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Abstract—Android as an operating system is now increasingly being adopted in industrial information systems, especially with
Cyber-Physical Systems (CPS). This also puts Android devices onto the front line of handling security-related data and conducting
sensitive behaviors, which could be misused by the increasing number of polymorphic and metamorphic malicous applications
targeting the platform. The existence of such malware threats therefore call for more accurate identification and surveillance of
sensitive Android app behaviors, which is essential to the security of CPS and IoT devices powered by Android. Nevertheless,
achieving dynamic app behavior monitoring and identification on real CPS powered by Android is challenging because of restrictions
from the security and privacy model of the platform. In this paper, the authors investigate how the latest advances in deep learning
could address this security problem with better accuracy. Specifically, a deep learning engine is proposed which detects sensitive app
behaviors by classifying patterns of system-wide statistics, such as available storage space and transmitted packet volume, using a
customized deep neural network based on existing models called Encoder and ResNet. Meanwhile, to handle resource limitations on
typical CPS and IoT devices, sparse learning is adopted to reduce the amount of valid parameters in the trained neural network.
Evaluations show that the proposed model outperforms a well established group of baselines on time series classification in identifying
sensitive app behaviors with background noise and the targeted behaviors potentially overlapping.
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applications.
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1 INTRODUCTION

W ITH Android becoming the most popular operating system
for mobile phones, its influence continued to expand to

household appliances and industrial information systems. Studies
suggested that Android-powered devices mounted with powerful
processors and various sensors could be ideal for industrial-based
Cyber-Physical System (CPS) in many application scenarios, in-
cluding (but not limited to) the emerging blockchain and fog com-
puting [2], [4], [10], [11], [15], [25]. Besides, people realized that
malware targeting the Android platform, which has been a major
security concern for mobile phones, also poses serious threats to
CPSs involving Android-powered devices. Such malware attacks
could result in severe consequences including private information
leakage, device hijacking, and others, especially considering that

• Haoyu Ma is with the School of Information Systems, Singapore Manage-
ment University, Singapore and the School of Cyber Engineering, Xidian
University, China. E-mail: hyma@smu.edu.sg.

• Jianwen Tian, David Lo and Debin Gao are with the School of Information
Systems, Singapore Management University, Singapore.
E-mail: {jwtian, davidlo, dbgao}@smu.edu.sg.
Corresponding author: dbgao@smu.edu.sg.

• Kefan Qiu and Chunfu Jia are with the College of Cyber Science, Nankai
University, China.
E-mail: kfqiu@mail.nankai.edu.cn, cfjia@nankai.edu.cn.
Corresponding author: cfjia@nankai.edu.cn.

• Daoyuan Wu is with the Department of Information Engineering, Chinese
University of Hong Kong, China. E-mail: dywu@ie.cuhk.edu.hk.

• Thar Baker is with the Department of Computer Science, College
of Computing and Informatics, University of Sharjah, UAE. Email:
tshamsa@sharjah.ac.ae.

Android devices being targeted would typically be handling sen-
sitive tasks involving critical data related to the system’s security
and the enterprise’s trade secrets when integrated into industrial-
based CPSs [12], [21].

All Android apps (including malware) access sensitive data via
well-defined system behaviors guarded by dangerous permissions.
As such, detecting such sensitive behaviors dynamically becomes
one of the critical problems in malware detection on the Android
platform [13], which is also the focus of this paper.

1.1 Related works
Dynamically analyzing behaviors of apps on Android devices
is challenging, because the monitoring and detecting behavior
could itself be considered as intrusive when it potentially violates
Android’s fundamental security and privacy framework — each
app should be restricted to execute within its own sandboxing
environment1. Many previous tools achieved this by establishing
customized Android subversions or emulators to trace and ana-
lyze APIs, system calls, binders, and other resources [5], [22].
However, as low-level information like API calls and system
calls are not accessible on non-rooted devices, these techniques
cannot be applied to devices used by the public. As a result,
previous efforts in this dimension had to resort to other techniques
that do not require firmware modification, root privileges, or app
repackaging [26]. One such a technique is app virtualization [1], in
which a master app is launched to virtually load other apps into its
memory space as “plugins”, while intercepting their API calls to

1. https://source.android.com/security/app-sandbox
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manipulate their behaviors. However, this intrusive technique was
recently shown to be vulnerable because virtually loaded apps are
in the same app space and thus can attack one another [17], [27].

More recently, a new idea of leveraging side channels for app
behavior identification had emerged in the Android security com-
munity [23], which is mainly motivated by researches on inferring
user activities via certain system-wide side-channel statistics [7],
[18], [19]. Existing studies had suggested that side-channel-
based app behavior surveillance could work without violating
the platform’s security and privacy framework, or escaping from
individual app’s sandboxing environment. However, Android’s
ever-tightening privacy protection policy has been causing many
such side channels to be closed with patching to the Android
system. For example, starting from Android 6.0, Google has been
continuously restricting access to per-process information:

• Third-party apps can now only access its own PID-specific
procfs directory (/proc/<pid>/∗);

• APIs known for leaking sensitive information, such as
ActivityManager.getRunningAppProcesses(), are
limited to only return the caller app’s own statistics; and

• Similarly, command ps is restricted to only return process
information of the app launching the command on Android
7.0 and above.

Another example is /proc/interrupts, a virtual file within
the proc filesystem for recording interrupt request lines. This
file has been exploited in recent side channel researches [7],
[23], notably UpDroid [23], an on-device dynamic monitoring
system. Specifically, /proc/interrupts is one of the four
sources of raw footprint logs leveraged by UpDroid. With the
access of this file forbidden to third-party apps starting from
Android 8.0, UpDroid had lost its ability of detecting hardware
related app behaviors, including sensitive ones such as using
camera and requesting location information. Furthermore, since
multiple third-party Android apps usually run simultaneously,
more often than not, system-wide statistical side channels present
super-impositions of footprints from multiple program activities.
Existing monitoring systems paid little attention to this matter, and
therefore only had limited success.

1.2 Contributions of this paper
This paper re-visits this problem and investigates how the latest
advances in deep learning could change the “status quo” described
above. As mentioned in the previous subsection, existing works on
dynamic Android app behavior monitoring face a few challenges:

• Android’s improving and tightening access control leaves
fewer side-channel information sources for inferring app
behaviors;

• With super-imposition of multiple program activities, the
remaining information sources carry a lot of “noise” in
addition to the signature of a sensitive app behavior; and

• The improved task scheduling mechanism of Android,
coupled with advanced hardware acceleration on Android
devices, introduces jitter into data sampling of the dynamic
monitoring systems, making patterns embedded in the
fetched data more difficult to be recognized.

To address these challenges, this paper proposes a novel deep-
learning-based dynamic surveillance engine, called SideNet, as a
practical non-intrusive solution for detecting sensitive app behav-
iors on Android devices. SideNet takes as input selected statistical

side-channel readings from the Android system and trains a deep
neural network model to determine whether and what sensitive
behavior had happened. Based on the Universal Encoder for Time
Series (or Encoder for short) recently proposed [16], this paper
introduces features of state-of-the-art residual learning framework
(also known as the ResNet) [9] to establish a customized time
series classification kernel for the SideNet engine, called Residual
Encoder based Classifier. In this kernel model, the convolutional
blocks of the conventional Encoder design are replaced with resid-
ual blocks carrying “shortcut connections” (as used in ResNet) to
reduce the vanishing gradient effect during the training process,
while the attention mechanism is preserved to enable the model
to learn the importance of each time stamp in a time series. As
a result, SideNet inherits the attention mechanism of Encoder
and is able to learn the importance of individual time stamps
within a time series. Meanwhile, adopting features of residual
learning allows such a hybrid kernel of SideNet to have a much
deeper structure compared with the standard design of Encoder,
while also possessing residual connections that help reducing the
vanishing gradient effect when training the model. These features
together endow SideNet with good generalization capability de-
sired in the application scenario aimed by this paper. In addition,
SideNet adopts the latest accelerated training technique called
sparse learning [6], and is able to significantly reduce the training
time and the amount of valid parameters in its neural network
model. This makes the updating of SideNet’s kernel module more
efficient in both power and computational resource consumption.

In-lab simulations on 15 commercial apps have shown that
SideNet outperformed the competing models (including LSTM,
MLP, FCN, Encoder and ResNet) in terms of both accuracy
and efficiency. Specifically, in the simulations aimed to mimic
the scenario of identifying app behaviors in real-world practices
(where background noise exists and targeted behaviors potentially
overlap), SideNet showed significant improvements compared to
even the strongest baseline (i.e., ResNet): in addition to an average
accuracy increment of 6.1%, the kernel model of our engine also
caused much fewer false alarms.

Given that SideNet operates based on information gathered
solely within its own user space, it does not require rooting the
protected device or modifying semantics of any other apps running
on the device. Consequently, SideNet could work on any existing
Android distribution, while applying such a defense is as simple
as installing a new app. Together with its high accuracy and low
overhead, SideNet could therefore help enhancing software-layer
security of CPS and IoT environments involving Android devices,
especially the industrial-based CPSs, by providing a cost-efficient
supplement to potential malware mitigation measures.

In summary, this paper makes the following contributions:

• This work is the first to propose the idea of lever-
aging system-wide side-channel data to detect sensitive
app behaviors on Android for security purposes, which
also makes the proposed detection approach suitable to
industrial-based CPSs for being non-intrusive and there-
fore feasible to be applied without substantial extra costs.

• To construct the analysis kernel of SideNet, the authors
propose a novel deep neural network model for Time
Series Classification (TSC), which inherits the advantages
of both ResNet and Encoder, the state-of-the-art practices
for such tasks. The proposed model also demonstrated
satisfying performance, which is important for industrial-
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based CPSs where requirement on the stability of devices
and running services is high.

• The authors have conducted in-lab simulations to evaluate
SideNet, which suggested good effectiveness and perfor-
mance, making it suitable to be applied in resource-limited
environments such as industrial-based CPSs.

In the rest of this paper, we first present our problem statement
and the threat model used in Section 2. The architecture, model
design, and implementation details of SideNet are then discussed
in Section 3. Procedures and results of the in-lab simulations
on the proposed system are presented in Section 4. Finally, the
conclusion of this paper is given in Section 5.

2 PROBLEM STATEMENT AND THREAT MODEL

Throughout this paper, we refer to Android devices in an assumed
subject CPS as the “endpoints”, and denote app behaviors that
require dangerous permissions of Android, e.g., using camera,
accessing geo-location, as “sensitive behaviors”. Accordingly,
the threat model considered in this paper involves adversaries
attempting to inject malware instances into the endpoints of an
assumed CPS. The goal of the proposed surveillance engine, on
the other hand, is to help defending against such adversaries
by providing supplementary information (specific to this paper,
selected side-channel statistics) that can be used to infer what
sensitive behavior had been executed on the monitored endpoints,
which could potentially be used to analyze if the device had been
infected by malware.

Considering practical requirements of industrial information
systems, e.g., cost control, a surveillance engine suitable for the
aforementioned application scenario should satisfy the following
requirements:

• It does not require the underlying system framework to
be modified in order to support it, otherwise all Android
devices serving the protected CPS must be customized,
which is not cost-efficient.

• It only requires normal user privilege.
• The proposed surveillance engine itself should not be

intrusive, i.e., its information gathering operation should
not violate any access control policy enforced by Android,
such as app sandboxing.

Meanwhile, considering the context of industrial information sys-
tems, we limit the capability of adversaries to a practical extent
as well. That is, they are assumed to have no physical access to
any part of the CPS under attack, and the malware instances could
only be injected remotely.

3 THE SIDENET ENGINE

The surveillance engine proposed in this paper, i.e., SideNet,
works by periodically collecting side-channel statistics from the
monitored endpoints on-the-fly. The obtained data is then analyzed
using a deep learning model to determine whether and which
sensitive behavior had happened. Typically, an endpoint in an
industrial-based CPS would be running a relatively stable set of
apps, and is therefore likely to demonstrate a consistent pattern
of sensitive behaviors during regular operations. As a result, by
aggregating logs of sensitive behaviors reported by SideNet from
all the monitored devices, the subject CPS would then be able
to verify the pattern of each individual device and consequently
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Fig. 1: The general architecture of SideNet.

detect “abnormal nodes” that may have been compromised by
malware.

Fig. 1 illustrates the general architecture in which SideNet
is deployed. On the monitored endpoints, SideNet consists of
a side-channel observer which collects statistical side-channel
information, as well as an analysis kernel which takes these side-
channel data as input to detect sensitive behaviors. Meanwhile,
a group of simulation devices execute as off-line components
of SideNet and collect ground truth samples for training the
analysis kernel. These simulation devices cover different models
of the subject endpoints, and are installed with the same version
of Android framework as well (this is possible for CPS where
usually only limited types of hardware and operating system
configurations are involved). In addition, the simulation devices
also have the same side-channel observer deployed and a variety
of test apps (though these apps might be different from those
installed on the endpoints) running simultaneously to generate
side-channel footprints for model training. Constructed in this
way, the simulation devices provide runtime environments as
close to those on the monitored endpoints as possible, providing
credibility for the collected ground truth samples.

3.1 Inputs to SideNet
According to the assumed application scenario, the authors em-
phasize the requirement that the collection of the statistical data,
i.e., inputs to SideNet

• Does not require root privileges or the underlying Android
system to be modified in anyway; and

• Does not require access or tamper with either modules of
the system or code of other user apps.

It is also considered that any resources accessible to a normal
user app, including those requiring permissions, are available and
potentially part of the inputs to SideNet. Given that statistical side
channels are retrieved by either calling specific APIs or accessing
the procfs files, and that retrieving any statistics from a procfs
file requires the observer of SideNet to parse the entire file (and
therefore inefficient), if information provided by a procfs-based
side channel is of the same category as an API-based one, SideNet
is designed to use the API-based source for better efficiency.

Table 1 presents a verified list of statistical side channels
that meet the aforementioned requirements and are available in
Android 9 and 10. After multiple rounds of patching and updating
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TABLE 1: List of verified API- and /procfs-based side channels
in Android 9 and 10 that meets the requirement of SideNet.

Name of side channel Type Category
storageManager.getAllocatableBytes() API memory allocation
storageManager.getCacheQuotaBytes() API memory allocation
storageManager.getCacheSizeBytes() API memory allocation
File.getFreeSpace() API memory allocation
File.getUsableSpace() API memory allocation
Process.getElapsedCpuTime() API CPU usage
TrafficStats.getMobileTxBytes() API network traffic
TrafficStats.getTotalTxBytes() API network traffic
TrafficStats.getMobileTxPackets() API network traffic
TrafficStats.getTotalTxPackets() API network traffic
TrafficStats.getMobileRxBytes() API network traffic
TrafficStats.getTotalRxBytes() API network traffic
TrafficStats.getMobileRxPackets() API network traffic
TrafficStats.getTotalRxPackets() API network traffic
/proc/meminfo procfs MemAlloc
/proc/net/sockstat procfs NetTraff
/proc/net/protocols procfs NetTraff

of the Android system, remaining side-channel resources of this
type provide measurements mainly on memory allocation, network
traffic, as well as CPU usage. In addition, for each of the remaining
procfs-based side channels, there exist API-based ones which
provide measurements of the same category. These suggest that
procfs-based side channels contribute little (if any) in addition
to API-based ones in obtaining the demanded side-channel profile
in the latest Android systems. Intuitively, footprints of memory
allocation and network traffic could be valid signatures of sensitive
app behaviors. For example, when an app uses the camera, a buffer
is immediately allocated for maintaining the preview picture.
Similarly, when an app requests the device’s location information,
a specific set of network protocols are involved subsequently, caus-
ing a pattern of network traffic due to the particular packets being
sent and received. Motivated by this intuition, the authors adopt
the API-based side channels given in Table 1 as the measurement
vector of SideNet for detecting sensitive behaviors.

3.2 Side-channel information observer
After determining the specific side-channel information to use, we
face another challenge in building SideNet to achieve long-term
surveillance. Recall that SideNet is built to periodically collect
readings of API side channels, i.e., it maintains a loop in which
all APIs listed in Table 1 are invoked one by one without pausing.
Therefore, to achieve long-term surveillance, this loop needs to be
kept executing incessantly. The simple idea of creating a “long-
lived” service to run such a loop would not work, as the service
will be stopped by Android after a certain amount of time (e.g.,
after the device goes to sleep). Meanwhile, since SideNet demands
a high sampling rate, approaches like using AlarmManager for
periodic sampling is also not an option considering the minimum
period of such an alarm (15 minutes) is still too long for the
assumed tasks.

To overcome this problem, SideNet adopts a robust and
persistent side-channel scanning process leveraging multi-thread
programming as well as the JobScheduler mechanism of An-
droid. Specifically, SideNet’s side-channel observer continuously
creates worker threads to retrieve the side-channel statistics. Im-
mediately after such a worker thread is created, it schedules a
job to iteratively retrieve the demanded side-channel readings for
a predetermined number of rounds (set to 1000 in our proof-
of-concept demo), and transmits the collected data to SideNet’s

analysis kernel in real time using the anonymous shared memory
(ashmem) mechanism of Android. After that, the current worker
thread creates a new worker thread, and then ends the job it
scheduled and terminates itself. The new worker thread will then
schedule a new job to continue the data collection in the same way
as was done in the previous thread. Built in this way, none of the
worker threads (and consequently the jobs they schedule) would
run for too much time such that it gets killed by the system before
it terminates normally, allowing SideNet to provide the desired
long-term surveillance.

3.3 Residual Encoder based Classifier
In identifying sensitive app behaviors, the side-channel observer
transmits the statistics it retrieves in the form of a stream to
its analyzer. The analyzer slices the data stream into fixed-
length time series using a sliding window and performs classi-
fication on these time series. This is formalized as a learning
task for solving a multi-class time series classification (TSC)
problem. Given (Xi, yi), i ∈ {1, 2, · · · ,m}, where Xi is a K-
dimensional time series, i.e., Xi = [X1

i , X
2
i , · · · , XK

i ] with
each Xj

i = [xij1 , x
ij
2 , · · · , x

ij
T ] being an ordered sequence of

readings (of length T ) from a specific side channel reading.
yi ∈ Y = {Y1, Y2, · · · , YN} indicates which sensitive app
behavior Xi corresponds to. Note that SideNet identifies the
sensitive app behaviors on top of making the binary decision
“whether a sensitive behavior had occurred”. Therefore, we use
Y1, Y2, · · · , YN−1 to represent different sensitive behaviors while
using YN to represent the situation of “none of these behaviors oc-
curred”. With Xi ∈ X denoting the collection of K-dimensional
time series corresponding to all types of sensitive behaviors in
Y , the goal of SideNet is to learn a mapping from X to Y ,
f : X 7→ Y , to predict whether an unseen time series collected by
the side channel observer indicates a sensitive app behavior; and if
so, to determine what type of behavior is represented by the time
series. f can be learned by minimizing the following objective
function:

min
f

∑
i

L(f(Xi), yi) + λΩ(f), (1)

where L(·, ·) is the empirical loss, Ω(f) is a regularization
term imposed on the prediction function, and λ is the trade-off
parameter to be tuned.

The design of the classifier is crucial to the effectiveness of
SideNet due to the following reasons.

• SideNet supports online detection, and therefore demands
real-time performance which accordingly requires the
overhead of its classifier to be as low as possible;

• Furthermore, the mechanism of JobScheduler, together
with hardware acceleration features of the subject endpoint
devices, inevitably introduce jitter into SideNet’s side-
channel sampling process, bringing additional difficulties
to the classification task on time series constituted by
samples affected by such jittering.

The traditional TSC approaches, which are in essence probability
statistical models [3], [14], usually involve a computationally
intensive pre-processing phase, making them undesired choices.
Thus in this paper, the authors choose to build a deep learning
model as the kernel of SideNet. Note that the main value of
proposing such a deep learning model is about enabling accurate
and high-performance identification of potential sensitive app
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behaviors reflected by side-channel time series, which therefore
indirectly contributes to the security of industrial-based CPSs via
the overall functionality of SideNet.

Latest studies [8] had shown that the residual learning frame-
work, or ResNet [9], was considered the best practice compared to
other existing deep learning models for TSC tasks. This is mainly
due to its deep and flexible architecture as well as the residual
connections which help to reduce the vanishing gradient effect. In
fact, it is believed that the high generalization capability of deep
CNNs on the TSC tasks is rather natural considering the good
performance of similar models which learn on two dimensional
spaces. As explained in Section 1, there are two major challenges
in addressing the TSC task of the specific application scenario of
this paper, both of which indicate that generalization capability of
the deep learning model used in SideNet is rather critical.

Meanwhile, a key insight we have on the side-channel pattern
of sensitive app behaviors is that, when represented as time series,
each sample (i.e., the aforementioned vector of side channel
readings) within the series is of different importance. This brought
out another recent TSC method referred to as the Encoder [16].
By replacing the GAP layer of a standard convolutional network
with an attention layer, Encoder is made capable of learning the
importance of each time stamp in a multi-dimensional time series.
However, the standard design of Encoder only contains 3 simple
convolutional blocks, which makes its depth inferior compared
with other state-of-the-art deep learning models. Considering
that previous experiences [8], [9] strongly suggested that “going
deeper” is the correct path towards building better deep learning
models (regardless the type of target task), this paper aims to
inherit the advantages of both ResNet and Encoder. Towards
such a direction, a hybrid (and improved) deep neural network
model called Residual Encoder based Classifier is proposed as the
analysis kernel of SideNet.

The general architecture of Residual Encoder based Classifier
is illustrated in Fig. 2. On top of the conventional design of
Encoder, all convolutional blocks of the network are replaced
with residual blocks as in ResNet to obtain high generalization
capability while preserving Encoder’s feature of being able to
learn the importance of individual samples within the time series.
The current prototype of SideNet used three residual blocks in
building this analysis kernel, each built by stacking 3 convolu-
tional blocks consisting of a convolutional layer followed by a
batch normalization layer and a ReLU activation layer, with the
shortcut connection added to link the residual block’s output to its
input. The number of filters in the residual blocks are respectively
set to {64, 128, 128}, with the convolution operation fulfilled by
three 1-D filters of sizes {9, 5, 3} without striding. Note that these
configurations are set to be identical to the architecture reported
in a recent study [24] merely to make the performance compar-
ison between the two models more convincing. It’s necessary to
emphasize that the aforementioned configurations is only a proof-
of-concept demonstration, and it is expected that the kernel of
SideNet be built deeper.

Finally, note that being a deep learning based system, SideNet
is expected to be updated periodically such that behaviors of
the emerging new apps (and malware) be learned in time. This,
however, leads to a subtle dilemma: on one hand, SideNet needs an
analysis kernel built as deep as possible in order to achieve better
accuracy; on the other hand, deeper (and consequently larger)
structures in return result in larger overhead and network traffic
cost during model updating. Nowadays, deep neural networks
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Fig. 2: Flowchart of the proposed Residual Encoder based Classi-
fier and its residual blocks.

could easily take a memory space of several megabytes, which
means that updating them periodically can be equivalent to down-
loading and installing a new app every few minutes, and therefore
is practically unacceptable. To address this problem, the authors
resort to sparse learning [6], a recently proposed accelerated
training approach to help constructing SideNet’s analysis kernel.

Sparse learning leverages exponentially smoothed gradients to
identify layers and weights which reduce the error efficiently, and
is able to achieve over 5x faster training while significantly reduc-
ing the number of valid weights in the resulting networks [20].
According to the definition of sparse learning, by setting the train-
ing process to reduce the weights of SideNet to n% of a normal
dense neural network, the network flow required for updating
the resulting analysis kernel could be reduced by (100 − n)%.
Currently we set n = 20 in the proof-of-concept construction of
SideNet, i.e., the updating cost is 80% less than a dense model.

4 EVALUATION

A number of in-lab simulations have been carried out to evaluate
the capability of SideNet, in particular, its accuracy in identifying
sensitive app behaviors as well as its performance cost. Eight dan-
gerous permissions belonging to seven categories were selected for
the simulations, namely ACCESS_COARSE/FINE_LOCATION,
CAMERA, RECORD_AUDIO, READ_SMS, READ_CONTACTS,
READ_CALL_LOG and READ_CALENDAR. The authors focused
on these particular types of behaviors because they have been con-
firmed to be no longer detectable using the existing non-intrusive
detection approaches [23]. Specifically, sensitive behaviors related
to ACCESS_COARSE/FINE_LOCATION and CAMERA permis-
sions were once detectable by analyzing interrupt records provided
in /proc/interrupts. However, access to this procfs file
has been blocked since Android 9 in an attempt to stop side-
channel attacks. Behaviors related to the other selected permis-
sions, on the other hand, were originally not covered. Therefore,
demonstrating that the SideNet engine be capable of detecting
these sensitive behaviors with high accuracy would be of the most
significant impact in challenging the common belief in the security
community (that the system-wide statistical side channels do not
disclose private information of individual apps). Furthermore, it’s
also worth mentioning that some of the tested permissions should
be of high relevance to actual Android-related attacks on real
CPSs. Specifically, sensor-based privacy theft attacks typically
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deploy camera- and microphone-based Trojan horses on Android
devices to stealthily capture and send video/audio to attackers,
and hijacking the SMS receiving process is a popular way of
implementing the control panel of such attacks [12]. A systematic
study on malicious applications targeting Android-based mobile
CPS had also pointed out that requesting location information
and reading SMSs are two of the top 12 features identified in
malware samples [21]. It is natural to extend SideNet to cover
more sensitive app behaviors, which is left as future work.

Recall that SideNet uses off-line simulation devices to collect
ground truth samples to facilitate model training, which consist
of the side-channel time series, the types of sensitive behaviors
taking place, as well as the corresponding time stamps. To this end,
we make use of monkeyrunner to automatically interact with
test apps and log time stamps of the resulting sensitive behaviors.
As for those sensitive behaviors not triggered directly via user
interactions, e.g., behaviors requesting coarse- and fine-grained
geo-locations, a customized Android Open Source Project (AOSP)
system with additional logging capability built into the framework
was used to collect ground truths. Note that this solution restricts
Android framework modification to our in-lab simulation devices
only, while the monitored endpoints are not required to have any
modification to the Android system.

4.1 Experimental setup to evaluate effectiveness in de-
tecting sensitive behavior

Two rounds of classification simulations were conducted in order
to understand the effectiveness of SideNet more comprehensively.
The first simulation assumed an ideal scenario, in which SideNet
as well as the baselines were used to identify sensitive app
behaviors that were intentionally isolated to avoid having their
side channel patterns being interfered by other program activities.
The goal of such an idealized simulation was to understand the
optimal setting of the length of side channel time series (i.e., the
value of T as defined in the beginning of Section 3) for SideNet.

The second simulation focused on a more practical scenario
where the targeted sensitive behaviors were triggered in parallel
with random timings, such that some of them could become
overlapping with each other. Particularly, the authors want to
emphasize the practical importance of considering the second sce-
nario, because it is possible for multiple apps to initiate different
types of sensitive behaviors within a very small time window.
Given that the side channels adopted are all system-wide statistics,
observable pattern of a sensitive behavior launched by one app
could therefore be affected by those of other app components.
As such, in evaluating the effectiveness of SideNet, the second
simulation was considered as the primary indicator, while the first
one was seen only as an auxiliary evidence.

In both simulations presented here, a number of commercial
apps were selected as test subjects, each of which presents be-
haviors related to at least one of the seven highlighted dangerous
permissions. The test subjects were then run on a total of three
test devices (all of which are Google Pixel 3 XL) under the
manipulation of monkeyrunner, which allows our Python script
to execute and interact with a subject app (e.g., sending screen
touches and keystrokes to it). An automatic Python script was used
to induce the sensitive behaviors in the app and collect ground
truth information including time stamps at which the sensitive
behaviors are triggered. Side-channel observer runs side-by-side
on these simulation devices to retrieve side-channel time series.

TABLE 2: Test subjects and background apps of our experiments.

Test and background apps Permission
Google Camera, Twitter,

Snapchat
CAMERA

Audio Recorder,
Easy Voice Recorder,

Voice Recorder
RECORD_AUDIO

Google Map, Grab, iRIS ACCESS_COARSE/FINE_LOCATION

Google Messages,
Promessage,

Messages OS 12
READ_SMS

Whatsapp, Wechat, Line READ_CONTACTS

CallApp, Contacts+,
Google Hangouts

READ_READ_CALL_LOG

Google Calender,
DigiCal, One Calender

READ_CALENDAR

Google Mail, Lazada,
Spotify, CNN, Fox News,
BBC News, Guardian,

Today, Times of India,
Flipboard

none (background)

In addition, considering that it is unlikely in realistic scenarios
to have a test subject app running as the one and only active app
on a device, a group of other apps which receive opportunistic
push notifications (e.g., news apps, e-commercial apps) were kept
running in the background, such that the passive behaviors of these
apps would produce realistic noise that a real user device would
have. Table 2 presents the list of test subjects and background
apps used in this experiment. Note that some of the background
apps request the device’s current location on startup, which are
ignored in our experiments. Also, in order to make the behavior of
Google Mail more realistic, the authors registered a test Gmail
account for a number of subscriptions from websites such as
McDonaldr, and let another script-controlled email account send
messages to this Gmail address at a random interval between 20
and 40 minutes.

It is necessary to emphasize that although it was common
commercial apps for smartphones that were included as subjects,
configuring the experiment in this way does not undermine the
validity of the experiments given that the effectiveness of SideNet
is never supposed to be limited by the type of apps running
on the endpoints. In addition, intuitively, there are two portions
of executions contributing to the resource usage signature of a
sensitive app behavior, namely methods of the user app related to
the behavior, and methods of the Android framework involved in
the service requested by the behavior — and it’s not hard to see
that the system-side execution, which is generally the same for all
apps requesting the same API, contributes more significantly to the
consistency of such behavioral signatures. As such, a sufficiently
trained SideNet model would be able to safely generalize to
different Android subversions as long as such a target subversion
provides the same set of framework APIs to user apps. In fact,
we argue that our experiment configuration would actually make
the detection of sensitive app behaviors harder than in most real-
world scenarios with CPSs which tend to involve more dedicated
devices and therefore could have fewer background apps running.
The generality of SideNet is further discussed in Section 4.5

The performance of SideNet was compared with a number of
baseline learning methods, including LSTM, MLP, FCN, Encoder,
and ResNet. The authors used a basic LSTM model containing
a single LSTM layer of 128 hidden units to provide a common
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bottom line for the simulations. For MLP, FCN, and ResNet,
the authors used the same configuration as used in the related
work [24] in order to provide a fair comparison between the
baselines and SideNet. Similarly, the Encoder model used in the
simulations also adopted the same configuration as in a previous
report [16].

4.2 Simulation 1: Isolated sensitive behaviors
In this simulation, each test subject app was run for a period long
enough to capture 1,000 samples of time series readings of the
sensitive app behavior it corresponds to. The gap between any two
neighboring time series was set to a random value between 1 to 5
minutes. The long timing gap between every two events ensures
that the sensitive behaviors are isolated in the sense that their
patterns of side-channel information do not interfere with each
other. Furthermore, in order to enable detection of non-sensitive
events — side channel patterns that correspond to the absence of
sensitive behavior — a stream of baseline data for a period of 5
hours were collected by having the test devices work only with
background apps (i.e., no sensitive behavior is invoked during this
period).

4.2.1 Length of the time series
The authors compared the performance of all tested models in
handling time series of 5 different T values between 20 and 100.
This is chosen based on the statistics on the timing of all collected
samples, which suggested that the average duration between two
consecutive probing is around 50ms. Therefore, the 5 selected T
values could give us time series covering time periods of about
1 to 5 seconds, which are enough to represent the execution
routine of a specific app behavior completely. The authors did
not move to larger T because SideNet can only start working on
a potential detection of sensitive behavior after all samples of a
segment of side channel statistics (i.e., a complete time series)
has been retrieved. Therefore, adopting time series of a larger T
will result in a long delay in the detection. Considering that using
time series of length 100 already translates to a delay of around
50ms×50=2.5s, testing on T > 100 is therefore not in line with
the goal of dynamic real-time detection.

4.2.2 Accuracy of SideNet vs. baselines
Out of all the time series collected in this simulation, the authors
used 10-fold validations to test the performance of both SideNet
and the baselines for each selected T . The overall accuracy of
the tested models for these different settings are presented in
Fig. 3. We can see that accuracy of most tested models went
down with decreasing value of T (except for MLP, in which
the accuracy sightly increases before T is decreased to 60),
with the most significant drop from 40 to 20 (except, again, for
LSTM, in which the most significant accuracy drop came earlier).
This suggested that for many sensitive app behaviors, their side
channel patterns cannot be effectively profiled by time series of
20 samples, hence using time series of a minimum of 40 samples
is a reasonable setting to minimize the latency caused by re-
trieving side channel statistics while achieving high identification
accuracy. Meanwhile, it is also worth mentioning that for each
selected value of T , SideNet outperformed all the tested baselines
with accuracy greater than 95%. Although the strongest baseline,
namely ResNet, had also achieved high accuracy, the authors
argue that this result alone does not undermine the significance

100 80 60 40 20
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1.00

Ac
cu

ra
cy

SideNet
ResNet
MLP
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Encoder
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Fig. 3: Classification accuracy over different time series lengths.

of the proposed model since the simulated scenario is highly
idealized, and hence it’s not surprising to see a state-of-the-art
model (especially the one serving as one of the bases of SideNet)
also performs well.

4.2.3 Importance of individual side channels and groups of
side channels
In addition, given that the side channels adopted by the proposed
engine are essentially categorized in 3 groups, i.e., those related to
memory allocation, CPU usage, and network traffic, the authors
further studied how each individual adopted side channel and
how the 3 side-channel categories affect the performance of the
proposed engine. This is done by investigating a series of modified
SideNet models, each of which either had one of the side-channel
APIs listed in Table 1 omitted, or had an entire group of them
omitted (note that the category of CPU usage consists of only
one API). As shown in Fig. 4, the removal of network-traffic-
related side channels caused the most significant drop in F1-scores
of the resulting model, while the impact of removing memory-
allocation-related side channels took the second place. On top
of that, the impact of removing any complete group of side
channels was more significant than that of removing an individual
one. These suggested that network traffic signature could be the
most important feature when it comes to identifying sensitive
app behaviors, and memory allocation footprints contributed only
slightly less. In addition, multiple side channels which reflect the
same type of profile could be enhancing the effectiveness of each
other and increasing the overall robustness of SideNet.

4.3 Simulation 2: Overlapping sensitive behaviors
In the second simulation, the authors tried to understand the
performance of SideNet in a more complicated scenario in which
sensitive behaviors were originated from multiple apps (including
potentially malicious ones) at random timings. That is, we sim-
ulated the scenarios where multiple apps respectively carry out
sensitive behaviors at their own pace, making it possible for the
timing gaps between those behaviors to be very small (in which
case the side channel patterns of these behaviors could partially
overlap).

Note that on Android 9 and above, apps running in the back-
ground can no longer access camera or microphone of the device.
Therefore, behaviors related to CAMERA and RECORD_AUDIO
permissions are guaranteed to be originating from foreground
operations. This also implies that operations related to these per-
missions would never overlap with each other. Sensitive operations
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Fig. 4: Performance impact on SideNet when removing an indi-
vidual side channel (group).

from the foreground apps can only be triggered one by one, while
those from the background apps can be raised more frequently.
Taking these observations into account, the test environment of
this simulation is configured in the following way:

• For the CAMERA and READ_CALENDAR permissions, the
same test subjects (i.e., commercial apps listed in Table 2)
as used in the Simulation 1 were adopted to generate the
related sensitive operations from foreground;

• The RECORD_AUDIO permission was omitted because its
behavior cannot be overlapped with CAMERA, which does
not serve the purpose of our Simulation 2;

• Behaviors requiring the remaining five highlighted permis-
sions were conducted by a customized test app triggering
sensitive behaviors from the background.

The authors find this configuration especially interesting be-
cause the commercial apps were controlled via ADB (Android
Debug Bridge) and therefore mimic real user interactions with
the device, while the customized test app works purely in the
background and thus mimics the behavior of malware trying to
eavesdrop user private information in a stealthy manner. The
interval between two neighboring events related to the same
permission were set as a distinct prime number, namely 23 seconds
each for operations related to CAMERA and READ_CALENDAR
permissions, 17 seconds for those related to READ_SMS, 13 sec-
onds for READ_CALL_LOG, 11 seconds for READ_CONTACTS,
and 7 seconds for ACCESS_COARSE/FINE_LOCATION. This
would likely provide cases with different timing gaps between
two different types of sensitive behaviors after a sufficiently long
period of time.

4.3.1 Overall accuracy of SideNet vs. baselines
Once again, this simulation used 10-fold validations to test the
performance of both SideNet and the baselines, of which the
results (include overall accuracy, recall, and f1-score) are shown
in Table 3. The results show that when the simulated scenarios
got closer to real-world practices, accuracy of all tested models
dropped compared to that in Simulation 1 due to the severe noise
from overlapping app behaviors. At the same time, the authors
also observed that SideNet now significantly outperforms all
competing models including ResNet, demonstrating an accuracy
improvement of 6.1% against this strong baseline. This, together

TABLE 3: Average performance of selected approaches in identi-
fying potentially overlapping sensitive app behaviors.

Approach Accuracy Macro Recall Macro f1
LSTM 0.560 0.588 0.563
MLP 0.530 0.560 0.557
FCN 0.561 0.604 0.592
Encoder 0.579 0.630 0.632
ResNet 0.585 0.632 0.631
SideNet 0.646 0.661 0.671
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Fig. 5: Heatmaps for results of SideNet/ResNet (Simulation-2).

with the results from Simulation 1, suggested that compared to the
existing models, SideNet demonstrates better robustness when it
is applied in real-world applications.

4.3.2 Accuracy of individual sensitive behavior
In addition, the authors had a closer look into the performance
of both ResNet and the proposed model regarding each specific
sensitive behaviors as well as the non-sensitive samples (which
correspond to no sensitive behavior at all). The results are shown
as heatmaps in Fig. 5 (where the label “none” indicates the non-
sensitive category, i.e. the test devices were to work only with
background apps with no sensitive behaviors occurred). For both
models, precision in identifying camera-, calendar- and SMS-
related behaviors were still high, while those for the remain-
ing cases dropped significantly. The recall of both models in
identifying SMS-, call-log-, and contact-related behaviors also
received significant negative impacts, although that for SideNet
in identifying locations wasn’t affected as badly as in ResNet.

The authors believe that this is most likely due to the dif-
ference between the customized single test app in simulating
sensitive operations and those in commercial apps. Specifically,
the sensitive operations simulated by our test app involved no
UI display or network communication with remote entities, i.e.,
the digital footprints of these operations are designed to be very
obscure, making them easy to be confused with background
noises or other passively triggered sensitive behaviors (like lo-
cation requests). Another reason for the misclassifications among
these behaviors is that SMS and contacts, although categorized
as different sensitive behaviors, are retrieved by user apps in
very similar ways via a content provider. The reading of these
types of data, although requiring different permissions, is carried
out similarly in the form of SQL queries using a unanimous
API (ContentResolver.query()). This makes app behaviors
involving content reading intrinsically similar due to the shared
low-level execution routine. Furthermore, note that many observed
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Fig. 6: Statistics of SideNet on the ranking of actual behavior type
for misclassified samples.

misclassifications involved recognizing other sensitive operations
as location requests, which is the most frequently triggered op-
eration (once per 7 seconds as mentioned above) and therefore
overlapped with other sensitive operations in many samples of our
training set.

4.3.3 Ranking of ground truth in misclassified cases
The authors further looked into the higher-order statistics of
SideNet’s performance, namely, the ranking of ground truths when
a sample was misclassified. As shown in Fig. 6, over 75% of
SideNet’s misclassifications had the ground truth of the sample
ranked at either the second or the third place. This indicates that
more often than not, mistakes made by the proposed model are
still close shots.

4.3.4 Other observations
There were also a few other observations out of the above results.
First, the comparison between SideNet and the standard Encoder
design suggested that “going deeper” had contributed significantly
in improving the accuracy of neural network models. Next, the
comparison between SideNet and ResNet indicated that for the
application scenario of sensitive app behavior identification, the
authors’ intuition as mentioned in Section 3.3 did make sense,
i.e., individual time stamps within a time series of side channel
statistics could actually be of different importance. As a result,
building the SideNet engine on top of the attention mechanism
of Encoder indeed improved its performance. Moreover, from
the details shown in Fig. 5, the authors believe that applying
the attention mechanism had also made SideNet more “prudent”,
i.e., it makes conservative mistakes rather than aggressive ones
(which is actually a desirable feature of the technology). These
together made SideNet a better solution in addressing the three
challenges of the application scenario assumed in this paper (as
stated in Section 1) compared with the existing baseline methods.
The authors believe that these readings can also be generalized to
other application scenarios which share similar characteristics.

4.4 Performance Cost
Being an app behavior surveillance tool indicates that SideNet is
supposed to be kept in a long-term operating status. As a result,
to understand whether it is efficient enough for real CPSs (espe-
cially those in industrial information systems), the performance of
SideNet needs to be evaluated from two aspects: the computational
cost of the deep learning model as its analysis kernel, as well as
the power consumption per hour for running the whole system.

TABLE 4: Power consumption (in percentage to the total battery
capability) of selected apps for an 1 hour running test.

App Power consumption
Twitter 0.03%
BBC News 0.04%
Fox News 0.01%
Google map (idle) 0.03%
Google map (navigation) 1.14%
SideNet 0.07%

With regard to computational cost, SideNet takes 0.4MB for
Parameters and its amount of MAdds is 27.7M. In comparison,
readers may refer to deep learning application known as Mo-
bileNet2, which is designed specifically for mobile devices: the 3rd
(and latest) version of this model takes up to 5.4MB for Parameters
and has an amount of MADDs of up to 217M. This suggests that
the deep learning model of SideNet is suitable for mobile devices.

With regard to power consumption, SideNet was tested on a
Google Pixel 3 XL with a total of 4 other popular apps (namely,
Google maps, Twitter, BBC News, and Fox News) running to-
gether, and we measured the power consumption of these apps
during a one-hour period using Battery Historiana toolkit provided
by Google for inspecting battery related information and events.
Specifically, two rounds of tests were performed. In the first round
of experiment, all tested apps other than SideNet were simply
started and left idle in the background. In the second round,
Google maps was turned into navigation mode and kept navigating
during the entire period of the experiment, simulating a common
and reasonable high power consumption use case of Android apps.
Table 4 shows that although SideNet was kept running during
the whole experiment, its power consumption was only slightly
higher than the idle apps, and was significantly lower than the
navigating Google maps (the latter consumed 16 times more power
than SideNet when navigating). Therefore, the authors feel safe to
argue that SideNet is suitable to be deployed in real industrial-
based CPSs.

4.5 Generality of SideNet
As discussed in Section 4.1, the applicability of SideNet can be
expected as long as the targeted Android subversion provides a
consistent set of framework APIs that include what SideNet uses.
By analyzing the design and source code of Android extensions
for embedded systems, namely Android Things and Android
Automotive hardware abstraction layer (HAL), we have verified
that both extensions satisfy this requirement, and SideNet runs
smoothly in both systems. Our investigation shows that these
extensions generally work in the form of extra libraries or software
layers in supportive of the Android core framework. Therefore,

• Any sensitive app behavior conducted on such embedded
extensions of Android still requires executing the same
related services in the Android core framework, and

• All APIs which SideNet relies on (as listed in Table 1) are
still available.

This feature of Android’s architecture clearly indicates that when
applied in real-world CPS systems, SideNet remains effective as
demonstrated in the above simulations.

2. https://github.com/tensorflow/models/tree/master/research/slim/nets/
mobilenet.
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5 CONCLUSION

In this paper, a novel deep-learning-based engine, called SideNet,
has been proposed for detecting sensitive behavior of Android
apps dynamically and non-intrusively. Based on a state-of-the-
art TSC model called Encoder, SideNet adopts residual learning
to replace the simple convolutional blocks and hence achieves
better generalization capability while maintaining key advantages
of Encoder, i.e., being able to learn the importance of individual
time stamps of a time series. In addition, sparse learning was
introduced into the training of SideNet, which helps increase
the efficiency of updating a running analysis kernel of SideNet.
Evaluations showed that SideNet significantly outperformed a
number of strong TSC baselines when identifying sensitive app
behaviors in the test designed to simulate practical scenarios
where app behaviors could potentially overlap with some others
partially with regarding to their timings. Specifically, the proposed
engine achieved an accuracy improvement of 6.1% compared to
the strongest baseline, ResNet. The authors believe that this work
opens a new door to developing more comprehensive behavior
monitoring techniques on Android.
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