient-based patterns to
identify and block adversarial prompts while maintaining
normal query performance. SelfDefend is a practical jail-
break defense framework for LLMs that uses a shadow
LLM instance to concurrently detect harmful queries while
the target LLM processes them, providing robust protection
with minimal delay. WildGuard is an open, lightweight,
multi-task moderation tool for LLMs that detects malicious
user prompts, harmful model responses, and model refusal
behavior. Prompt Guard is a security tool developed by
Meta that detects and blocks malicious inputs (e.g., jail-
break attempts, prompt injections) in LLM applications,

o
N
@

i~
o
=)

| Sl

d
o
S
S

i

bl

o
w
S

AlpécaEva\

Average Extra Delay (Second)
-
o

Average GPU Memory (GB)

f

/

/

!
AlpacaEval
OR-Bench

o
N
S}

AlpacaEval
OR-Bench

False Positive Rate

rrrrr OR-Bench
i 20 yas 1 0.
0.5 \
AN \ |
[10 /- \ \ /
0.0 b / \ \I 0.05
v y \
0. ol——
= § S 9 D& & T g 2P T B 0.00
&3 g3 885585855 88
8 & 85 rpss8 é 8858 5+
z 2 § 8 § 56 5 2858 § 8
g = 25 & 3 g £ £ 3 35 8 9
PO S FEsce §g
g 8 < § ¢ g & = § 5 g
g S T 3 s 2
u ~ 123 1z ~3 g
© 3
Tested Guardrails Tested Guardrails Tested Guardrails
(a) Delay (b) Memory (c) Utility

Figure 2. The delay, memory usage, and utility of guardrails.

using a lightweight classifier model Prompt-Guard-86M to
filter harmful content in real time. GuardReasoner is a
reasoning-based guard model designed to enhance the safety
of LLMs by integrating explicit step-by-step reasoning into
the moderation process. Our evaluations are implemented
using PyTorch 2.6.0 and conducted on NVIDIA Hopper

H800 GPUs.

5.2. Benchmark Evaluation

Defense Performance. We first analyze the defense perfor-
mance of various guardrails. As delineated in Table 3, which
presents the ASR, a lower value indicates superior defense
capabilities. On average, GuardReasoner (Pre) demonstrates
the most robust defense, achieving the lowest ASR of 0.135.
Following closely is GuardReasoner (Post), underscoring the
efficacy of the reasoning process prior to safety determina-
tion inherent in the GuardReasoner framework. Conversely,
SmoothLLM exhibits the highest ASR of 0.303, rendering
it the least effective in this cohort. This suboptimal perfor-
mance may be attributed to its mechanism of token-level
input perturbation, which appears to be primarily effective
against jailbreak techniques characterized by adversarial
suffixes, such as GCG, while offering limited protection
against a broader spectrum of attacks.

Shifting focus to PGR, presented in Table 3, GuardRea-
soner (Post) achieves the best PGR of 0.141. Despite its su-
perior precision in identifying malicious inputs, GuardRea-
soner (Post) does not attain state-of-the-art (SOTA) overall
defense performance. A plausible explanation is its potential
operational overlap with the target LLM’s intrinsic safety
mechanisms. That is, there might be a significant number of
instances where GuardReasoner (Post) identifies a response
as safe, and concurrently, the target LLM also recognizes
the harmful nature of the query and refuses to respond.
Therefore, this overlap diminishes the unique contribution of
GuardReasoner (Post) to the ASR reduction when compared
to a guardrail like GuardReasoner (Pre) which operates on
a different paradigm.

Efficiency. The efficiency of guardrails is a critical factor for
practical deployment, which we assess in terms of latency
and GPU memory consumption. Figure 2(a) illustrates the

extra delay introduced by different guardrail methodologies
when processing normal inputs from the AlpacaEval and
OR-Bench datasets. Perplexity Filter, Llama Guard, SelfDe-
fend and PromptGuard stand out with negligible latency. In
contrast, GuardReasoner and GradientCuff impose the most
significant delays, with GuardReasoner (Post) being partic-
ularly notable. This suggests that the profound reasoning
capabilities that afford GuardReasoner its enhanced defense
performance come at the cost of increased processing time.
The majority of other guardrails maintain an additional delay
generally not exceeding 0.5 seconds.

From the perspective of GPU memory utilization, de-
picted in Figure 2(b), GuardReasoner again registers the
highest memory footprint, consistent with its complex rea-
soning architecture. Conversely, SmoothLLM, GradientCuff,
and PromptGuard are the most memory-efficient, with their
consumption approaching negligible levels. This highlights
a clear trade-off between the sophistication of the defense
mechanism and its resource intensiveness.

Utility. Beyond security and efficiency, the utility of a
guardrail, specifically its ability not to impede benign user
interactions, is paramount. We measure the FPR on Al-
pacaEval and OR-Bench datasets, as shown in Figure 2(c). A
higher FPR indicates a greater propensity to incorrectly flag
legitimate prompts as malicious. SelfDefend (Direct) ex-
hibits the highest FPR on OR-Bench, at 0.221. On AlpacaE-
val, GradientCuff records the highest FPR of 0.083. These
figures suggest that these guardrails have a higher likeli-
hood of intercepting normal user queries. Other guardrails
with comparatively high FPRs include SmoothLLM, Self-
Defend (Intent), WildGuard (Pre), and GuardReasoner (Pre).
Although these three methods demonstrate strong defense
performance (low ASR), their elevated FPRs underscore a
critical trade-off between security and utility. Systems that
are highly stringent in blocking threats may inadvertently
penalize legitimate interactions, diminishing the overall user

experience.

5.3. Leaderboard on SEU

To provide a holistic evaluation, we compare guardrails
across five key metrics: ASR, PGR, Extra Delay, GPU

SEU - Heatmap

Iy
=]

PromptGuard

Llama Guard (Post)-{ 0.46
SelfDefend (intent) 0.8
WildGuard (Post) 0

GradientCuff

WildGuard (Pre)

o
o

Normalized Performance (1 = optimal)

Llama Guard (Pre){ = 0.45 0.31
seifdetend (direct) | I IIECINIEE o
PerplexityFilter- 0.38 0.00 y
Gradsafe | 0:47 0.39

°
S

Guardreasoner (Post) | IS oo° 0.00

SmoothLLM- 0.00 0.82

GuardReasoner (Pre)m 0.18 0.00

SR pGR RN RS
w w St o . oV we!
P

Guardrail (sorted by Composite Score)

o
=)

Figure 3. The heatmap of guardrails.

Memory, and FPR. We average ASR and PGR over the nine
jailbreak attacks (cf. Table 3) to derive Mean-ASR (M-ASR)
and Mean-PGR (M-PGR). The other metrics are measured
using the OR-Bench dataset. For a unified ranking, we
normalize each metric to a [0, 1] range and invert the scores
(1 - normalized value), ensuring higher values consistently
indicate better performance. We then compute a Composite
Score for each guardrail by averaging these five transformed
scores. This score underpins the ranking visualized in the
heatmap in Figure 3.

The analysis reveals inherent trade-offs, as no single
guardrail excels across all dimensions. For instance, Prompt-
Guard achieves the highest Composite Score but its low
M-PGR suggests potential gaps in detection robustness.
Conversely, GuardReasoner (Pre) ranks lower but provides
superior defense (high M-ASR and M-PGR) at a signifi-
cant cost to efficiency and utility. SelfDefend (Intent) of-
fers a balanced profile, with its main weakness being a
higher FPR. This leaderboard underscores that the optimal
guardrail choice is context-dependent, contingent on the
specific security requirements and operational constraints of
a given deployment scenario. We believe this leaderboard
will serve as a valuable resource for practitioners in selecting
appropriate guardrails based on their unique needs.

6. Practical Insights & Implications

Answer to RQ3: Session-level Guardrails v.s. Multi-turn
Jailbreaks. A critical question arises regarding session-
level guardrails: given their reliance on LLM dialogue his-
tory (both input and output) for threat assessment, how
effectively do they counter sophisticated multi-turn jail-
break attacks? Our analysis, focusing on three session-
level guardrails—Llama Guard (Post), WildGuard (Post),
and GuardReasoner (Post)—reveals nuanced performance.
As indicated in Table 3, these guardrails maintain an ASR
above 10% against the ActorAttack multi-turn jailbreak.
Furthermore, when faced with the more adaptive X-Teaming
attack, the ASR for most guardrails, including these session-
level ones, exceeds 90%. GradientCuff is a partial exception
with a 64% ASR, but this is still a high failure rate. These
findings underscore a significant vulnerability of current

3.5

3.0
-+ AutoDAN
+- DrAttack
Multijail

o

2.5

2.0

Average Extra Delay (Second)

Tested Guardrails

Figure 4. The delay of guardrails against different attack types.

session-level guardrails against advanced multi-turn attacks.
The high ASR, particularly against adaptive attacks like
X-Teaming, suggests that these defenses can be readily
bypassed if the attack unfolds over several interactions.
This highlights an urgent imperative to develop more robust
guardrail methodologies specifically designed to address the
evolving landscape of multi-turn jailbreaks.

Answer to RQI1: Intervention Stages on Delay. The
intervention stage of a guardrail—whether it operates pre-
processing (on user input), intra-processing (during LLM
generation), or post-processing (on LLM output)—can sig-
nificantly impact system latency. We investigate this re-
lationship by examining the data presented in Figure 4.
Observations indicate that, with the notable exception of
GuardReasoner (Pre), pre-processing guardrails such as Per-
plexity Filter, Llama Guard (Pre), SelfDefend (Direct), Self-
Defend (Intent), WildGuard (Pre), and Prompt Guard gen-
erally introduce negligible, or in some cases even negative,
additional latency. The higher latency of GuardReasoner
(Pre) is attributable to its more complex reasoning processes.
In contrast, intra-processing and post-processing guardrails
exhibit more varied latency profiles relative to each other.
A key finding is that for identical detection models, post-
processing variants consistently incur greater delay than
their pre-processing counterparts (e.g., WildGuard (Post)’s
delay is greater than that of WildGuard (Pre)). This phe-
nomenon arises because post-processing methods inherently
must await the completion of the target LLM’s generation
phase before they can intervene. Conversely, pre-processing
guardrails possess the advantage of potentially halting the
LLM’s generation process immediately upon detecting a
malicious input, thereby conserving computational time.
Consequently, pre-processing guardrails, particularly those
not reliant on extensive reasoning, generally offer a more
latency-efficient solution for integrating safety measures.
Answer to RQ2: Technical Paradigms on GPU Mem-
ory Usage. The underlying technical paradigm of a
guardrail—be it rule-based, traditional model-based, or
LLM-based—is expected to influence its GPU memory foot-

print. We examine this correlation using data from Figure 2.
The results show that the rule-based SmoothLLM incurs
zero additional memory overhead, representing the most
memory-efficient approach. Certain traditional model-based
methods, specifically GradientCuff and PromptGuard, also
demonstrate near-zero memory consumption, highlighting
their lightweight nature. However, the landscape for model-
based approaches is not uniform; GradSafe, another model-
based technique, exhibits higher memory usage than several
LLM-based methods, indicating significant variability in
resource demands even within this category. As anticipated,
LLM-based guardrails generally impose a greater memory
burden. This is an intrinsic consequence of their design,
which necessitates loading and executing a large language
model for safety inference. This observation aligns with
the expectation that leveraging large language models for
safety assessment incurs a higher resource cost in terms
of memory. While rule-based and optimized model-based
solutions offer substantial memory efficiency, the choice
of paradigm must be carefully weighed against the desired
detection capabilities and specific deployment constraints.
Answer to RQ4: Safety Granularity on Utility. The
granularity at which a guardrail performs its safety
checks—whether at the token-level, sequence-level (assess-
ing the entire input or output), or session-level (considering
the dialogue history)—may significantly affect its utility,
particularly its propensity to misclassify benign prompts, as
measured by the FPR. This aspect is explored using data
from Figure 2(c). Token-level guardrails, exemplified by
SmoothLLM (which analyzes keywords in LLM responses)
and SelfDefend (Direct) (which inspects harmful segments
within queries), demonstrate relatively pronounced FPRs.
Notably, SelfDefend (Direct) records the highest FPR on
the OR-Bench dataset, exceeding 20%. This suggests that
token-level mechanisms, while focused, may inadvertently
penalize legitimate interactions due to a potential lack of
broader contextual understanding. A comparative analysis
further reveals that for the same underlying detection model,
session-level guardrails (typically denoted by a “(Post)”
suffix, leveraging both LLM input and output) consistently
achieve markedly lower FPRs than their sequence-level
counterparts (often denoted by a “(Pre)” suffix, relying
solely on input). For instance, WildGuard (Pre) exhibits
an FPR above 10% on OR-Bench, whereas the FPR for
WildGuard (Post) remains below 5%. While sequence-level
guardrails display a wider range of FPRs—some high, some
low—session-level approaches generally maintain low FPR
values across the board. These observations collectively
suggest that session-level guardrails tend to offer superior
utility by minimizing false positives. This improved perfor-
mance is likely attributable to their comprehensive use of
contextual information derived from the entire interaction
history, enabling a more nuanced distinction between gen-
uinely harmful prompts and benign ones that might share
superficial characteristics with attacks.

Generalization: Cross-Attack Assessment. While LLM-
based guardrails have demonstrated efficacy against jail-
break attacks, a critical and often overlooked considera-

Comparison of PGRs Across Guardrails

GuardReasoner (Pre)
WildGuard (Pre)
SelfDefend (intent)
SelfDefend (direct)

Llama Guard (Pre) 0.911

0.0 0.2 0.4 0.6 0.8 1.0
Pass Guardrail Rate (PGR)

Figure 5. Cross-attack evaluation: injection attack on guardrails.

tion is their robustness against other adversarial manipula-
tions, specifically prompt injection attacks. Given that these
guardrails are themselves powered by LLMs, their suscepti-
bility to injection attacks—which could potentially subvert
their safety assessment capabilities—presents a significant
security concern. To investigate this, we evaluated the per-
formance of LLM-based guardrails against 203 distinct in-
jection attack samples sourced from the “deepset/prompt-
injections” dataset on Hugging Face.

Our primary finding is that these injection attacks did
not compromise the fundamental operational integrity of
the guardrails. That is, the guardrails were not coerced into
abandoning their safety analysis function to produce arbi-
trary, irrelevant outputs (e.g., “hello world”). They continued
to process the inputs for security threats as designed. How-
ever, their effectiveness in identifying and mitigating these
injections was limited. We measured the Pass Guardrail Rate
(PGR) for these attacks, with results presented in Figure 5.
The data reveals that while LLM-based guardrails exhibit a
non-trivial capacity to filter prompt injections, this capability
is modest at best. This assessment underscores a crucial
gap in the current state of guardrail technology: the need
for broader cross-attack generalization. For a guardrail to
be truly effective in practice, its defensive perimeter must
extend beyond jailbreak attempts to also detect and neu-
tralize other forms of attacks that could exploit its defense,
such as prompt injections. This calls for the development of
more versatile and robust guardrail mechanisms capable of
addressing a wider spectrum of adversarial inputs.

7. Discussion

7.1. Limitations

While this work provides a comprehensive analysis of
LLM jailbreak guardrails, several limitations should be
acknowledged. First, our efficiency evaluations were con-
ducted on specific hardware configurations (NVIDIA H800
GPUs), and the absolute latency and memory consumption
metrics may vary across different hardware platforms and
optimization techniques such as quantization. However, the
relative performance trends and trade-offs among guardrails
are expected to remain consistent.

Besides, our evaluation relies on LLM-as-a-judge (GPT-
40) for assessing jailbreak success, which, while efficient
for large-scale evaluation, may have inherent limitations in
reliability. To validate this approach, we hired three Ph.D.
students to evaluate the jailbreak success of 100 randomly
selected attack samples. Their average agreement with the
LLM’s judgments was 0.9533, and their Fleiss’ Kappa was
0.9319, indicating strong alignment. Nevertheless, future
work could benefit from more robust evaluation methodolo-
gies that mitigate potential biases in automated assessment.

7.2. Future Work

Based on our analysis, we identify several promising
directions for future research in LLM jailbreak guardrails:

o Cross-Attack Robust Guardrails: Current guardrails
demonstrate limited generalization across different attack
modalities. Future work should develop unified defense
mechanisms that can effectively handle diverse threats, in-
cluding jailbreaks, prompt injections, and other adversar-
ial manipulations simultaneously. This requires guardrails
that can recognize attack patterns beyond jailbreaks.

« Adaptive and Self-Evolving Defenses: As jailbreak tech-
niques continuously evolve, fixed guardrails face the risk
of rapid obsolescence. Research is needed on self-adaptive
guardrails that can learn from new attack patterns and
update their detection capabilities without complete re-
training. This could include online learning approaches,
anomaly detection in deployment environments, and au-
tomated defense refinement.

« Multimodal and Cross-Modal Guardrails: With the
rise of multimodal LLMs, new vulnerabilities emerge at
the intersection of different modalities. Future research
should address the unique challenges of multimodal jail-
breaks [107] and develop guardrails that can analyze and
protect across text, image, audio, and video inputs while
maintaining efficiency.

8. Conclusion

This SoK paper comprehensively addresses the frag-
mented landscape of LLM jailbreak guardrails by introduc-
ing a novel multi-dimensional taxonomy and a SEU mea-
surement framework. Our findings highlight the strengths,
limitations, and interdependencies of existing defense mech-
anisms with a series of key insights. This work forms a
structured foundation to guide the principled advancement
and deployment of more robust LLM guardrails.

Acknowledgments

We thank the reviewers and the shepherd for their con-
structive comments. The HKUST authors are supported in
part by an RGC CREF grant under contract C6015- 23G and a
research fund provided by HSBC. Daoyuan Wu was partially
supported by Lingnan Grant SUG-002/2526.

References

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaeli,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale er al, “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng,
S. Zhuang, Y. Zhuang, J. E. Gonzalez, 1. Stoica, and E. P. Xing,
“Vicuna: An open-source chatbot impressing GPT-4 with 90%*
ChatGPT quality,” March 2023.

T. M. A. Team, “Mistral-7b-instruct-v0.2,” https://huggingface.co/
mistralai/Mistral-7B-Instruct-v0.2, 2024.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-
Dahle, A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The
llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

Anthropic, “Claude 3.5 sonnet,” https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

Qwen Team, “Qwen2.5
arXiv:2412.15115, 2024.

A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and
transferable adversarial attacks on aligned language models,” arXiv
preprint arXiv:2307.15043, 2023.

X. Liu, N. Xu, M. Chen, and C. Xiao, “AutoDAN: Generating

stealthy jailbreak prompts on aligned large language models,” in
ICLR, 2024.

T. Rebedea, R. Dinu, M. N. Sreedhar, C. Parisien, and J. Cohen,
“NeMo Guardrails: A toolkit for controllable and safe LLM applica-
tions with programmable rails,” in EMNLP: System Demonstrations,
2023.

H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao,
M. Tontchev, Q. Hu, B. Fuller, D. Testuggine et al., “Llama Guard:
LLM-based input-output safeguard for Human-Al conversations,”
arXiv preprint arXiv:2312.06674, 2023.

X. Wang, D. Wu, Z. Ji, Z. Li, P. Ma, S. Wang, Y. Li, Y. Liu, N. Liu,
and J. Rahmel, “SelfDefend: LLMs can defend themselves against
jailbreaking in a practical manner,” in USENIX Security, 2025.

technical report,” arXiv preprint

S. Xhonneux, A. Sordoni, S. Giinnemann, G. Gidel, and L. Schwinn,
“Efficient adversarial training in LLMs with continuous attacks,” in
NeurIPS, 2024.

S. Zhang, Y. Zhai, K. Guo, H. Hu, S. Guo, Z. Fang, L. Zhao, C. Shen,
C. Wang, and Q. Wang, “JBShield: Defending large language mod-
els from jailbreak attacks through activated concept analysis and
manipulation,” in USENIX Security, 2025.

Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang, L. Zhao,
T. Zhang, and Y. Liu, “Jailbreaking ChatGPT via prompt engineer-
ing: An empirical study,” arXiv preprint arXiv:2305.13860, 2023.

A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: How does
LLM safety training fail?” in NeurlPS, 2023.

Z. Wei, Y. Wang, and Y. Wang, “Jailbreak and guard: Aligned
language models with only few in-context demonstrations,” arXiv
preprint arXiv:2310.06387, 2023.

X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang, “’Do Anything
Now”: Characterizing and evaluating in-the-wild jailbreak prompts
on large language models,” in CCS, 2024.

G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang,
T. Zhang, and Y. Liu, “MASTERKEY: Automated jailbreaking of
large language model chatbots,” in NDSS, 2024.

C. Sitawarin, N. Mu, D. Wagner, and A. Araujo, “PAL: Proxy-
guided black-box attack on large language models,” arXiv preprint
arXiv:2402.09674, 2024.

M. Andriushchenko, F. Croce, and N. Flammarion, “Jailbreaking
leading safety-aligned LLMs with simple adaptive attacks,” in /CLR,
2025.

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[37]

(38]

[39]

[40]

[41]

[42]

X. Jia, T. Pang, C. Du, Y. Huang, J. Gu, Y. Liu, X. Cao, and M. Lin,
“Improved techniques for optimization-based jailbreaking on large
language models,” in /ICLR, 2025.

J. Hughes, S. Price, A. Lynch, R. Schaeffer, F. Barez, S. Koyejo,

H. Sleight, E. Jones, E. Perez, and M. Sharma, “Best-of-N jailbreak-
ing,” arXiv preprint arXiv:2412.03556, 2024.

X. Chen, Y. Nie, W. Guo, and X. Zhang, “When LLM meets
DRL: Advancing jailbreaking efficiency via DRL-guided search,”
in NeurlPS, 2024.

E. Perez, S. Huang, H. F. Song, T. Cai, R. Ring, J. Aslanides,
A. Glaese, N. McAleese, and G. Irving, “Red teaming language
models with language models,” in EMNLP, 2022.

P. Chao, A. Robey, E. Dobriban, H. Hassani, G. J. Pappas, and
E. Wong, “Jailbreaking black box large language models in twenty
queries,” arXiv preprint arXiv:2310.08419, 2023.

A. Mehrotra, M. Zampetakis, P. Kassianik, B. Nelson, H. Anderson,
Y. Singer, and A. Karbasi, “Tree of attacks: Jailbreaking black-box
LLMs automatically,” in NeurIPS, 2024.

A. Paulus, A. Zharmagambetov, C. Guo, B. Amos, and Y. Tian,
“AdvPrompter: Fast adaptive adversarial prompting for LLMs,” in
ICML, 2025.

Z. Liao and H. Sun, “AmpleGCG: Learning a universal and trans-
ferable generative model of adversarial suffixes for jailbreaking both
open and closed LLMs,” in COLM, 2024.

S. Yao, D. Yu, J. Zhao, 1. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with
large language models,” in NeurIPS, 2024.

J. Yu, X. Lin, Z. Yu, and X. Xing, “LLM-Fuzzer: Scaling assessment
of large language model jailbreaks,” in USENIX Security, 2024.

D. Handa, A. Chirmule, B. Gajera, and C. Baral, “Jailbreaking
proprietary large language models using word substitution cipher,”
arXiv preprint arXiv:2402.10601, 2024.
X. Li, R. Wang, M. Cheng, T. Zhou, and C.-J. Hsieh, “DrAttack:
Prompt decomposition and reconstruction makes powerful LLMs
jailbreakers,” in EMNLP Findings, 2024.

Z. Chang, M. Li, Y. Liu, J. Wang, Q. Wang, and Y. Liu, “Play
guessing game with LLM: Indirect jailbreak attack with implicit
clues,” in ACL, 2024.

Y. Deng, W. Zhang, S. J. Pan, and L. Bing, “Multilingual jailbreak
challenges in large language models,” ICLR, 2024.

Z.-X. Yong, C. Menghini, and S. H. Bach, “Low-resource languages
jailbreak GPT-4,” arXiv preprint arXiv:2310.02446, 2023.

L. Shen, W. Tan, S. Chen, Y. Chen, J. Zhang, H. Xu, B. Zheng,
P. Koehn, and D. Khashabi, “The language barrier: Dissecting safety
challenges of LLMs in multilingual contexts,” in ACL, 2024.

J.Li, Y. Liu, C. Liu, L. Shi, X. Ren, Y. Zheng, Y. Liu, and Y. Xue, “A
cross-language investigation into jailbreak attacks in large language
models,” arXiv preprint arXiv:2401.16765, 2024.

Y. Yuan, W. Jiao, W. Wang, J. tse Huang, P. He, S. Shi, and Z. Tu,
“GPT-4 is too smart to be safe: Stealthy chat with LLMs via cipher,”
in ICLR, 2024.

J. Chu, Y. Liu, Z. Yang, X. Shen, M. Backes, and Y. Zhang, “Jail-
breakRadar: Comprehensive assessment of jailbreak attacks against
LLMs,” in ACL, 2025.

Y. Meng, M. Xia, and D. Chen, “SimPO: Simple preference opti-
mization with a reference-free reward,” in NeurIPS, 2024.

Z. Zhou, J. Xiang, H. Chen, Q. Liu, Z. Li, and S. Su, “Speak out
of turn: Safety vulnerability of large language models in multi-turn
dialogue,” arXiv preprint arXiv:2402.17262, 2024.

X. Liu, L. Li, T. Xiang, F. Ye, L. Wei, W. Li, and N. Garcia,
“Imposter. Al: Adversarial attacks with hidden intentions towards
aligned large language models,” arXiv preprint arXiv:2407.15399,
2024.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

N. Li, Z. Han, I. Steneker, W. Primack, R. Goodside, H. Zhang,
Z. Wang, C. Menghini, and S. Yue, “LLM defenses are not robust to
multi-turn human jailbreaks yet,” arXiv preprint arXiv:2408.15221,
2024.

X. Yang, X. Tang, S. Hu, and J. Han, “Chain of attack: A semantic-
driven contextual multi-turn attacker for LLM,” arXiv preprint
arXiv:2405.05610, 2024.

M. Russinovich, A. Salem, and R. Eldan, “Great, now write an
article about that: The crescendo multi-turn LLM jailbreak attack,”
in USENIX Security, 2025.

Q. Ren, H. Li, D. Liu, Z. Xie, X. Lu, Y. Qiao, L. Sha, J. Yan, L. Ma,
and J. Shao, “Derail yourself: Multi-turn LLM jailbreak attack
through self-discovered clues,” arXiv preprint arXiv:2410.10700,
2024.

S. Rahman, L. Jiang, J. Shiffer, G. Liu, S. Issaka, M. R. Parvez,
H. Palangi, K.-W. Chang, Y. Choi, and S. Gabriel, “X-Teaming:
Multi-turn jailbreaks and defenses with adaptive multi-agents,” arXiv
preprint arXiv:2504.13203, 2025.

Y. Xie, J. Yi, J. Shao, J. Curl, L. Lyu, Q. Chen, X. Xie, and F. Wu,
“Defending ChatGPT against jailbreak attack via self-reminders,”
Nature Machine Intelligence, 2023.

A. Zhou, B. Li, and H. Wang, “Robust prompt optimization for de-
fending language models against jailbreaking attacks,” in NeurIPS,
2024.

Y. Mo, Y. Wang, Z. Wei, and Y. Wang, “Fight back against jail-
breaking via prompt adversarial tuning,” in NeurIPS, 2024.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F.
Christiano, J. Leike, and R. Lowe, “Training language models to
follow instructions with human feedback,” in NeurIPS, 2022, pp.
27730-27 744.

Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones,
A. Chen, A. Goldie, A. Mirhoseini, C. McKinnon et al., “Con-
stitutional AIl: Harmlessness from Al feedback,” arXiv preprint
arXiv:2212.08073, 2022.

W. Lu, Z. Zeng, J. Wang, Z. Lu, Z. Chen, H. Zhuang, and C. Chen,
“Eraser: Jailbreaking defense in large language models via unlearn-
ing harmful knowledge,” arXiv preprint arXiv:2404.05880, 2024.

W. Zhao, Z. Li, Y. Li, Y. Zhang, and J. Sun, “Defending large
language models against jailbreak attacks via layer-specific editing,”
in EMNLP, 2024.

Z.Zhang, J. Yang, P. Ke, F. Mi, H. Wang, and M. Huang, “Defending
large language models against jailbreaking attacks through goal
prioritization,” in ACL, 2024.

Y. Yuan, W. Jiao, W. Wang, J.-t. Huang, J. Xu, T. Liang, P. He, and

Z. Tu, “Refuse whenever you feel unsafe: Improving safety in llms
via decoupled refusal training,” in ACL, 2025.

Y. Li, F. Wei, J. Zhao, C. Zhang, and H. Zhang, “RAIN: Your
language models can align themselves without finetuning,” in /CLR,
2024.

Z. Xu, F. Jiang, L. Niu, J. Jia, B. Y. Lin, and R. Poovendran,
“SafeDecoding: Defending against jailbreak attacks via safety-aware
decoding,” in ACL, 2024.

J. Ji, B. Chen, H. Lou, D. Hong, B. Zhang, X. Pan, T. Qiu, J. Dai,
and Y. Yang, “Aligner: Efficient alignment by learning to correct,”
in NeurIPS, 2024.

S. Han, K. Rao, A. Ettinger, L. Jiang, B. Y. Lin, N. Lambert,
Y. Choi, and N. Dziri, “WildGuard: Open one-stop moderation tools
for safety risks, jailbreaks, and refusals of LLMs,” in NeurIPS, 2024.
A. Lees, V. Q. Tran, Y. Tay, J. Sorensen, J. Gupta, D. Metzler,

and L. Vasserman, “A new generation of perspective API: Efficient
multilingual character-level transformers,” in KDD, 2022.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]1

[751

[76]

(771

(78]

[79]

[80]

[81]

T. Markov, C. Zhang, S. Agarwal, F. E. Nekoul, T. Lee, S. Adler,
A. Jiang, and L. Weng, “A holistic approach to undesired content
detection in the real world,” in AAAI, 2023.

M. Phute, A. Helbling, M. Hull, S. Peng, S. Szyller, C. Cornelius,
and D. H. Chau, “LLM Self Defense: By self examination, LLMs
know they are being tricked,” arXiv preprint arXiv:2308.07308,
2023.

G. Alon and M. Kamfonas, “Detecting language model attacks with
perplexity,” arXiv preprint arXiv:2308.14132, 2023.

N. Jain, A. Schwarzschild, Y. Wen, G. Somepalli, J. Kirchenbauer,
P.-y. Chiang, M. Goldblum, A. Saha, J. Geiping, and T. Goldstein,
“Baseline defenses for adversarial attacks against aligned language
models,” arXiv preprint arXiv:2309.00614, 2023.

A. Kumar, C. Agarwal, S. Srinivas, A. J. Li, S. Feizi, and
H. Lakkaraju, “Certifying LLM safety against adversarial prompt-
ing,” in COLM, 2024.

A. Robey, E. Wong, H. Hassani, and G. J. Pappas, “SmoothLLM:
Defending large language models against jailbreaking attacks,” arXiv
preprint arXiv:2310.03684, 2023.

Y. Xie, M. Fang, R. Pi, and N. Gong, “GradSafe: Detecting jailbreak
prompts for LLMs via safety-critical gradient analysis,” in ACL,
2024.

J. Ji, B. Hou, A. Robey, G. J. Pappas, H. Hassani, Y. Zhang,
E. Wong, and S. Chang, “Defending large language models
against jailbreak attacks via semantic smoothing,” arXiv preprint
arXiv:2402.16192, 2024.

S. Goyal, M. Hira, S. Mishra, S. Goyal, A. Goel, N. Dadu, K. DB,
S. Mehta, and N. Madaan, “LLMGuard: Guarding against unsafe
LLM behavior,” in AAAI, 2024.

X. Hu, P-Y. Chen, and T.-Y. Ho, “Gradient Cuff: Detecting jail-
break attacks on large language models by exploring refusal loss
landscapes,” in NeurlPS, 2024.

Y. Zeng, Y. Wu, X. Zhang, H. Wang, and Q. Wu, “AutoDefense:
Multi-agent LLM defense against jailbreak attacks,” arXiv preprint
arXiv:2403.04783, 2024.

Z. Yuan, Z. Xiong, Y. Zeng, N. Yu, R. Jia, D. Song, and B. Li,
“RigorLLM: Resilient guardrails for large language models against
undesired content,” in ICML, 2024.

S. Ghosh, P. Varshney, E. Galinkin, and C. Parisien, “Aegis: Online
adaptive Al content safety moderation with ensemble of LLM
experts,” arXiv preprint arXiv:2404.05993, 2024.

Z. Chu, Y. Wang, L. Li, Z. Wang, Z. Qin, and K. Ren, “A causal
explainable guardrails for large language models,” in CCS, 2024.

A. Kawasaki, A. Davis, and H. Abbas, “Defending large language
models against attacks with residual stream activation analysis,” in
CAMLIS, 2024.

A. Zou, L. Phan, J. Wang, D. Duenas, M. Lin, M. Andriushchenko,
R. Wang, Z. Kolter, M. Fredrikson, and D. Hendrycks, “Improving
alignment and robustness with circuit breakers,” in NeurlPS, 2024.

Z. Xiang, L. Zheng, Y. Li, J. Hong, Q. Li, H. Xie, J. Zhang,
Z. Xiong, C. Xie, C. Yang et al., “GuardAgent: Safeguard LLM
agents by a guard agent via knowledge-enabled reasoning,” in ICML,
2025.

M. Kang and B. Li, “R2-Guard: Robust reasoning enabled LLM
guardrail via knowledge-enhanced logical reasoning,” in ICLR,
2025.

M. Llama, “Prompt-guard-86m,” https://huggingface.co/meta-1lama/
Prompt-Guard-86M, 2024.

D. Schwartz, D. Bespalov, Z. Wang, N. Kulkarni, and Y. Qi, “Graph
of attacks with pruning: Optimizing stealthy jailbreak prompt
generation for enhanced 1lm content moderation,” arXiv preprint
arXiv:2501.18638, 2025.

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

B. Manczak, E. Zemour, E. Lin, and V. Mugunthan, “PrimeGuard:
Safe and helpful LLMs through tuning-free routing,” arXiv preprint
arXiv:2407.16318, 2024.

W. Zeng, Y. Liu, R. Mullins, L. Peran, J. Fernandez, H. Harkous,
K. Narasimhan, D. Proud, P. Kumar, B. Radharapu et al., “Shield-
Gemma: Generative Al content moderation based on Gemma,” arXiv
preprint arXiv:2407.21772, 2024.

J. Hu, Y. Dong, and X. Huang, “Trust-oriented adaptive guardrails
for large language models,” arXiv preprint arXiv:2408.08959, 2024.

C. Zhao, Z. Dou, and K. Huang, “EEG-Defender: Defending against
jailbreak through early exit generation of large language models,”
in ICONIP, 2025.

C. Qian, H. Zhang, L. Sha, and Z. Zheng, “HSF: Defending against
jailbreak attacks with hidden state filtering,” in WWW, 2025.

G. Cornacchia, G. Zizzo, K. Fraser, M. Z. Hameed, A. Rawat,
and M. Purcell, “MoJE: Mixture of jailbreak experts, naive tabular
classifiers as guard for prompt attacks,” in AIES, 2024.

A. Peng, J. Michael, H. Sleight, E. Perez, and M. Sharma, “Rapid
response: Mitigating LLM jailbreaks with a few examples,” arXiv
preprint arXiv:2411.07494, 2024.

E. Galinkin and M. Sablotny, “Improved large language model
jailbreak detection via pretrained embeddings,” arXiv preprint
arXiv:2412.01547, 2024.

X. Hu, P--Y. Chen, and T.-Y. Ho, “Token Highlighter: Inspecting and
mitigating jailbreak prompts for large language models,” in AAAI,
2025.

S. Ghosh, P. Varshney, M. N. Sreedhar, A. Padmakumar, T. Rebedea,
J. R. Varghese, and C. Parisien, “Aegis2.0: A diverse ai safety
dataset and risks taxonomy for alignment of LLM guardrails,” arXiv
preprint arXiv:2501.09004, 2025.

M. K. Rad, H. Nghiem, A. Luo, S. Wadhwa, M. Sorower, and
S. Rawls, “Refining input guardrails: Enhancing 1lm-as-a-judge ef-
ficiency through chain-of-thought fine-tuning and alignment,” arXiv
preprint arXiv:2501.13080, 2025.

Y. Liu, H. Gao, S. Zhai, J. Xia, T. Wu, Z. Xue, Y. Chen,
K. Kawaguchi, J. Zhang, and B. Hooi, “GuardReasoner:
Towards reasoning-based LLM safeguards,” arXiv preprint
arXiv:2501.18492, 2025.

M. Sharma, M. Tong, J. Mu, J. Wei, J. Kruthoff, S. Goodfriend,
E. Ong, A. Peng, R. Agarwal, C. Anil et al., “Constitutional clas-
sifiers: Defending against universal jailbreaks across thousands of
hours of red teaming,” arXiv preprint arXiv:2501.18837, 2025.

S. Xiang, A. Zhang, Y. Cao, Y. Fan, and R. Chen, “Beyond surface-
level patterns: An essence-driven defense framework against jail-
break attacks in LLMSs,” in ACL Findings, 2025.

C. Yung, H. Huang, S. M. Erfani, and C. Leckie, “Curvalid:
Geometrically-guided adversarial prompt detection,” arXiv preprint
arXiv:2503.03502, 2025.

R. Pu, C. Li, R. Ha, L. Zhang, L. Qiu, and X. Zhang, “MirrorShield:
Towards universal defense against jailbreaks via entropy-guided
mirror crafting,” arXiv preprint arXiv:2503.12931, 2025.

X. Zhang, C. Zhang, T. Li, Y. Huang, X. Jia, M. Hu, J. Zhang, Y. Liu,
S. Ma, and C. Shen, “JailGuard: A universal detection framework
for prompt-based attacks on LLM systems,” ACM Trans. Softw. Eng.
Methodol., 2025.

B. Upadhayay, V. Behzadan et al., “X-Guard: Multilingual guard
agent for content moderation,” arXiv preprint arXiv:2504.08848,
2025.

J. Piet, X. Huang, D. Jacob, A. Chow, M. Alrashed, G. Zhao, Z. Hu,
C. Sitawarin, B. Alomair, and D. Wagner, “Jailbreaksovertime:
Detecting jailbreak attacks under distribution shift,” arXiv preprint
arXiv:2504.19440, 2025.

N
ul
o

—=- AlpacaEval
+- OR-Bench
————— P
—— GCG
—+- AutoDAN
+- DrAttack
Multijail

N
o

= =
o vl o v

Average Extra Delay (Second)

|
v

Tested Guardrails

Figure 6. The delay of guardrails on GPT-4-0125-Preview. AlpacaEval and
OR-Bench are two normal prompt datasets and others are jailbreak attacks.

[101] P. Chao, E. Debenedetti, A. Robey, M. Andriushchenko, F. Croce,
V. Sehwag, E. Dobriban, N. Flammarion, G. J. Pappas, F. Tramer
et al., “JailbreakBench: An open robustness benchmark for jailbreak-
ing large language models,” in NeurIPS, 2024.

[102] X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin,
P. Liang, and T. B. Hashimoto, “AlpacaEval: An automatic evaluator
of instruction-following models,” 2023.

[103] J. Cui, W.-L. Chiang, I. Stoica, and C.-J. Hsieh, “OR-Bench: An
over-refusal benchmark for large language models,” in ICML, 2025.

[104] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al.,
“GPT-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

[105] X. Qi, Y. Zeng, T. Xie, P-Y. Chen, R. Jia, P. Mittal, and P. Hen-
derson, “Fine-tuning aligned language models compromises safety,
even when users do not intend to!” arXiv preprint arXiv:2310.03693,
2023.

[106] “Forbidden question set with prompts,” https://github.com/verazuo/
jailbreak_llms/blob/main/data/forbidden_question/forbidden_
question_set_with_prompts.csv.zip, 2023.

[107] W. Luo, S. Ma, X. Liu, X. Guo, and C. Xiao, “JailBreakV: A
benchmark for assessing the robustness of multimodal large lan-
guage models against jailbreak attacks,” in COLM, 2024.

Appendix A.
Evaluation Results on Vicuna-13b-v1.5

We extend our comprehensive evaluation to another
widely-used open-source model, Vicuna-13b-v1.5, to assess
the generalization of different guardrails. The detailed re-
sults are presented in Table 4.

First, a salient observation is that Vicuna-13b-v1.5 is
considerably more susceptible to jailbreak attacks compared
to Llama-3. This increased vulnerability is evident from
the substantially higher Attack Success Rates (ASR) across
almost all attack categories, indicating a weaker inherent
safety alignment in Vicuna.

Second, we note a significant performance degradation
for certain defenses when applied to Vicuna-13b-v1.5. For

N
o

w
o

-+-- AlpacaEval
% --=-—- OR-Bench

Average GPU Memory (GB)
N
o

=
o

Tested Guardrails

Figure 7. The memory usage of guardrails on GPT-4-0125-Preview.

0.25

o
N
o

AlpacaEval
OR-Bench

False Positive Rate

Tested Guardrails

Figure 8. The utility (FPR) of guardrails on GPT-4-0125-Preview.

example, the efficacy of GradSafe and GradientCuff di-
minishes. GradientCuff, which showed marked effectiveness
against the X-Teaming multi-turn attack on Llama-3, fails
to maintain this advantage on Vicuna-13b-v1.5. This de-
cline can be attributed to their nature as intra-processing
guardrails, which heavily rely on the internal representations
and alignment of the target LLM. Consequently, a less
well-aligned model like Vicuna-13b-v1.5 compromises their
defensive mechanism.

Despite these differences, we also observe consistent
performance patterns. GuardReasoner (Pre) and GuardRea-
soner (Post) continue to exhibit state-of-the-art defense ca-
pabilities. GuardReasoner (Pre) achieves the best overall
ASR of 0.156, while GuardReasoner (Post) records the best
overall PGR of 0.192. This sustained excellence underscores
that the robust defense mechanism of GuardReasoner is
largely independent of the target LLM, positioning it as a
more universally applicable and reliable guardrail.

TABLE 4. THE ASR () / PGR (}) RESULTS FOR THE TARGET LLM (VICUNA-13B-V1.5) WITH DIFFERENT GUARDRAILS AGAINST FIVE MAJOR
CATEGORIES OF JAILBREAK ATTACKS, INCLUDING ROW AVERAGES. (PRE) AND (POST) DENOTE THE PRE-PROCESSING AND POST-PROCESSING
VERSIONS OF THE GUARDRAILS, RESPECTIVELY. (DIRECT) AND (INTENT) DENOTE THE DIRECT PROMPT AND INTENT PROMPT BASED VERSIONS OF
SELFDEFEND [11], RESPECTIVELY.

. Manual Optimization-based Generation-based Implicit Multi-turn
Guardrails — - Average
1Jp GCG AutoDAN TAP LLM-Fuzzer DrAttack MultiJail ActorAttack X-Teaming
Vicuna-13b-v1.5 0.474/- 0.890/- 0.660/- 0.530/- 0.820/- 0.780/- 0.254/- 0.238/- 0.960/- 0.649/-
PerplexityFilter 0.474/1.000 | 0.030/0.040 0.660/1.000 | 0.830/1.000 0.870/1.000 | 0.780/1.000 0.254/1.000 | 0.238/1.000 0.990/1.000 | 0.570/0.893
SmoothLLM 0.402/0.794 | 0.140/0.270 0.520/0.970 | 0.840/0.860 0.510/1.000 | 0.410/0.970 0.152/0.933 | 0.877/0.877 0.980/0.970 | 0.537/0.849
Llama Guard (Pre) 0.194/0.563 | 0.370/0.390 0.460/0.750 | 0.630/0.750 0.810/1.000 | 0.650/0.850 0.251/0.952 | 0.222/0.967 0.970/1.000 | 0.506/0.802
Llama Guard (Post) 0.250/0.250 | 0.400/0.400 0.610/0.610 | 0.600/0.600 0.830/0.830 | 0.390/0.390 0.248/0.248 | 0.230/0.230 0.970/0.970 | 0.503/0.503
GradSafe 0.471/0.994 | 0.890/1.000 0.660/1.000 | 0.580/0.960 0.900/1.000 | 0.780/1.000 0.254/1.000 | 0.238/1.000 0.980/1.000 | 0.639/0.995
GradientCuff 0.193/0.351 | 0.090/0.090 0.310/0.480 | 0.550/0.630 0.780/1.000 | 0.660/0.830 0.000/0.000 | 0.183/0.805 0.930/0.960 | 0.411/0.572
SelfDefend (Direct) 0.050/0.262 | 0.080/0.080 0.020/0.080 | 0.210/0.270 0.190/0.270 | 0.330/0.480 0.187/0.743 | 0.132/0.720 0.960/0.990 | 0.240/0.433
SelfDefend (Intent) 0.057/0.286 | 0.080/0.080 0.050/0.110 | 0.140/0.200 0.210/0.250 | 0.010/0.090 0.127/0.568 | 0.157/0.763 0.960/1.000 | 0.199/0.372
WildGuard (Pre) 0.007/0.033 | 0.010/0.010 0.010/0.020 | 0.040/0.090 0.010/0.020 | 0.330/0.490 0.187/0.797 | 0.147/0.757 0.920/0.950 | 0.185/0.352
WildGuard (Post) 0.066/0.066 | 0.040/0.040 0.030/0.030 | 0.100/0.100 0.410/0.410 | 0.090/0.090 0.194/0.194 | 0.165/0.165 0.930/0.930 | 0.225/0.225
Prompt Guard 0.000/0.000 | 0.020/0.020 0.240/0.370 | 0.570/0.960 0.020/0.030 | 0.770/0.990 0.254/1.000 | 0.235/0.995 0.980/1.000 | 0.343/0.596
GuardReasoner (Pre) 0.000/0.009 | 0.000/0.000 0.020/0.020 | 0.050/0.080 0.040/0.040 | 0.150/0.270 0.057/0.349 | 0.143/0.740 0.940/0.960 | 0.156/0.274
GuardReasoner (Post) | 0.050/0.050 | 0.030/0.030 0.010/0.010 | 0.060/0.060 0.480/0.480 | 0.040/0.040 0.060/0.060 | 0.100/0.100 0.900/0.900 | 0.192/0.192
TABLE 5. THE ASR (J) / PGR (J) RESULTS FOR THE TARGET LLM (GPT-4-0125-PREVIEW).
. Manual Optimization-based Generation-based Implicit Multi-turn
Guardrails — - Average
1JpP GCG AutoDAN TAP LLM-Fuzzer DrAttack MultiJail ActorAttack X-Teaming
GPT-4-0125-Preview 0.192/- 0.220/- 0.710/- 0.340/- 0.750/- 0.220/- 0.029/- 0.200/- 0.940/- 0.400/-
PerplexityFilter 0.192/1.000 | 0.000/0.060 0.710/1.000 | 0.260/1.000 0.720/1.000 | 0.220/1.000 0.029/1.000 | 0.200/1.000 0.930/1.000 | 0.362/0.896
SmoothLLM 0.185/0.365 | 0.150/0.270 0.480/0.850 | 0.540/0.630 0.760/0.940 | 0.300/0.780 0.054/1.000 | 0.192/0.905 0.980/0.980 | 0.405/0.747
Llama Guard (Pre) 0.100/0.563 | 0.130/0.460 0.540/0.770 | 0.250/0.510 0.660/0.840 | 0.220/0.850 0.029/0.952 | 0.200/0.998 0.940/0.990 | 0.341/0.770
Llama Guard (Post) 0.110/0.110 | 0.180/0.180 0.530/0.530 | 0.250/0.250 0.720/0.720 | 0.220/0.220 0.029/0.029 | 0.200/0.200 0.950/0.950 | 0.354/0.354
SelfDefend (Direct) 0.031/0.253 | 0.060/0.100 0.160/0.230 | 0.100/0.210 0.110/0.160 | 0.070/0.350 0.019/0.740 | 0.102/0.693 0.870/0.910 | 0.169/0.405
SelfDefend (Intent) 0.039/0.310 | 0.040/0.090 0.080/0.160 | 0.100/0.190 0.100/0.180 | 0.060/0.140 0.025/0.568 | 0.128/0.768 0.910/0.930 | 0.165/0.371
WildGuard (Pre) 0.004/0.033 | 0.000/0.020 0.020/0.020 | 0.030/0.060 0.010/0.010 | 0.140/0.530 0.029/0.797 | 0.127/0.768 0.810/0.880 | 0.130/0.346
WildGuard (Post) 0.035/0.035 | 0.030/0.030 0.070/0.070 | 0.060/0.060 0.180/0.180 | 0.140/0.140 0.029/0.029 | 0.142/0.142 0.920/0.920 | 0.178/0.178
Prompt Guard 0.000/0.000 | 0.020/0.050 0.410/0.630 | 0.310/0.960 0.000/0.000 | 0.220/0.970 0.029/1.000 | 0.195/0.993 0.910/1.000 | 0.233/0.623
GuardReasoner (Pre) 0.000/0.009 | 0.000/0.000 0.030/0.030 | 0.030/0.040 0.050/0.070 | 0.080/0.290 0.016/0.349 | 0.113/0.740 0.890/0.960 | 0.134/0.276
GuardReasoner (Post) | 0.021/0.021 | 0.030/0.030 0.040/0.040 | 0.080/0.080 0.240/0.240 | 0.100/0.100 0.029/0.029 | 0.110/0.110 0.930/0.930 | 0.176/0.176

Appendix B.
Evaluation Results on GPT-4-0125-Preview

To further validate the generalizability of our findings,
we evaluate guardrail performance on GPT-4-0125-Preview,
a representative closed-source model. The comprehensive
results are presented in Table 5, Figure 6, 7, and 8.

Table 5 demonstrates that the defense performance met-
rics (ASR/PGR) on GPT-4 consistently align with those ob-
served in Llama-based evaluations. Notably, PerplexityFilter
achieves the highest average PGR, while GuardReasoner
(Post) maintains the lowest. Furthermore, the multi-turn
X-Teaming attack continues to exhibit exceptionally high
ASR/PGR across all guardrails, reinforcing the findings
from RQ3 regarding session-level defense limitations.

Figure 6 reveals consistent efficiency patterns:
GuardReasoner incurs substantial latency due to its
reasoning overhead, and post-processing guardrails against
jailbreaks universally introduce greater delay than their
pre-processing counterparts, directly addressing RQ1. The
pronounced latency of SmoothLLM stems from its defense
mechanism requiring 10 perturbed prompt copies. This
issue is further exacerbated by inefficient asynchronous

API access to GPT-4 when compared to batched local
inference.

Figure 7 illustrates the GPU memory usage of different
guardrails when applied to GPT-4. These GPU memory
consumptions (in GB) for GPT-4 align with the conclu-
sions drawn from Llama-3. Specifically: (1) GuardReasoner
exhibits the highest memory footprint. (2) The memory
overhead for SmoothLLM and PromptGuard is negligible.
(3) LLM-based guardrails such as Llama Guard, SelfDefend,
WildGuard, and GuardReasoner consume more GPU mem-
ory compared to rule-based guardrails (e.g., SmoothLLM).
These have the same answer to RQ2.

The utility results (FPR) in Figure 8 for GPT-4 cor-
roborate the conclusions drawn from Llama-3. Specifically:
(1) SelfDefend (Direct) exhibits the highest FPR on OR-
Bench. (2) Token-level guardrails (SmoothLLM, SelfDe-
fend (Direct)) demonstrate relatively pronounced FPRs. (3)
Session-level guardrails (those with a “Post” suffix) con-
sistently achieve markedly lower FPRs than their sequence-
level counterparts (those with a “Pre” suffix). These findings
consistently address RQ4.

These results demonstrate that our SEU framework
and taxonomic insights generalize effectively to large-scale
black-box models, affirming the robustness of our findings.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper presents a defense-oriented systematization
of knowledge on protecting large language models against
jailbreak attacks. It proposes a taxonomy of jailbreak tech-
niques and categorizes guardrail defenses along several key
dimensions: the underlying technical paradigm, the granular-
ity of protection, the degree of reactivity, their applicability
across contexts, and the level of explainability they provide.
In addition, the paper includes an evaluation of existing de-
fenses, offering comparative insights into their effectiveness.

C.2. Scientific Contributions

o A systematization of defenses for LLMs

C.3. Reasons for Acceptance

1) This paper proposes a comprehensive taxonomy of
LLM guardrails. The presentation is clear and has good
coverage of existing work.

2) The paper also proposes a new evaluation framework
that considers real-world trade-offs like latency, com-
putational cost and usability.

3) The evaluation framework is demonstrated with vari-
ous defenses and LLM models. This offers concrete
benchmarks for comparing defenses.

