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Abstract—App repackaging has raised serious concerns to the Android ecosystem with the repackage-proofing technology attracting

attention in the Android research community. In this article, we first show that existing repackage-proofing schemes rely on a flawed

security assumption, and then propose a new class of active warden attack that intercepts and falsifies the metrics used by repackage-

proofing for detecting the integrity violations during repackaging. We develop a proof-of-concept toolkit to demonstrate that all the

existing repackage-proofing schemes can be bypassed by our attack toolkit. On the positive side, our analysis further identifies a new

integrity metric in the Android ART runtime that can robustly and efficiently indicate bytecode tampering caused by either repackaging

or active warden attacks. By associating this new metric with two supplemental verification mechanisms, we construct a multi-party

verification framework that significantly raises the bar of repackage-proofing and identify conditions under which the proposed

framework could detect app repackaging without getting compromised by active warden attacks.

Index Terms—Android security, app repackage-proofing, active warden attack
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1 INTRODUCTION

ANDROID has become the most popular operating system
for mobile devices [27]. Not surprisingly, the fact that

Android is favored all over the world also makes apps run-
ning on the platform targets of malicious activities, among
which app repackaging is an important one. A typical app
repackaging adversary tampers with the internal logic of a
victim app in a way satisfying her malicious purposes, and
then packages the modified app and publishes it (as either a
new app or a mimic of the victim) such that unwitting users
may be lured into using it. Besides violating intellectual
property rights, app repackaging could also lead to a num-
ber of collateral consequences, including depriving eco-
nomic benefits via compromised in-app purchases or
advertisements and allowing piggybacked malicious code
to be executed. An early study showed that 5 to 13 percent
of apps were plagiarisms in Android markets, and among
1,260 malicious apps, 86 percent were propagated via app
repackaging [12]. More recent studies [1], [15] showed that
more and more sophisticated tricks from traditional desktop

malware samples have now emerged in app repackaging
cases, including adding hook code, hiding malicious pay-
load within resource files, mounting obfuscation, and VM-
aware mechanisms. App repackaging today has also started
to challenge machine-learning-based detection techni-
ques [7]. Meanwhile, conventional countermeasure against
the attack, namely off-line repackage detection [5], [10], [33],
[35], suffers from shortcomings such as delayed detection,
ineffectiveness against obfuscation, and lack of capability in
detecting multi-generation repackaging [1], [14]. This sug-
gests the necessity of giving Android apps the ability of
defending themselves against the threat of repackaging.

Inheriting the idea of software tamper proofing, a prom-
ising countermeasure against app repackaging is to build
Android apps with built-in capability of fighting off integ-
rity violations, called repackage proofing [16]. To the best of
our knowledge, existing repackage-proofing schemes (as of
early 2020) include Droidmarking [22], Stochastic Stealthy
Network (SSN) [16], AppIS [26], BOMBDROID [34], and dif-
ferent variations of Self-Defending Code (SDC) [6], [28].
These schemes verify integrity metrics obtained through
well-defined Android APIs, including the public key used
for signing the protected app and digests/checksums that
can be read from or computed with certain key files. To pro-
tect these verification routines, code protection techniques,
such as the self-decrypting code based on one-way func-
tions [23] and tamper-proofing mechanisms like the guards
network [4], were also adopted such that at least part of
their defensive capability would survive should the attacker
tries to compromise them by means of static and/or
dynamic program analysis. Table 1 presents a comparison
on the effectiveness of these repackage-proofing schemes
against various attacks.

Although not explicitly mentioned, existing repackage-
proofing solutions established their effectiveness upon an
assumption that interactions between protected apps and
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the Android system can be trusted. However, some latest
developments occurred in the Android community had
raised practical challenges toward this assumption by tak-
ing advantage of certain design features of Android. For
example, Android runtime works in the form of user-level
shared libraries, and interactions with the framework layer
utilize cached local proxies within each app’s own user
space. The recently emerging Android plugin technology [3],
[21], [29] has demonstrated a typical example of such chal-
lenges. Despite its original and benign motivations for hot
patching, reducing the released APK size, and etc., this tech-
nology abuses the Android application framework to inter-
cept the communications between the “slaved” apps and
the system. In this paper, we systematically study the
impact of such API interception on the effectiveness of app
repackage-proofing. Unlike existing studies and industrial
reports on the security risks of Android plugin [17], [24], [36],
[37], our contribution is to highlight a long neglected attack sce-
nario where an Android app is maliciously modified to defeat its
built-in self-protecting mechanisms. More specifically, we pro-
pose a new class of active warden attack that enables a repack-
aged app to falsify known integrity metrics adopted in the
existing repackage-proofing schemes without root privi-
leges. Our experiments with attack demos suggest that all
existing repackage-proofing schemes are vulnerable to this
new attack.

On the defense side, our detailed understanding and
analysis of the active warden attack also enables us to iden-
tify a new integrity metric in the Android ART runtime
which reflects an app’s bytecode integrity while being static
and consistent across app restarting, re-installation, and sys-
tem reboots. We identify the conditions under which the
proposed metric could detect app repackaging without get-
ting compromised by active warden attacks, and argue that
the proposed metric significantly raises the bar of repackage
proofing by making the proposed new attack detectable.
Furthermore, we introduce the native-level verification for
key API call routines to elevate our new metric into a multi-
party verification loop. The key idea is to utilize a carefully
selected composition of different integrity verification
mechanisms to cover all app components as well as routines
of key API invocations, making it difficult for active warden
attacks to forge all metrics at the same time.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce related work on app repackage proof-
ing and the active warden attack. Following that, in Sec-
tion 3, we present the general idea of our attack strategy
against repackage-proofing, and then present proof-of-con-
cept demos of this attack against all existing repackage-
proofing schemes. Next, in Section 4, we propose our multi-

party verification framework, and evaluate its effectiveness
with experiments and analyses. Finally, we discuss some
implications on our new verification framework in Section 5,
and conclude the paper in Section 6.

2 BACKGROUND

2.1 Repackage Proofing

Repackage proofing can be seen as a special application of
software tamper proofing specifically on Android apps. So
far, all existing repackage-proofing schemes verify the
integrity of a protected app by injecting additional verifica-
tion code into the app that performs integrity checks using
Android APIs or key files of the app:

� SSN [16] and BOMBDROID [34] measure an app’s
integrity by checking public key inside its certificate
via Certificate:getPublicKey, while the certificate
is retrieved via PackageManager:getPackageInfo.

� Droidmarking [22] instead sends out pre-stored
certificate information to an external verifier (via
an intent) using startService such that the latter
could check whether the certificate it receives is
authenticated.

� BOMBDROID further checks the code digests, which
are read from MANIFEST:MF.

� BOMBDROID, AppIS [26], and SDC [6] also verify
the checksums of code snippets, which require read-
ing the app’s compiled code files.

Some most recent works, namely BOMBDROID, SDC
and another variation [28], adopts self-decrypting code [23]
and decrypts its defense code snippets using checksums of
the protected app’s code. SDC has two schemes, one of
which constructs a customized Dalvik Virtual Machine
(DVM) to support extra Dalvik instructions for the SDC
decryption, while the other constructs “Twin SDC” to per-
form encryption (and thereafter decryption) recursively. To
identify crashes caused by incorrect decryption, both SDC
schemes rely on an external auditor app to check time-
stamps and decrypted code outputs from the SDC snippets.

Some other designs, such as those in AppIS, leverage
another conventional tamper-proofing framework known
as the guards network [4]. This is to build an interdepen-
dent network consisting of multiple integrity detection and
abnormal response components (called the guards), making
each individual guard potentially protected by some other
guards. To defeat such a guards network, attacks against it
need to disable all the guards together, which is difficult
due to the complexity of interdependencies built into the
network.

TABLE 1
Comparing Effectiveness of Existing Repackage-Proofing Schemes Against Different Repackaging Attack Strategies

Repackage-proofing
scheme

app repackaging
(vanilla)

app repackaging (assisted
by existing static analysis)

app repackaging (assisted
by existing dynamic analysis)

Our attack

Droidmarking [22] effective effective partially disabled disabled
SSN [16] effective partially disabled disabled disabled
AppIS [26] effective partially disabled disabled disabled
BOMBDROID [34] effective effective partially disabled disabled
SDC [6], [28] effective effective partially disabled disabled
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2.2 Active Warden Attack

Active Warden Attack (henceforth AWA for short) is better
known as an attack model against steganography [2]. The
concept was first described in the “Prisoners’ Problem”:
Alice and Bob are in jail and wish to hatch an escape plan.
Communications between them can only go through the
warden, Willie. If Willie discovers any suspicious informa-
tion, the escape plan fails and Alice and Bob will be thrown
into solitary confinement [25]. Hence, Alice and Bob must
hide their ciphertext within some innocuous-looking covert-
ext. On the other hand, Willie has two strategies against the
potential conspiracy: transmitting while monitoring the
communication until abnormalities are detected (but noth-
ing more), or acting proactively to remove possible covert
messages while preserving their explicit meanings. In the
second scenario, Willie is referred to as an active warden.
Essentially, AWA is a special man-in-the-middle attack, and
was included into the threat model against software water-
marking and fingerprinting [8] where the warden is a pro-
gram designed to fool the recognizer of such techniques.

3 AWARE: ACTIVE WARDEN ATTACK AGAINST

REPACKAGE-PROOFING

As mentioned in Section 1, the existing repackage-proofing
schemes were established on an implicit assumption: all the
inter-component communications injected to provide the defense,
e.g., API calls and intent-based IPCs, are assumed to be trusted.
However, we found this assumption to be faulty in real-
world practices due to the existence of various program
hooking techniques targeting both Android and Linux (on
which Android is built). We will demonstrate that building
on such a flawed assumption puts existing repackage-proof-
ing schemes under the threat from AWA, which ends up
undermining their effectiveness significantly.

We hereby refer to the AWAs that are launched specifi-
cally for compromising repackage-proofing schemes as the
AWARE (Active Warden Attacks against REpackage proof-
ing). Note that although the underlying principles utilized
by AWARE are not necessarily new in the sense that they
have been applied in other application scenarios (e.g., hot
patching), we are the first to utilize them for a new attack of
defeating app repackage proofing and to propose the engi-
neering details realizing such an attack against all existing
repackage-proofing schemes.

3.1 Overview and Threat Model

Repackage proofing retrieves and verifies certain integrity
metric(s) of Android apps at runtime. Existing schemes
implemented their metric acquisition routines via two
approaches: the API-based and the file-based integrity
checking (recall Section 2.1). Such routines, together with
self-decrypting code to obfuscate the defensive payload,
formed the root of trust for these schemes. Therefore, we
show the effectiveness of AWARE by explaining in detail
how the attack compromises both types of integrity check-
ing and tampers with program semantics protected by self-
decrypting code — should these key mechanisms be
defeated, the existing repackage-proofing schemes would
fail due to the lost of trustworthy sources of integrity.

Fig. 1 illustrates the basic idea of AWARE. Given a victim
app under the protection of existing repackage-proofing
schemes, the proposed attack injects an executable payload,
i.e., the warden module, into the app’s code sections. This
warden is designed to take over the victim app’s key inter-
actions with Android system (or with an external verifier
app), feed bogus readings to integrity checks of the embed-
ded repackage-proofing scheme which rely on the compro-
mised interactions, while preserving the semantics and
correctness of the victim app. Of course, as an enhanced
repackaging attack strategy, AWARE will also re-sign the
victim app using the attacker’s public key such that the
repackaged instance could pass Android’s signature verifi-
cation during installation. We emphasize that AWARE is,
by all means, still an application-level attack, i.e., it works
entirely within the victim app’s sandbox and memory space
to forge communications with the Android runtime. It is
not capable of tampering with the latter directly, and it also
does not need to enslave the victim app as a plugin of
another master app to work properly.

Our attack works within the same threat model adopted
by the existing repackage-proofing schemes. We assume
that

� both framework layer and Linux kernel/standard
libraries of the Android system are unmodified; and

� neither the victim app nor the AWARE payload
require root privilege or any specific permissions.

In addition, we assume that AWARE is allowed to perform
offline/online analyses and to modify the victim app’s code
and data. That said, such analyses and modifications are not
assumed to be powerful enough to bypass program protec-
tion techniques such as code patching and obfuscation.

3.2 Deceiving API-Based Integrity Checking

Integrity Verification Mechanism. Most of the existing repack-
age-proofing schemes perform integrity checks using
Android APIs [16], [22], [34]. Built on top of Linux, an impor-
tant feature of Android is that many key components of its
application framework (e.g., ActivityManagerService or
AMS, and PackageManagerService or PMS) run as user-level
modules.When the app calls anAPI of such a system compo-
nent, the Binder object of that component needs to be
acquired and converted into an interface such that the target
API can be properly referenced. For performance consider-
ation, Android avoids frequent Binder acquisition by

Fig. 1. The basic idea of AWARE.
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caching a local proxy within the app’s user space for each
framework layer component to be used directly as its
interface.

Attack Strategy of AWARE. The aforementioned local
proxies are maintained in the form of global variables that
can be easily modified by any component within the same
address space. An app could therefore overwrite these
proxies to redirect them to customized hooks (as illustrated
in Fig. 2), causing all IPCs between its own user space and
the application framework be intercepted and manipulated.
Note that this hooking technique has already been lever-
aged in the implementation of Android plugin toolkits (e.g.,
[3],[21] and [29]) to create phony system service interface
exposed to slaved apps —which exist in the form of compo-
nents of the plugin framework, similar to the relationship
between a repackage-proofing scheme and an app being
protected. Therefore, AWARE adopts this application
framework hooking to deploy its warden for counterfeiting
repackage-proofing metrics that rely on the related APIs,
including

� the public key certificate, adopted in both SSN [16]
and BOMBDROID [34]; and

� the metric-carrying intents sent out to third-party
verifiers as utilized in Droidmarking [22].

3.3 Deceiving File-Based Integrity Checking

Integrity Verification Mechanism. File-based integrity check is
another approach adopted in existing repackage-proofing
schemes [6], [26], [34]. Specifically, the protected app
retrieves certain files of itself and then verifies the file integ-
rity to infer its overall integrity status. As discussed in Sec-
tion 2.1, BOMBDROID verifies code digests of the app
(MANIFEST:MF) and checksums of code snippets (ahead-of-
time compiled Java methods) in addition to the app’s public
key. Similarly, AppIS [26] and SDC [6] adopt code check-
sum verification for their integrity checks.

Attack Strategy of AWARE. The “Achilles heel” of file-
based integrity verification is Android’s installation path
generation mechanism. Android 8.0 and subsequent ver-
sions enforce a security policy to format such paths accord-
ing to =data=app=hpackagenamei-hSecRani===, in which
SecRan is a random suffix. As the result, these directories
can no longer be assumed without looking up the app’s
ApplicationInfo:sourceDir field at runtime, which again
must be retrieved via PMS APIs. Therefore, by manipulating
PMS and all available file opening methods (e.g., Java classes
File=FileInputStream, and C/C++ functions fopen=open),

AWARE could deploy a path wrapper to intercept all requests
of the victim app on acquiring its installation path or opening
any files under that directory (see Fig. 3). Specifically,

� upon capturing a path acquisition request, the path
wrapper generates a fake SecRan and returns a
bogus APK path with the random suffix being
replaced by the forgery;

� upon capturing a file opening request, the path
wrapper first checks whether the target file path con-
tains its bogus APK path, and if so, opens and
returns the falsified file corresponding to the actual
target (prepared in advance).

Note that the bogus APK paths are indistinguishable
from repackage-proofing schemes because they are of the
same format as real APK paths, while the only information
source, i.e., PMS, is in control of the AWARE warden.

In most cases, AWARE’s falsified files are merely the
original version of those to be checked. An exception is
when counterfeiting integrity verification which read
ahead-of-time compiled code of Java methods as the metric.
Existing work did not specify how exactly such code read-
ing is implemented, but to the best of our knowledge, two
possible ways could be used to accomplish such code acqui-
sition. The first approach is to obtain the app’s base:odex
file,1 which is also placed under the app’s installation path
(hence this case is not exceptional). The second approach,
on the other hand, is to retrieve the linear address of
base:odex by accessing the app’s memory maps (provided
in the system virtual file =proc=self=maps), and then read-
ing the content of the memory sections allocated to the file.
To deceive this approach, a fake memory map alone is not
enough. AWARE needs to

1) load the victim app’s original code files (including
base:odex and other private libraries) into its address
space as heap objects; and then

2) return a forged =proc=self=maps (formatted in the
same way as an authentic memory map) via the
hooked file opening functions, in which addresses
related to the app’s real code files are replaced by
those pointing to the aforementioned heap objects.

To make sure that the fake memory map does not appear
abnormal due to suspicious offsets among sections, AWARE

Fig. 2. AWARE’s mechanism of compromising interactions with the
Android application framework.

Fig. 3. Our mechanism of intercepting and manipulating file-based app
integrity verifications.

1. Note that a third-party Android app indeed possesses the privi-
lege to access its own base:odex and base:vdex files.
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may also need to reload some of the system libraries as heap
objects and use addresses of these objects instead of the actual
files in the fakememorymap.

It’s worth mentioning that since AWARE’s file falsifying
works by taking over the Android file system interface
exposed to the repackaged app, any in-app integrity verifica-
tion strategies that rely on integrity of the file system would
also get defeated because an in-app file system checking
routine only sees what the AWARE’s warden shows (espe-
cially when it comes to information requested from the
Android framework). To given an example, an app could
try to detect AWARE by searching for potential bogus files
the attack may deploy via directory inspection; however,
once the app is taken over by AWARE, the attacker’s war-
den intercepts information regarding the app’s directory
structure and crop it according to the attacker’s interest,
thus hiding the existence of bogus files from the app’s
inspection. On the other hand, any out-of-app or third-party
directory inspection (e.g., that performed by a systems app)
would not be deceived by AWARE. We note that such out-
of-app inspection is outside the scope of this paper, and the
flexibility AWARE has in disguising any necessary fake files
as resource or temporary files would likely hinder such
detection ineffective.

3.4 Compromising Self-Defending Code

Self-Defending Mechanism. Different from strategies dis-
cussed in Section 3.2 and 3.3, SDC [6] employs self-defend-
ing code with two schemes using a customized Android
DVM and a twin SDC structure to prevent its payload from
being compromised by potential adversaries (see Section 2.1)
— we focus on twin SDC given that DVM is already obso-
lete. This design keeps the repackage-proofing logic, i.e., the
worker SDCs, under the protection of encryption and obfus-
cation provided by the helper SDCs, making it difficult to
reveal or remove them during a repackage attack.

Attack Strategy of AWARE. To attack the twin SDC struc-
ture, AWARE exploits the fact that in order to modify a user
space code segment at runtime, SDC needs to switch its
memory pages to writable using mprotect and recover after
the modification. Therefore, AWARE hooks the invocation
procedure of mprotect and intercepts the second call to this
function made by the helper SDC (see Fig. 4). This second
call to mprotect is a milestone indicating that an SDC snip-
pet has been decrypted but is not yet executed. The AWARE
warden could then rewrite the decrypted code at this partic-
ular moment for inserting any malicious activity. As for fal-
sifying integrity measurements used as the key for
decrypting the SDCs, AWARE resorts to the same means
presented in Sections 3.2 and 3.3.

There are also more practical goals that can be achieved
in the SDC tampering. For example, the warden could erase
the logging behavior in the decrypted code such that even if
an SDC segment causes a crash, the external SDC auditor
would still be unable to detect the anomaly. Such SDC tam-
pering could even evade the cross checking among different
SDC snippets: the AWARE warden could store an SDC
snippet before compromising it, and having the snippet
recovered by the injected payload (after the fact of malicious
tasks) to clean up the “crime scene”. Other SDC snippets
cannot detect this due to TOCTTOU (time of check to time
of use).

3.5 Proof-of-Concept Demonstrations

To the best of our knowledge, there is no working prototype
released by any of the previously proposed repackage-
proofing schemes [6], [16], [22], [26], [34]. Commercial apps
also rarely announce whether they have adopted protective
techniques to defend against app repackaging or what tech-
niques they have adopted. In this section, we resort to
proof-of-concept demos to show the capability of AWARE
in undermining key mechanisms of repackage proofing
claimed in Sections 3.2, 3.3 and 3.4.

We have constructed a proof-of-concept AWARE toolkit2

that injects a booter function of the AWARE warden class
into the victim app’s main activity to ensure that it gets exe-
cuted before any repackage-proofing component takes con-
trol. This can be achieved by inserting the booter into the
app’s onCreate or attachBaseContext (if it is overridden
by the main activity) method. At runtime, the booter initial-
izes the warden class and invokes other methods of it to
hook the Android application framework as well as other
selected Java and native APIs, and thereby deploys the
interception and manipulation of key repackage-proofing
mechanisms.

We used Frozen Bubble, a FOSS (Free and Open Source
Software) app which can be found in both the F-Droid cata-
logue3 and Google Play, as our subject app. We embedded
into the subject app

� an API-based integrity check which obtains the app’s
certificate via PackageManager:getPackageInfo, with
the API called via reflection (as in SSN),

� a file-based integrity check involving the standard
routine of fetching the app’s base APK file (as in
BOMBDROID),

� a twin SDC component built to protect a printf call
which outputs “Hello World!”.

The modified subject app was then repackaged with
changes to its UI (as shown in Fig. 5) with an AWARE war-
den embedded to compromise the aforementioned integrity
checks and SDC component.

On compromising the API-based integrity checking,
Fig. 6a shows the attack payload of our warden embedded
in the repackaged Frozen Bubble instance. Upon hooking
PMS, our warden intercepts its invocation handler and
checks whether the app is calling getPackageInfo and

Fig. 4. AWARE’s mechanism of compromising twin SDC.

2. The source code of our proof-of-concept AWARE toolkit can be
found at https://github.com/jnsiw/AWARE.

3. https://f-droid.org/en/.
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obtaining its certificate (at line 29). It then replaces the certif-
icate section in the PackageInfo object with a bogus one
(line 30 to 32). To better demonstrate the underlying details
of the attack, we also added a stack dumping command in
our warden, so that it outputs stack trace of the app upon
being executed. Fig. 6b shows a comparison between the
real and the bogus certificate, in which :=CERT-HOOK:RSA is
our forgery carrying a false public key prefixed with a series
of “0xdeadbeef”s. We found that when executing the
repackaged Frozen Bubble with our warden switched off,
the subject app logged the correct public key starting with
0xa7191429, and no stack trace was shown (see Fig. 6c).
When the app was run with the warden turned on, on the
other hand, we can see from Fig. 6d that the invocation of
PackageManager:getPackageInfo was redirected to the
PmsHookBinderInvocationHandler of our attack payload
(see the underlined record in the stack trace). Consequently,
the subject app outputs the bogus certificate and false public
key as highlighted at the bottom of Fig. 6d.

For the file-based integrity checking, the attack payload
of our warden was slightly different from Fig. 6a, in that it
intercepted PackageManager:getApplicationInfo such that
the sourceDir field in the returned object could be overwrit-
ten.4 As shown in Fig. 7a, the authentic path of the repack-
aged Frozen Bubble contained a system-generated suffix
“�66njDkL5tM04wna9fsuWzg==” (see the logs tagged with
“PackageCodePathWrapper”, which were recorded by our
warden). Nevertheless, after returning from our warden to
the subject app’s own code, this installation path had been
given a fake suffix “�hook�success”, as in the logs
recorded by the subject app itself (those tagged with
“Detection”). This demonstrated that AWARE could
indeed manipulate the file instance returned.

Finally, Fig. 7b demonstrates the simulation result of tam-
pering the twin SDC instance using AWARE.Without loss of
generality, we switched the permission of code pages con-
taining the worker SDC snippet of the twin SDC structure to
RWXP at the time of decrypting. Accordingly, with mprotect

hooked, our warden monitored and intercepted all requests
of switching code pages from RWXP to R-XP (as shown in the
second line of the upper half of Fig. 7b), which allowed it to
correctly determine the memory range of worker SDC (1
memory page starting from 0x7fbeb22c6000). Following that,
our warden immediately overwrote the parameter of the
protected printf call, making the tampered worker SDC
print “Hacked!” instead of the expected text.

Although AWARE rely on a number of carefully
designed control flow interception strategies, implementing
the attack is actually easy at engineering level thanks to the
numerous open-source hooking and virtualization frame-
works for Android [24], [36]. These existing toolkits could
be applied on both the Java and native partition of an app,
making it possible for an adversary to develop an AWARE
payload as simple extensions of them. For example, our
AWARE demo itself is partially based on such a virtualiza-
tion framework, namely whale.5

4 POTENTIAL MITIGATION

In this sectionwe further discuss the possibility of mitigating
the AWARE attack at the application layer. Our intention here
is to investigate practical defense that are potentially deploy-
able in the current Android ecosystem, and will leave OS-
level and hardware-assisted solutions as futurework.

4.1 Security Goal and Assumptions

Note that even with the AWARE attack taken into account,
the purpose of the adversary is still about launching an
enhanced repackaging attack, which is carried out before a
victim app is installed. Accordingly, the intention of an
application-level mitigation of the AWARE attack is to
make a subject app capable of verifying its own integrity at
runtime (at which point the off-line modification to the app
has completed), and detects violations caused by either
embedding the AWARE payload or other modifications for
the purposes of repackaging attack.

We assume that the adversary could gain access to the
APK of the subject app, but not its source code. In other
words, the adversary can work with encoded files (e.g.,
DEX files and :so libraries) within the APK, while the build-
ing process of the APK before repackaging, as well as the
runtime environment in which the repackaged app runs, is
out of his/her reach. More powerful adversaries capable of
tampering with the target Android internal are out of our
scope. In addition, we assume that the adversary wants to
at least preserve the essential functionalities of the subject
app, given that his main purpose is repackaging.

Finally, we emphasize that this paper never intends to
bring a complete app repackage-proofing scheme. This is
because a typical repackage-proofing design consists of two
portions:

� components for acquiring and verifying certain
integrity metrics of the subject app, as well as

� routines andmechanisms that protects the integrity of
thosemetric acquisition and verification components.

Fig. 5. Instances of Frozen Bubble before/after the trivial repackaging
introduced for demonstrations.

4. To avoid redundancy, here we skip the injected code but simply
show the attack output. The same goes to the next demonstration on
attacking SDC. 5. https://github.com/asLody/whale.
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And, the AWARE attack works by compromising the trust-
worthy of the first portion of repackage-proofing defenses, but not
the integrity of any of its program semantics. As such, the goal
of a mitigation of this attack should be more about forcing
the adversaries to fight against the (remaining effective) sec-
ond portion of existing repackage-proofing defenses. To
this end, we put our focus mainly on looking for new metric
acquisition approaches reliable against the AWARE attack,
rather than proposing new tricks for safeguarding the
repackage-proofing code. We acknowledge the limitation of
an application-level solution without the help of any trusted
components from the OS or hardware. The security goal of
our defense is to raise the bar of repackage proofing

hopefully to the extent that conducting such attacks
becomes no easier than re-implementing the app, rather
than (unrealistically) making the attack impossible.

4.2 Multi-Party Verification Framework against
AWARE

We first summarize the reasons why existing repackage-
proofing schemes fail in stopping AWARE as follows:

� Insecure mechanisms — specifically, self-decrypting
code is not secure when the key system functions
involved (in particular, mprotect) cannot be trusted.

� Flawed integrity metrics — while they were adopted
due to their uniqueness and coverage (e.g., public key
is app-specific), their corresponding retrieval mecha-
nisms are not trustworthywith AWARE in the game.

Intuitively, a more effective defense against AWARE
thus needs a new (set of) metric(s) for Android apps which
is not only sensitive to integrity violations caused by the
embedding of AWARE payload, but also capable of resist-
ing various app behavior manipulations. To this end, we
propose a verification framework across an app’s bytecode
and native partitions, with multiple verification mechanisms
that have each other covered within the ring of protection.

4.2.1 ART-Based Bytecode Integrity Metric

Recall that the AWARE attack requires deploying a booter
at the victim app’s code entry (see Section 3.5), indicating
inevitable modification of the victim app’s bytecode compo-
nent(s), i.e., method(s) written in Java/Kotlin. Therefore, a
valid metric against AWARE should indicate the integrity

Fig. 7. AWARE compromising file-based integrity checking and twin
SDC.

Fig. 6. A demonstration of our AWARE demo evading integrity checks based on public key acquisition.
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status of an app’s bytecode with good sensitivity, while
being

� app-specific (unique to each app); and
� static (remaining unchanged during normal dynamic

execution and across app restarting, app reinstalling,
and system rebooting).

With these in mind, we look into the Android ART run-
time and particularly, a key data structure it maintains
called ArtMethod which stores key metadata that helps
resolving entry of Java/Kotlin methods inside an app’s
base:odex (or base:vdex for Android 8 and above). These
structures are created and maintained dynamically by the
runtime, and tampering with them could easily crash the
corresponding app. We tested six fields shared by all differ-
ent versions of ArtMethod to see how they respond in vari-
ous scenarios. Results are presented in Table 2, where “�”
means that value of the corresponding field may change
under specific circumstances and “�” indicates otherwise.

We found that 4 fields in ArtMethod are static in normal
executions, in which only the dex code item offset field
responds to bytecode tampering (i.e., consistent under nor-
mal scenarios while changed once being attacked). After a
further investigation of the Android source code, we found
that the value of this field is originated from the code off

field within the encoded method structure of direct or virtual
methods. According to its definition, code off either gives
the offset of the corresponding method’s bytecode item
within DEX file, or 0 if the method is abstract or native.6

Being a densely encoded format, the relative offset of one
section or item within a DEX file can be easily affected by
modifications (e.g., as a result of the AWARE attack) chang-
ing the size of other sections/items. On the other hand, the
positioning of code items inside DEX files is not sensitive to
any implementation details of the Android system. With
these, we identify and use dex code item offset of selected
(multiple) Java/Kotlin (but not abstract) methods of the pro-
tected app as ametric to detect tampering of bytecode caused
by AWARE (or any other code manipulation). We discuss
the reliability of this integrity metric in Section 4.3.

4.2.2 Acquisition of the New Metric

Obtaining ArtMethod is common in Android apps with
native code embedded via NDK (Native Development Kit),
because when invoking a Java/Kotlin method from a native

function, the callee’s ArtMethod is required as a parameter
so that JNI can locate its entry. Specifically, when carrying
out such an invocation, the caller (i.e., the native function)
first invokes JNI method FindClass or GetObjectClass to
obtain the class of the callee, then uses GetMethodID or
GetStaticMethodID (also provided by JNI) to get its
ArtMethod structure. Therefore, our integrity metric can be
fetched at least in two ways:

� Obtaining ArtMethod during actual method invoca-
tions from the app’s native partition; or

� Introducing new payload to obtain ArtMethod of
some selected Java/Kotlin method of the app.

The first acquisition approach is tightly bound to the
protected app’s own semantics, making it more difficult
to be removed or compromised despite its limitation on
the aspect of time-of-check. The second approach pro-
vides flexibility, but the ArtMethod acquisition operations
might be suspicious for the lack of dependency (e.g., no
subsequent invocations). As a compensation, bogus invo-
cations guarded by opaque predicates can be inserted
into the protected app to create disguising dependencies
for the newly introduced ArtMethod acquisitions. For the
implementation of such opaque structures, we refer inter-
ested readers to existing works [31], [32] since it is not a
contribution of this paper.

4.2.3 Multi-Party Verification

An ArtMethod field alone is not enough to fight against
AWARE. First, it is possible for the AWARE warden to
tamper with PLT/GOT stubs inside the victim app’s private
libraries to intercept JNI invocations for obtaining
ArtMethod and invoking Java/Kotlin methods (where
ArtMethod is used as an input), so that

� in the procedure of obtaining ArtMethod, a fake
value is assigned to the dex code item offset field
in the returned structure to deceive repackage
proofing;

� during method calling in which the fake ArtMethod

is involved, the warden recovers the authentic struc-
ture before continuing the invocation.

Second, dex code item offset cannot be used to detect
integrity violations of repackaging attacks that only tamper
with the subject app’s native code, because code off of
native methods are set to 0.

To address the above issues, our solution is to include the
new metric into a multi-party verification framework in

TABLE 2
Selected Fields of ArtMethod and Their Consistency Status in Various Scenarios

Name of the field Consistency under normal scenarios Consistency under attacks

App reinstall App restart System reboot Repackaging AWARE

declaring class � � � � �
access flag � � � � �
dex code item offset � � � � �
dex method index � � � � �
method index � � � � �
entry point from quick compiled code � � � � �

6. See https://source.android.com/devices/tech/dalvik/dex-format
for the definition of code off.
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which two additional integrity verification mechanisms are
introduced to form a ring of protection against AWARE.
The first supplemental verification targets the app’s JNI
invocation routines by checking the integrity of the corre-
sponding PLT/GOT stubs. In Android apps, calling a native
method from another native one also leaves a return
address pointing to the caller method. Using this return
address as an anchor point, location of the to-be-checked
PLT/GOT stubs can be assumed by fixed offsets. Our JNI
verification payload thus leverages the return address left
by the caller of its residing method to inspect the presumed
location of certain PLT/GOT stubs within the executable
file where it is deployed. Since the PLT stubs are code pieces
that look up the addresses in the GOT section, our verifica-
tion inspects their concrete texts to determine whether any
of them had been compromised by techniques like inline
hooking. On the other hand, the GOT stubs are actual offsets
for the external symbols as filled in by the linker at load
time, making their values unknown at the off-line phase.
Therefore, to verify the GOT stub of a JNI method, our veri-
fication is designed to inspect the distance between the
GOT offset of the subject JNI method and those of other
selected JNI methods. In this way, should the subject GOT
stub be compromised, the inspected distances would dem-
onstrate anomalies because the rogue GOT offset no longer
points to an entry inside libart:so. By injecting JNI verifica-
tion into the protected app’s native code, our verification
framework could then include the acquisition procedure of
ArtMethod into its coverage, hence establishing the credibil-
ity of our new integrity metric.

Note that neither dex code item offset nor the JNI ver-
ification mechanism could check the overall integrity of the
app’s native code. This brings out the second supplemental
integrity checking of our verification framework, which
inspects the app’s public key from its Java/Kotlin methods
(same as some existing schemes [16], [22]). This conven-
tional metric is picked because, as illustrated in Fig. 8, by
indicating whether the protected app has been (unauthoriz-
edly) re-signed, the public key metric implies its integrity as
a whole (including that of its native code). Meanwhile, with
the JNI verification mechanism endorsing its credibility, our
dex code item offset metric can be deemed as a measure
for the integrity of the protected app’s bytecode partition in
general. This allows our verification framework to trust the
authenticity of the retrieved public key, given that attacks
such as AWARE (with the purpose of manipulating this sig-
nature) will result in bytecode tampering involving multiple
methods of the app, and hence would be detected. Intui-
tively, the three verification mechanisms of our framework
leaves no unchecked “loose ends” behind.

4.3 Security Effectiveness

In this section, we evaluate the effectiveness of leveraging
dex code item offset as an integrity metric of Android
apps, and give an empirical discussion on its resilience
against targeted attacks.

4.3.1 Against Attacks Using Toolkits in the Wild

First, we consider the AWARE attack which resolves DEX
files of a victim APK into Smali code with Apktool;7 injects
the warden at the Smali level while carrying out other code
tampering, then rebuilds the package using the building
tool chain provided by Apktool. As discussed in Section 3,
this is effective against conventional repackage-proofing
schemes.

To test the effectiveness of the dex code item offset

metric under such typical AWARE and app repackaging
attacks, we use Instagram as an example (given its popular-
ity) and examined the code off of Java methods in its DEX
files (which, as explained in Section 4.2, will be assigned to
the dex code item offset field of the ArtMethod structures
of these methods on the end-user devices) before and after
repackaging. Two different samples were produced in this
test. The first sample was the product of a trivial repackag-
ing, i.e., no changes were made except signing the package
with a new certificate. The second sample was embedded
with the AWARE warden deployed by our attack proto-
type. Table 3 gives the code off of five methods selected
from the app, showing that both the trivial repackaging and
the insertion of AWARE warden resulted in the change of
code off for all the selected methods. We obtained similar
results on both emulators and real Android devices.

Note that tampering with methods that are not selected
to be monitored using dex code item offset could poten-
tially still get detected due to change of offsets induced on
methods being protected. That said, we encourage protec-
tion of all important methods (those of essential functional-
ity) with our new metric to gain the best security property.

4.3.2 Against attacks using advanced toolkits

By further looking into the building process of DEX files, we
found that the difference between building tool chains in
Apktool and Gradle is a major factor which contributes to
the varying method offsets. Specifically, Apktool uses
dexlib2 to build the DEX files which does not organize the
data section’s items (including code, strings, types, etc.)
according to the sequence defined by the Android official
documentation. This means that another test is needed to
understand whether the dex code item offset metric is
still effective against advanced attacks where the adversary
utilizes the official tool chain to build the repackaged
DEX files.

We did not find any publicly available repackage
tools with the desired building system. Therefore in this
test, we simulated a series of app repackaging attacks on
Frozen Bubble, the same subject as used in Section 3.5, and
again compared the code off values of selected methods.
Specifically, we directly manipulated the Java source of the
app before building its DEX files using Gradle, which we

Fig. 8. Our multi-party verification framework using ART-based integrity
metric and PLT/GOT verification.

7. https://github.com/iBotPeaches/Apktool
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believe is the closest possible mimic to a real app repackag-
ing attack that leverages the official building tool chain. In
addition, to better understand the effectiveness of the
dex code item offset metric, we conducted the simulated
app repackaging transformations in three different settings:
a trivial repackaging without any code modification, a triv-
ial repackaging with the size of a specific method
(releaseBubbles in the FrozenGame class) being increased
by four bytes, and finally, a non-trivial repackaging sup-
ported by AWARE.

Table 4 shows the result of our simulation. We can see that
when using the official building tool chain, a trivial repackag-
ing which did not tamper with any code would no longer
change the offset of the victim app’s methods. However, such
repackaging is incapable of defeating any other repackage-
proofingmetric, e.g., the app’s public key. On the other hand,
we found that a small increase in the size of one of the app’s
methods had shifted the position of all methods below it
accordingly; see method getTypeId in class PenguinSprite

and method saveState in class Sprite in Table 4. Finally, in
the case of AWARE, offsets of all selected methods were
affected because the attack payload introduced newmetadata
which increased the size of various sections of the resulting
DEX file, including (but not limited to):

� A new class def item in the class defs section;
� New method id items in the method ids section;
� Name of the new class and its methods as additional

entries in the string ids section.
In DEX files, all sections mentioned above are placed in

front of the data section. Therefore, due to the dense encod-
ing of the DEX format, position of the entire data section
(including the code items inside it) will be shifted accord-
ingly. These observations lead to an argument that even if
the adversary switches to the official building system,
dex code item offset is still effective in detecting mean-
ingful app-repackaging and AWARE attacks.

4.3.3 Against Targeted Attacks

Last but not least, we consider the attack scenario where the
adversary is committed to deceive our new integrity metric.
Specifically, we want to discuss the possibility of modifying
the subject app’s DEX file in a delicate way, such that the
AWARE payload can be embedded while none of the app’s
existing methods is shifted to a new offset. A potential
example is the “callee-side rewriting” strategy [30] in which
the adversary directly adds the AWARE payload into target
DEX files of the victim app as an additional code snippet
appended at the end of the code section, hoping that this
could avoid altering the offset of any of the existing meth-
ods. This means that the adversary has to rewrite the DEX
file at binary level rather than modifying the Smali code to
avoid uncontrollable factors introduced by the DEX build-
ing process.

Due to the strict validation rules enforced on the format,
there are limitations on how an additional code snippet can
be inserted into a DEX file. Specifically, each method in a
DEX file must be a continuous code section, and code within
a method is not allowed to simply jump out of its bound-
aries to a rogue code section. Containing such invalid con-
trol flows will result in a DEX file being unable to pass
Android’s verification due to section overlap or non-zero
padding.8 Under this condition, even at binary level, the
available options for the adversary to inject the AWARE
payload into a DEX file are to either embed it as new clas-
ses/methods, or merge it into some existing methods within
the file. On top of that, in order to deceive our new integrity
metric, the payload injection must further preserve the

TABLE 4
code off of Selected Methods in Frozen Bubble Before and After Simulated “App Repackaging” (Carried Out Using the Standard

Gradle Tool Chain)

Method Value of code off

Original Repackaging (trivial) Repackaging (incremental) AWARE

com:efortin:frozenbubble:AccelerometerManager�> isListeningðÞ 0x29b3c 0x29b3c 0x29b3c 0x29d10
com:efortin:frozenbubble:NetworkManager�> cleanUpðÞ 0x2a730 0x2a730 0x2a730 0x2a904
org:jfedor:frozenbubble:FrozenGame�> releaseBubblesðÞ 0x37dd8 0x37dd8 0x37dd8 0x37fac
org:jfedor:frozenbubble:PenguinSprite�> getTypeIdðÞ 0x41008 0x41008 0x4100c 0x4281c
org:jfedor:frozenbubble:Sprite�> saveStateðÞ 0x41fcc 0x41fcc 0x41fd0 0x437e0

TABLE 3
code off of Selected Methods in Instagram Before and After App Repackaging (Carried Out Using Apktool)

Method Value of code off

Original Trivial repackaging AWARE

com:instagram:app:InstagramAppShell�> onCreateðÞ 0x35d4f4 0x90b4ec 0x90c0f0
com:instagram:mainactivity:MainActivity�> onCreateðLandroid=os=Bundle; p0Þ 0x3b8edc 0x94335c 0x943f60
com:instagram:model:mediasize:TypedUrlImpl�> getHeightðÞ 0x518fa0 0x948c00 0x949804
com:instagram:adshistory:fragment:RecentAdActivityFragment�> isOrganicEligibleðÞ 0x6f8814 0x908f4c 0x909b50
com:instagram:reels:fragment:ReelDashboardFragment�> onActivityResultðÞ 0x753a9c 0x96212c 0x962d30

8. Readers could find Android’s latest DEX verification seman-
tics at https://android.googlesource.com/platform/art/+/refs/
heads/master/libdexfile/dex/dex_file_verifier.cc, where padding
and overlap between items in a DEX file is checked by
DexFileVerifier::CheckIntraSectionðÞ.
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original layout of the target DEX file, leading to a number of
additional requirements.

� In case of embedding the payload as new classes/
methods, and assuming that the adversary has
already placed the new methods at the end of code
section to avoid tampering offsets of other methods,
he still needs to ensure that the DEX file’s header
(which includes the lists of classes/methods/proto-
types contained in the file) remains of the same size
as the original one.

� In case of merging the payload within existing meth-
ods, the adversary must ensure that the size of the
subject methods do not change after the re-
construction.

� Finally, in case of merging the payload into multiple
existing methods, the adversary must choose the
subject methods carefully such that invocations
among them would not be considered as illegal.

Although fulfilling the above requirements when directly
manipulating a DEX file is not impossible, we argue that our
new metric, when used in conjunction with our two supple-
mentary measures in a multi-party verification manner, sig-
nificantly raises the bar of repackaging attacks, potentially
to the extent that such attacking effort exceeds that needed
for a re-implementation of the subject app.

4.3.4 Limitations of Our New Integrity Metric

As admitted in Section 4, dex code item offset metric can
only be leveraged by Android apps with native code. This
design choice limits the completeness of our scheme,
although going native is the trend of Android apps and we
could expect more and more apps embracing NDK in the
near future [13].

Moreover, recall that the threat model of the AWARE
attack assumed unmodified Android system; see Section 3.1.
However, as we have mentioned, an important feature of
Android exploited by AWARE is that many of its system
modules exist in the form of user-level shared libraries that
can be modified inside any user apps. This also includes
libart:so which contains key JNI methods required by the
dex code item offset metric; see Section 4.2.3. Therefore,
if we assume a stronger threat model in which the adver-
sary is allowed to tamper with the behavior of Android sys-
tem libraries, he could then attempt to intercept JNI
invocations related to ArtMethod by hooking the related JNI
methods from the platform side (i.e., within libart:so), or
compromising the JNIEnv structures which are maintained
in the :data:rel:ro section of libart:so. These approaches
go beyond the scope of PLT/GOT checking as part of our
verification framework. A possible countermeasure could
be to further enhance our protection on the integrity of JNI
invocations, for example, by extending the PLT verification
routine to trace address lookup process down to the location
of JNI methods/JNIEnv structures within the system library
and verifying their checksum directly. However, we see
such attacks which tamper with system components more
of a system security issue rather than an application one.
Our opinion is that Android should further enhance its manda-
tory access control policy and stop third-party apps from modify-
ing system libraries (even in their own address space).

The existing access control policy of Android appears to
mainly focus on the enforcement of app sandboxing. For
instance, it adopts SELinux to prevent an app from modify-
ing things that may compromise the behavior of other pro-
cesses, and it blocks certain procfs files that may leak the
execution status of other apps. Modifying system compo-
nents to affect the execution of the current app itself, on the
other hand, was not constrained because such behavior was
not considered a violation of app sandboxing. However, as
shown by existing studies on the risk of app virtualiza-
tion [17], [24], [36], [37] and now by our AWARE attack, the
highly modularized structure in fact allows part of an
Android app to attack other components of its own and
cause significant consequences. In other words, enforcing
per-process sandboxing alone is no longer enough, and we
suggest that Android could take the integrity of its user-
level system components more seriously.

4.4 Performance Overhead

We made an empirical comparison between the overhead of
retrieving the conventional integrity metrics and that of
retrieving the dex code item offset metric we proposed.
Four different integrity metric acquisition components were
implemented to respectively obtain the app’s public key via
API and reflection, to read the digests within MANIFEST:MF,
and to access the value of dex code item offset . Table 5
shows the comparison of average performance over 50 runs
and code bloat for running all the test components on a Goo-
gle Pixel 3 XL. The result suggests that the tested component
for retrieving our newmetric causes significantly lower over-
head in both time and memory space. It is worth noting that
the purpose of this comparison is merely to show that apply-
ing our integrity metric does not introduce any additional
performance bottleneck. Compared to checking bytecode
integrity by computing checksums of .DEX files or AOT com-
piled code segments of the app (like in AppIS and SDC),
dex code item offset is a better option with regard to per-
formance impact, because reading the entire sections in the
linear address space is inefficient due to the demand paging
mechanism, while obtaining dex code item offset raises
no such concern.

5 DISCUSSION

5.1 AWARE versus Off-line Repackage Detection

Recall that to launch an AWARE attack, it is necessary to
insert a booter into bytecode of the victim app so that the
deployed warden could intercept key defensive app behav-
iors. This raises a question: does such payload correspond
to new signatures for off-line repackage detection?

TABLE 5
An Empirical Comparison on the Performance of Obtaining

Integrity Metrics in Repackage-Proofing

Integrity metric Average overhead Code bloat

public key (direct API call) 0.8946 ms 178 bytes
public key (using reflection) 1.7042 ms 542 bytes
digests in MANIFEST:MF 6.1545 ms 136 bytes
dex code item offset 0.0048 ms 120 bytes
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Note that booter of the warden class of AWARE can be
implemented as trivial as a simple invocation, as long as it
can directly control the warden’s main body. This therefore
allows the use of obfuscation techniques to conceal the
AWARE warden class, making it hard to be distinguished
via static analysis. In addition, being originating from simi-
lar techniques, behavior of the AWARE warden class is
close to that of an app virtualization framework. As shown
in recent studies [24], [36], app virtualization frameworks
have attracted millions of users and downloads, and cases
of benign apps adopting app virtualization for software
engineering and/or security reasons are not uncommon.
For example, our tests showed that an e-commerce app
Lazadawith more than 100 million downloads has mounted
with a virtualization framework called Atlas9. We therefore
argue that it could be difficult to resort to either static or
dynamic behavioral signatures to identify the AWARE
attack.

5.2 Repackage-Proofing or Obfuscation?

Considering the limitations of our verification framework
against an AWARE adversary with the stronger threat
assumptions stated in the last subsection, we admit that it is
difficult to deploy an effective repackage-proofing defense
when components of Android system themselves could not
be trusted. Under the status quo, applying code obfuscation
techniques [9], [11], [20], [38] to protect the apps against
unauthorized program analyses could still be a valuable
application-level countermeasure against app repackaging
(given that program analysis is a necessary phase before
carrying out such attacks). However, code obfuscation must
consider adversaries dedicated on a particular target
(besides large-scale automated program analysis), which
could make it less effective when being applied on Dalvik

bytecode originated from strongly-typed Java sources
(which has been pointed out in [11]). Furthermore, code
obfuscation alone only helps increase the difficulty of pro-
gram analysis.

5.3 Repackage-Proofing versus Remote Code
Attestation

Some may wonder that to cope with the threat of AWARE
(and app repackaging in general), could the so-called remote
attestation technology be “another way out” and provide
effective defense [18], [19]? We stress that fundamentally,
remote attestation is of a different scenario (trusted comput-
ing) compared to repackage-proofing, in that its functional-
ity relies heavily on hardware and/or system-level
supports. Note that compared to previous app repackaging
techniques, AWARE is more difficult to defend against at
application-level because it exploits the fact that the Android
architecture is designed to be semi-implanted into each
app’s sandbox, making it possible for third-party code to
“play god” (i.e. gain at least some part of the system’s capa-
bility without having the corresponding privileges).
Defending such attacks from OS-level, on the other hand, is
considered out of our scope (although such a strategy might
indeed serve as a different security mechanism in

preventing the threats focused on in this work). That said,
indeed we cannot assert that there are absolutely no other
application-level defense approaches which could also miti-
gate the threat of AWARE. We leave this as an open prob-
lem to be explored in the future.

6 CONCLUSION

In this paper, we systematically studied existing repackage-
proofing schemes, and proposed an active warden attack
(named AWARE) that is able to bypass integrity checks of
all previous schemes. We also showed the effectiveness of
this new attack with proof-of-concept demos. To the best of
our knowledge, we are the first to identify the threat of
AWARE to repackage proofing. On top of these, we pro-
posed a new integrity metric and its associated multi-party
verification framework. Specifically, we introduced a new
ART-based bytecode integrity metric, which, under the sup-
port of supplemental verifications on certain JNI invocation
routines, is able to effectively indicate code tampering on an
app’s Java/Kotlin methods caused by both app repackaging
and the AWARE attack. Our analyses and evaluations sug-
gested that this new integrity metric can be an effective miti-
gation against AWARE, and the multi-party verification
framework with its participation is resilient to a number of
targeted attack strategies. Our empirical study also sug-
gested that the overhead of retrieving such a metric is
acceptable.
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