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Actionable Warning Identification (AWI) plays a pivotal role in improving the usability of Static Code Analyzers (SCAs).
Currently, Machine Learning (ML)-based AWT approaches, which mainly learn an AWI classifier from labeled warnings, are
notably common. However, these approaches still face the problem of restricted performance due to the direct reliance on a
limited number of labeled warnings to develop a classifier. Very recently, Pre-Trained Models (PTMs), which have been trained
through billions of text/code tokens and have demonstrated substantial successfulapplications in various code-related tasks,
could potentially address the above problem. Nevertheless, the performance of PTMs on AWTI has not been systematically
investigated, leaving a gap in understanding their pros and cons. In this paper, we are the first to explore the feasibility of
applying various PTMs for AWI. By conducting an extensive evaluation on 12K+ warnings involving four commonly used
SCAs (i.e., SpotBugs, Infer, CppCheck, and CSA) and three typical programming languages (i.e., Java, C, and C++), we (1)
investigate the overall PTM-based AWI performance compared to the state-of-the-art ML-based AWI approach, (2) analyze
the impact of three primary aspects (i.e., data preprocessing, model training, and model prediction) in the typical PTM-based
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AWI workflow, and (3) identify the reasons for the current underperformance of PTMs on AWI, thereby obtaining a series of
findings. Based on the above findings, we further provide several potential directions to enhance PTM-based AWL

CCS Concepts: » General and reference — Empirical studies; « Software and its engineering — Software testing and
debugging;

Additional Key Words and Phrases: Actionable warning identification, pre-trained model, static analysis, feasibility study

1 INTRODUCTION

Static Code Analyzers (SCAs) can automatically scan software codebases and reveal potential defects without
executing the program [11]. Despite the benefits of SCAs in software defect detection [23, 40], SCAs are still
underused in practice due to reporting an overwhelming number of unactionable warnings, especially false
positives [17, 61, 63]. Manually identifying warnings into actionable and unactionable ones is time-consuming
and error-prone [29]. Thus, the tremendous unactionable warnings and the tedious manual inspection costs pose
significant barriers to the usability of SCAs.

To alleviate the above problem, different approaches [2] have been proposed to optimize the precision of
SCAs from the vendor’s perspective, thereby reducing the number of false positives reported by SCAs. However,
since the trade-off between precision and recall is non-trivial in the static analysis [50], it is inevitable for SCAs
to report false positives. Despite retaining an initially high precision, SCAs could undergo a decline in defect
detection performance as the nature of defects changes over time [30]. The continuous maintenance and updates
to make SCAs overcome the concept drift could be an expensive endeavor [6]. As such, an alternative approach
[44], i.e., Actionable Warning Identification (AWI), has been proposed to postprocess warnings reported by SCAs
from the user’s perspective, thereby identifying actionable warnings from all reported warnings. Unlike the
existing precision optimization approaches [2] that refine the complex static analysis techniques before the usage
of SCAs, AWI focuses on leveraging various postprocessing techniques (e.g., clustering, ranking, pruning, or
simplifying manual inspection) to classify or prioritize warnings after the usage of SCAs. It indicates that AWTI is
independent of specific SCAs with different static analysis techniques. More importantly, AWI can be equipped
with various postprocessing techniques to augment SCAs, where these postprocessing techniques complement
the capabilities of SCAs to report more precise results.

In the existing AWT approaches, Machine Learning (ML)-based AWI approaches are notably popular due to
ML’s strong ability to learn subtle and previously unseen patterns from historical data. The general process of
ML-based AWI approaches isto utilize ML models to train the AWI classifier from labeled warnings and use
this classifier to identify actionable warnings from unlabeled ones [18]. However, the performance of these
approaches is still limited because the AWI classifier is generally established on a small number of labeled
warnings [30, 33, 34, 38, 54, 64]. It indicates that the true power provided by ML techniques has not been fully
unleashed on AWL

The rapid development of ML techniques has spurred the emergence of Pre-Trained Models (PTMs). Different
from the supervised learning of ML-based AWI approaches on a limited number of labeled warnings, PTMs are
trained in a self-supervised fashion based on the tremendous unlabeled corpora and can be used for downstream
tasks by fine-tuning labeled samples [24]. Currently, PTMs have exhibited remarkable performance in a variety
of code-related tasks [47]. The unique characteristics and recent breakthroughs of PTMs inspire us to apply
PTMs to alleviate the problem of existing ML-based AWI approaches [30]. However, the literature does not
systematically investigate the actual power of modern PTMs on AWI, thereby failing to understand the pros and
cons of PTM-based AWI.

To bridge the above gap, we perform the first extensive study to explore the feasibility of PTMs on AWL
Specifically, we first investigate the performance of PTM-based AWI by comparing the State-Of-The-Art (SOTA)
ML-based AWI approach. Second, based on the typical PTM-based AWI workflow, we analyze the impact of
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the data preprocessing ways, model training components, and model prediction scenarios on the PTM-based
AWI performance. Third, we identify the reasons for the underperformance of current PTMs on AWI. Based on
more than 12K+ warnings involving four commonly used SCAs (i.e., SpotBugs [52], Infer [26], CppCheck [12],
and CSA [13]) and three typical programming languages (i.e., Java, C, and C++), we conduct experiments of
nine representative PTMs with encoder-decoder, encode-only, and decoder-only architectures. After that, we
obtain the following findings, including (1) nine PTMs on AWI significantly outperform the SOTA ML-based AWI
approach in terms of recall and F1, while maintaining very similar precision on Java warnings. In contrast, the
average precision, recall, and F1 of the PTM-based AWTI approach is consistently better than the SOTA ML-based
AWT approach on C/C++ warnings; (2) in the data preprocessing, the warning context extraction consistently
enhances the PTM-based AWI approach on Java and C/C++ warnings. However, the warning context abstraction
improves the precision but hinders the recall of the PTM-based AWI approach on Java warnings, while increasing
the precision and recall of the PTM-based AWI approach on C/C++ warnings; (3) in the model training, the
code-related pre-training and fine-tuning components are beneficial for the PTM-based AWT approach; (4) in the
model prediction, PTMs can generally perform better in the within-project AWI scenario than in the cross-project
AWTI scenario; and (5) PTMs struggle on AWI when involving non-distinct/missing warning contexts and the
imbalanced warning dataset. In addition, we perform a rigorously qualitative analysis to discuss the practical
applications of our findings on different SCAs and projects with different programming languages. To this end,
we highlight three potential directions (e.g., the warning context refinement) for boosting the future PTM-based
AWT approach.
In summary, we make the following contributions.

e New perspective. We incorporate recent advances of PTMs into the AWI community. Besides, we conduct
a systematic evaluation to unveil the substantial improvement of PTMs on AWI. We believe that our study
yields the best of current ML and static analysis fields, where PTMs augment the usability of existing
SCAs.

o Elaborate study. We are the first to perform an extensive study to explore the feasibility of PTMs on AWI,
including a detailed comparison between SOTA ML-based and PTM-based AWI approaches, a thorough
investigation about the impact of primary aspects (i.e., data preprocessing, model training, and model
prediction) in the typical PTM-based AWI workflow, and an in-depth analysis about the challenges of
PTMs on AWL

o Extensive experiments. We conduct extensive experiments on 12K+ warnings with four commonly
used SCAs and three typical programming languages as well as nine representative PTMs with three
architectures. Based on the experimental results, we obtain five findings.

o Potential directions. We highlight several potential directions (e.g., the warning context refinement) in
future PTM-based AWLresearch based on our findings.

e Available artifacts. We release the studied warning dataset and the experimental scripts in a public
repository [48] for replication and future research.

The remainder of our study is organized as follows. Section 2 describes the background and related work.
Section 3 introduces the experiment design. Section 4 shows the experimental result analysis. Section 5 outlines
the practical application of our findings, future potential research directions, and threats to validity. Section 6
concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 Static Analysis Warnings

SCAs can detect various defects in the codebase, e.g., security issues and code smells. The existing AWI studies
[41, 57, 63, 65] denote such defects as static analysis warnings, alerts, alarms, or violations. In our study, such
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defects are simply denoted as warnings. To help developers quickly locate and understand defects, each warning
is generally equipped with category, priority, message, and location. Of these, the location often consists of the
class and method information containing a warning as well as the warning line numbers. As an example, Fig. 2
(1) shows a simplified warning reported by SpotBugs [52].

Based on whether warnings are acted on and fixed by developers, warnings can be divided into actionable
and unactionable ones [41, 57, 63, 65]. An actionable warning, including a true defect or a warning concerned
by SCA users, is acted on and fixed by developers via the warning-related source code changes. Conversely, an
unactionable warning might be a false positive warning due to the inherent problem (i.e., over-approximation) of
SCAs [50], an unimportant warning for SCA users, or just an incorrectly reported warning due to bugs of SCAs
[56, 66]. Thus, an unactionable warning is not acted on or fixed by developers.

Formally, given a set of commits C = {cy, ..., ¢j, ..., ¢, } in a project (c, is the latest commit), a SCA is used to
scan the source code of ¢; and a set of warnings W; = {wj1, ..., Wij, ..., Wim } (m is the number of warnings in c;)
is obtained. If w;; disappears via the warning-related source code change in any commit from c;.; to ¢, w;j is
denoted as an actionable warning. If w;; persists from c;4; to c,, w;; is denoted as an unactionable warning.

2.2 ML-based AWI Approaches

In general, ML-based AWI approaches first extract features from the warning report or the warning-related
source code, learn an AWI classifier from these extracted features of labeled warnings via traditional ML models
or Deep Learning (DL) models, and utilize this classifier to identify unlabeled warnings into actionable and
unactionable ones. Based on the extracted warning features, ML-based AWT approaches can be mainly divided
into hand-engineered, token-based, and text-based approaches [19]. Based on the adopted ML models, ML-based
AWT approaches can be roughly divided into traditional ML-based and DL-based AWI ones [18]. However, an
effective AWI classifier relies extremely on labeled warnings, and there is a limited number of labeled warnings.
As such, the performance of existing ML-based AWI approaches is still restricted.

2.3 Pre-trained Models

PTMs pre-train transformer-based models on large-scale and unlabeled corpora to distill the generic representation
and then employ such a generic representation to handle downstream tasks by fine-tuning a limited number of
labeled samples [24]. According to different PTM architectures, PTMs can be classified into encoder-only, decoder-
only, and encoder-decoder models [62]. The encoder-only model, focusing solely on transforming the input data
into the latent representation, is good at understanding tasks like text/code classification. The decoder-only
model, aiming to decode output sequences from a given representation of the input data, is good at generating
tasks like text/code completion. The encoder-decoder model combines both an encoder and a decoder into a
single architecture, which is capable of handling sequence-to-sequence tasks.

2.4 Related Work

There are two studies [39, 60], which aim to leverage the potential of LLMs (e.g., ChatGPT) for AWI by designing
the proper prompts. However, our study is different from the two studies in three aspects. First, without modifying
the model parameters, the two studies focus on mining the model ability for AWI via prompt engineering. In
contrast, our study explores the feasibility of PTMs in AWI by incorporating pre-training and fine-tuning of
PTMs. In other words, by using pre-training and fine-tuning to adjust the model parameters, our study focuses
on enhancing the model ability for AWI. Second, our study scrutinizes the impact of different data preprocessing
ways and model prediction scenarios on the PTM-based AWI performance, which can provide researchers and
practitioners with a holistic understanding of applying PTMs for AWL. Third, our study analyzes the reasons
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Fig. 1. Overview of our study.

why PTMs incorrectly identify some warning cases, which can help researchers and practitioners provide the
potential research directions (e.g., the PTM-based AWI model improvement) for the future AWI field.

Another work is called DeepInferEnhance [30], which relies on the CodeBERTa architecture to train a new PTM
on unlabeled source code and fine-tune this PTM on a few labeled warnings for AWI. Yet, there are three aspects
distinguishing DeeplInferEnhance from our study. First, DeepInferEnhance discards the original knowledge of
CodeBERTa and retraining a new PTM for AWL. In contrast, our study focuses on fine-tuning the off-the-shelf
PTMs for AWL Such an operation can use the generic knowledge of off-the-shelf PTMs and learn the unique
warning knowledge from the fine-tuning component to enhance AWI. Besides, such an operation can greatly
reduce the PTM-based AWI model construction time and fully explore the impact of PTM characteristics (i.e.,
the fine-tuning component) on AWI. Second, CodeBERTa is inspired by the success of CodeBERT [16], which is
a typical and popular encode-only PTM. In addition to CodeBERT, our study considers the other eight PTMs,
which encompass three typical PTM architectures (i.e., encoder-decoder, encode-only, and decode-only). Such an
operation enables researchers and practitioners to thoroughly explore the impact of various PTM architectures
on AWI. Third, our study relies on the typical PTM-based AWI workflow to systematically investigate the impact
of primary aspects in the data preprocessing, model training, and model prediction stages, thereby helping
researchers and practitioners conduct a thorough exploration of applying various PTMs on AWI.

3 STUDY OVERVIEW
3.1 Typical PTM-based AWI Workflow

In the PTM-based AWI field, given a targeted warning with associated context X = {x, ..., xi }, xx is the k;, code
token in the warning context. Taking X as the input, PTM-based AWTI relies on Pr(X;0) to output a class label
y. The weight 0 is obtained from the transformer that makes up the encoder and decoder. y is a binary value,

ACM Trans. Softw. Eng. Methodol.



6 « Geetal

(1) A simplified warning reported by SpotBugs (5) Predicted result and analysis
<Buglnstance Label: Unactionable warning
type="SQL_PREPARED STATEMENT GENERATED FROM_NONCONSTANT STRING” Root cause: As “query” in
priority="3" rank="15" category="SECURITY"> The warning message line 444 is handled by the

<ShortMessage>...</ShortMessage> <l ongMessage>...</LongMessage> string format in advance, this
<Class classname="org.apache.commons.configuration. AbstractFileConfiguration” primary="false"> warning is indeed
<SourceLine start="88" end="709" sourcefile="AbstractFileConfiguration.java" </SourceLine> unactionable.
</Class> The class information containing the warning
[~ <Method classname="org.apache.commons.conliguration.AbstractFileConfiguration” | ﬁ
name="containsKey" signature="(Ljava/lang/String;)Z” isStatic="false" primary="false"> L.
<SourceLine start="424" end="466"> </SourceLine> Pre-training
</Method> The method information containing the warning Fine-tuning
<SourceLine classname="org.apache.commons.configuration. Abstractk1leConfiguration™ .
primary="false" start="444" end="444" sourcefile="AbstractFileConfiguration.java” > (4) A well-trained
</SourceLine> The warning line number PTM-based
</Buglnstance> AWI classifier
424 public boolean containsKey(String key) 424 public boolean containsKey(String key)
425 { 425 {
429  StringBuilder query = new StringBuilder(“SELECT * 429  StringBuilder stringbuilderVar3 = stringbuilderLiteral4;
FROM ” + table + “ WHERE ” + keyColumn + “=?"); 430  if (nameColumn != null)
430  if (nameColumn != null) 431 |
431 o 432 stringbuilderVar3.append(" AND " + nameColumn + "=2");
432 query.append(“ AND ” + nameColumn + “=?7); 433}
433 e
...... E> 439 ~ try
439  try 4400 {
40 ¢ e
...... 444 preparedstatementVar7 =
444 pstmt = conn.prepareStatement(query.toString()); connectionVar5.prepareStatement(stringbuilderVar3.toString());
451 rs = pstmt.executeQuery(); 451 resultsetVar8 = preparedstatementVar7.executeQuery();
...... 463
463} }
466 } 466 }
(2) The extracted warning context (3) The abstracted warning context

Fig. 2. An example to illustrate our approach.

where y = 0/1 denotes an unactionable/actionable warning respectively. Fig. 1 shows a typical PTM-based AWI
workflow with data preprocessing, model training, and model prediction stages.

Data preprocessing. Given a warning reported by a SCA as input, the processed context of this warning is
returned. According to the existing ML-based AWI studies [30, 33, 34, 38, 54, 64], the data preprocessing stage
mainly involves the warning context extraction and abstraction. The warning context extraction acquires the
warning-inducing source code. The warning context abstraction is to rename some special words (e.g., identifiers
and literals) in the warning context to a pool of predefined code tokens.

The warning context extraction process is shown as follows. Given a warning reported by a SCA, the warning
location can be obtained, including the class/method information containing this warning as well as the warning
line numbers. Naturally, based on the warning location, there are three warning context ways, i.e., the source
code from the class containing a warning ClassContext, the method containing a warning MethodContext, and the
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warning line numbers LineContext. Compared to MethodContext, ClassContext brings too much information that
is irrelevant to the warning, and LineContext is too coarse-grained due to missing the detailed context information
that generates a warning. To this end, our approach considers MethodContext as the warning context. It is noted
that there are other warning context extraction techniques, e.g., the program slicing [19, 59]. Instead of these
techniques, our approach still considers MethodContext as the warning context. The main reasons are shown as
follows. First, a method serves as a natural semantic unit in the source code, which can typically encapsulate
localized behavior. Additionally, many warnings are closely tied to the logic of an individual method in practice
[20]. Second, due to being well-bounded and readily extractable, MethodContext strikes a balance between the
context richness and the extraction efficiency. Third, the existing studies [10, 31, 33] showcase that defects are
generally revealed by analyzing source code in the method scope. It implies that MethodContext is a reasonable
starting point for AWI. Given a warning in Fig. 2(1), the extracted warning context is shown in Fig. 2(2).

The warning context abstraction process is shown as follows. Our approach first tokenizes the MethodContext
via the lexical analysis. Then, by constructing an abstract syntax tree, our approach identifies identifier and
literal types from MethodContext. Finally, our approach replaces each identifier/literalin the stream of tokens
with a distinct number, which denotes the type and role of this identifier/literal in MethodContext. For example,
the source code “int a = 1;” is abstracted into “int intVar1 = intLiterall;”. Based on the above warning context
abstraction, Fig. 2(3) describes the abstracted warning context.

Model training. A PTM-based AWI classifier is first established on the top of the transformer [55] and the
mapping from warning context to warning label is optimized by updating the parameters of the designed classifier.
Similar to the vanilla transformer architecture [55], PTMs often initiate with an encoder stack and a decoder
stack, and culminate with a linear layer equipped with softmax activation. In AWI, taking the processed warning
context as input, PTM first splits the input into words via code tokenization. Second, PTM performs the word
embedding to yield the representation vectors for the tokenized warning context. Third, PTM feeds these vectors
into the encoder and decoder stacks to output a last hidden state. Fourth, PTM adds a classification head for this
last hidden state to obtain the logits. Fifth, PTM employs a linear layer with softmax activation for the obtained
logits to acquire the probability distribution of binary warning labels.

Generally, PTM involves two essential components, i.e., pre-training and fine-tuning [24]. In AWI, the pre-
training component is related to whether a PTM-based AWI classifier is obtained by pre-training over unlabeled
and large-scale codebases. In contrast, the fine-tuning component is related to whether a PTM-based AWI classifier
is obtained by fine-tuning on a limited number of labeled warnings. After the above model training, a well-trained
PTM-based AWI classifier can be obtained in Fig. 2(4).

Model prediction. The well-trained PTM-based AWI classifier is used to classify unlabeled warnings into
actionable and unactionable ones during the model prediction. Based on different project sources between
labeled warnings in‘the model training and unlabeled warnings in the model prediction, there are within- and
cross-project AWI scenarios. When labeled warnings used for the model training and unlabeled warnings used
for the model prediction are from the same project, it is called the within-project AWI scenario. By contrast,
when labeled warnings used for the model training and unlabeled warnings used for the model prediction are
from different projects, it is called the cross-project AWI scenario.

After the model prediction, Fig. 2(5) shows that the given warning in Fig. 2(1) is correctly classified as an
unactionable warning by the well-trained PTM-based AWI classifier. Correspondingly, Fig. 2(5) describes the root
cause of such an unactionable warning. That is, as “query” in line 444 is handled by the string format in advance,
this warning is ignored by the developer and is indeed an unactionable warning.

3.2 Research Questions
Inspired by the typical PTM-based AWI workflow, we investigate the following Research Questions (RQs).

ACM Trans. Softw. Eng. Methodol.
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Table 1. Dataset information. #C. commits, #UW, #AW, #W, #Category, and #type are the number of commits compilabled by
SpotBugs, unactionable warnings, actionable warnings, all warnings, distinct categories, and distinct types respectively.

‘No.‘ Project ‘ Time period ‘ #LoC ‘#Commits‘#C. commits‘#UW‘#AW‘ #W ‘#Category‘#Type‘

1 bcel 2001/10/29 ~ 2023/02/11| 10k+~168k+ 2400 1913 595 | 30 | 625 7 41

2 codec 2003/04/26~2022/11/26 | 5k+~55k+ 2296 1966 595 | 70 | 665 6 31

3 | collections |2001/04/14~2022/11/02 | 1k+~136k+ 3810 1144 642 | 3 | 645 6 29

4 |configuration[2003/12/23 ~ 2022/12/24| 20k+~134k+ 3743 3169 2843 | 62 |2905 10 56

5 dbcp 2001/04/15~2023/02/10 | 8k+~55k+ 2791 638 150 | 15 | 165 9 33

6 digester [2001/05/03 ~ 2023/02/04| 3k+~54k+ 2233 1622 620 | 30 | 650 9 40

7 | fileupload [2002/03/24~ 2022/10/25| 2k+~16k+ 1284 1064 528 | 40 | 568 6 26

8 mavendp | 2006/04/10~2022/10/30 | 5k+~37k+ 1165 748 900 | 18 | 918 7 37

9 net 2002/04/03~2022/11/08 | 50k+~57k+ 2683 1672 687 | 31 | 718 8 50
10 pool 2001/04/15~2023/02/10 | 6k+~34k+ 2656 1638 2106 | 175 | 2281 8 39
[AlLl] / \ / [110k+~746k+] 25061 [ 15574 [9666] 474 [10140] 10 [ 137 ]

RQ1: How is the performance of PTMs on AWI in comparison to the SOTA‘ML-based AWLapproach?
RQ2: How do the data preprocessing ways affect the performance of PTMs on AWI?

e RQ2.1: What is the impact of warning context extraction?
e RQ2.2: What is the impact of warning context abstraction?

RQ3: How do the model training components affect the performance of PTMs on AWI?

e RQ3.1: What is the role of a code-related pre-training component?
e RQ3.2: What is the role of a fine-tuning component?

RQ4: How do the model prediction scenarios affect the performance of PTMs on AWI?
RQ5: What are the reasons for incorrect predictions in the current PTM-based AWI approach?

3.3 Evaluation Metrics

We adopt the following evaluation metrics. These metrics are mainly calculated by the confusion matrix, which
includes True Positive (i.e., the number of actionable warnings accurately predicted as actionable warnings),
False Positive (i.e., the number of unactionable warnings falsely predicted as actionable warnings), True Negative
(i.e., the number of unactionable warnings accurately predicted as unactionable warnings), and False Negative
(i.e., the number of actionable warnings falsely predicted as unactionable warnings). The definitions of selected
evaluation metrics are shown below.

e Precision = % presents that the ratio of correctly predicted actionable warnings over all warnings
predicted as being actionable ones.

® Recall = % describes that the ratio of correctly predicted actionable warnings over all actionable
warnings.

e F1= %‘M, aka F1-Score, is the weighted harmonic mean of precision and recall.

e T_time, aka training time, is the time overhead that trains an AWI classifier. The unit of T_time is the
second(s).

e [_time, aka inference time, is the time overhead that relies on a well-trained classifier to predict the
targeted warnings. The unit of I_time is the second(s).

3.4 Selection of PTMs

We focus on open-source PTMs instead of unreleased PTMs (e.g., Codex [9]). On the one hand, as shown in
Section 3.1, it is a core subtask to investigate the role of the fine-tuning component in the PTM-based AWI
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Table 2. Details of selected PTMs for AWI.

9

] No. \ Model \ Architecture \ No. of parameters \ Organization ‘
1 CodeT5-small [58] Encoder-decoder 60M Salesforce
2 CodeT5-base [58] Encoder-decoder 220M Salesforce
3 CodeT5-large [36] Encoder-decoder 770M Salesforce
4 PLBART [1] Encoder-decoder 140M UCLANLP
5 CodeBERT [16] Encoder-only 125M Microsoft
6 | GraphCodeBERT [22] | Encoder-only 125M Microsoft
7 UnixCoder [21] Encoder-only 125M Microsoft
8 QwenCoder [3] Decoder-only 500M Qwen Team
9 CodeGPT [43] Decoder-only 124M Microsoft

approach. In comparison to unreleased PTMs, open-source PTMs, whose source code is publicly available, can
support the fine-tuning component for AWI On the other hand, unreleased PTMs make it difficult to replicate
and validate the results. In contrast, open-source PTMs facilitate transparency and accessibility, making it easier
to conduct reproducible evaluations.

Table 2 shows nine selected PTMs for AWI. The nine PTMs present the following characteristics. First, each
PTM is well-trained on unlabeled and large-scale codebases because AWI is a code-related task. Second, as
shown in Section 2.3, such PTMs encompass three typical architectures (i.e., encoder-decoder, encoder-only, and
decoder-only models). Third, such PTMs span different numbers of parameters. In particular, CodeT5 contains
multiple versions with different numbers of parameters (i.e., 60M ~ 770M), which helps understand the impact of
the parameter amount on the PTM-based AWI approach. Fourth, such PTMs originate from different authoritative
organizations (e.g., Salesforce and Microsoft). Fifth, such PTMs are publicly accessible from an up-to-now largest
open-source large language model community called Hugging Face [15]. In addition, such PTMs have already
been widely used for software engineering tasks [25]. Due to the limitations of our computing resources (i.e., two
Tesla V100-SXM2 GPUs), we select PTMs with a maximum of 770M parameters.

3.5 Dataset

We adopt two typical warning datasets for the experimental evaluation.

D1. The first dataset is'obtained by using SpotBugs to scan open-source and large-scale Java projects. Based on
the work of Ge et al. [20], we obtain 10140 distinct SpotBugs warnings (i.e., 9666 unactionable and 474 actionable
warnings) from 10 open-source and large-scale Java projects. Specifically, Ge et al. [20] incorporate manual
inspection and verification latency into postprocess labels from an advanced closed-warning heuristic and thereby
acquire credible labels: Based on the 10 projects with 25K+ revisions and 2087K+ SpotBugs warnings, Ge et al.
construct a qualified warning dataset with 11975 distinct warnings. The more warning dataset collection details
can be seen in the work of Ge et al. [20]. Subsequently, based on the warning details provided by Ge et al., we
leverage JGit! to extract the source code from the class/method containing a warning and the warning line
numbers. However, the inherent issues in JGit make it unfeasible to trace and extract the source code of 1835
warnings. Finally, we obtain 10140 distinct warnings for the experimental evaluation. The specific warning dataset
information is shown in Table 1. Noted, SpotBugs involves ten warning categories (e.g., MALOCIOUS_CODE), of
which one contains multiple warning types (e.g., MS_PKGPROTE).

1JGit [27] is a tailored library used for operating Git repositories in Java projects.
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Fig. 3. The distribution of 1904 warnings reported by Infer, CppCheck, and CSA.

D2. The second dataset, containing 1904 warnings, is obtained by using Infer, CppCheck, and CSA to scan
C/C++ projects. Specifically, Wen et al. [60] collect 2643 warnings by using Infer, CppCheck, and CSA to scan 14
real-world C/C++ projects. When we extract the contexts of these warnings for AWI, it is observed that there
are two invalid project links (i.e., “m4” and “TecentOS-tiny”) and a few missing warning locations. In the end,
we gather 1904 warnings with associated contexts for the experimental evaluation. In particular, as the small
number of warnings may cause meaningless results during the experimental process, we conduct experiments by
gathering all warnings reported by three SCAs, rather than separately conducting experiments on the warnings
reported by each SCA. Fig. 3 shows the distribution of the 1904 warnings. It is noted that these warnings involve
six categories, including NULL_ POINTER_DEREFERENCE, UNINITIALIZED_VARIABLE, USE_AFTER_FREE,
DIVIDE_BY_ZERO, MEMORY_LEAK, and BUFFER_OVERFLOW.

3.6 Implementation Details

In the SOTA ML-based AWI approach, we use PyTorch [49] to implement CNN and LSTM for AWI. The architecture
design of CNN and LSTM follows the work of Lee. et al. [38] and Koc et al. [34] respectively. However, due to
different numbers of warnings and different sources of warnings [34, 38] between our study and the existing
studies, we reset the parameters in CNN and LSTM. For CNN; we set the word embedding dimension to 128,
the batch size to 16, the dropout rate to 0.5, and use the SGD optimizer [42] with 0.005 learning rate. For LSTM,
we set the word embedding dimension to 128 and the batch size to 16. In the PTM-based AWI approach, we
use the implementation version in Hugging Face. We set the input sequence length to 256 and use the Adam
optimizer [32] with 5e-5 learning rate. Particularly, due to the limited computing resource in our sever and
different amounts of parameters in PTMs, we separately set the batch size for different PTMs, thereby making
PTMs successfully run on our server. The specific batch size can be seen in the repository [48]. All experiments
are conducted with one Ubuntu 18.04.3 server with two Tesla V100-SXM2 GPUs.

4 RESULTS AND ANALYSIS
4.1 RQ1: Performance of PTM-based AWI

Motivation. This RQ aims to explore the performance of PTM-based AWI in terms of effectiveness and efficiency.
Besides, this RQ investigates the performance differences of nine PTMs on AWL

Design. To answer this RQ, we compare the SOTA ML-based with PTM-based AWI approaches. Based on
the classification of ML-based AWI approaches in Section 2.2, we identify the SOTA ML-based AWI approach.
Specifically, as shown in Section 3.1, the PTM-based AWI approach extracts source code from the method
containing a warning as the warning context, thereby representing warnings for AWI. It indicates that the
PTM-based AWI approach falls under the text-based AWI approach. As such, we consider selecting the SOTA
ML-based AWI approach from the existing text-based AWI approaches. By further investigating the existing
text-based AWI approaches, it is observed that the DL-based AWI approach generally performs better than the
traditional ML-based AWI approach [30, 34, 64]. In the end, we select the text-based and DL-based AWT approach
as the SOTA ML-based AWI approach.
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Table 3. The performance of the DL-based and PTM-based AWI approaches.

Approach No. of D1 (10140 Java warnings from SpotBugs) D2 (1904 C/C++ warnings from Infer, CppCheck, and CSA)| Archi-
parameters|Precision|Recall] F1 [T_time[I_time[[Precision|Recall] F1 [T_time] I_time tecture
CNN / 0.66 0.15 |0.24| 20350 190 0.45 0.36 [0.40| 1800 20 /
LSTM / 0.54 0.25 |0.34| 22580 230 0.45 0.35 [0.40| 2080 25 /
CodeT5-small 60M 0.50 0.28 [0.36| 4500 70 0.65 0.41 (0.50| 400 10
CodeT5-base 220M 0.60 0.33 10.43| 19600 250 1.00 0.21 [0.35] 630 20 Encoder-
CodeT5-large 770M 0.65 0.34 |0.44| 84500 715 0.45 0.36 [0.40| 2290 30 decoder
PLBART 140M 0.59 0.36 |0.45| 23950 285 0.71 0.36 (0.48| 1090 15
CodeBERT 125M 0.62 0.32 |0.42| 14500 385 0.43 0.34 (0.40| 465 5 Encoder
GraphCodeBERT 125M 0.59 0.37 |0.45| 7500 150 1.00 0.21 [0.35| 450 5 —onl
UnixCoder 125M 054 | 035 |0.42] 16000 | 250 078 | 0.50 [0.61] 450 5 ony
QwenCoder 500M 0.65 0.29 10.40| 30950 250 0.23 0.50 [0.32| 1440 15 Decoder
CodeGPT 124M 0.58 0.34 |0.43| 8000 90 0.60 0.50 [0.55| 650 5 -only

By following previous text-based and DL-based AWT studies [33, 34, 38, 54, 64], we extract source code from
the method containing a warning as the warning context, abstract identifiers and literals in the extracted warning
context, and use the DL model to train a classifier for AWI on the abstracted warning context. Of these, the
detailed warning context abstraction process can be seen in Section 3.1. In‘addition, we attempt CNN and LSTM
for AWI because the results of previous studies [34, 38, 54, 64] demonstrate the superior performance of CNN
and LSTM on AWL

To perform a fair comparison, we perform the same warning context extraction and abstraction with the SOTA
ML-based AWTI approach. Subsequently, we use the code-related pre-training and fine-tuning components to
construct an AWI classifier based on the obtained warning context.

In all, this RQ involves 22 experiments (11 approaches * two datasets). In each experiment, we conduct the
five-fold cross-validation [5].

Results. In terms of effectiveness on D1, Table 3 shows that CNN achieves a precision of 0.66, which slightly
outperforms nine PTMs by 0.01 ~ 0.16. However, the precision of PTMs, except for CodeT5-small and UnixCoder,
exceeds that of LSTM. Also, it is observed that the recall and F1 of PTMs are consistently and greatly better than
those of CNN and LSTM. On average, the precision, recall, and F1 of the SOTA ML-based AWTI approach are 0.60,
0.20, and 0.29 respectively. The precision, recall, and F1 of the PTM-based AWI approach are 0.59, 0.33, and 0.42
respectively. That is, the average precision of the PTM-based AWTI approach is nearly 2% worse than that of the
SOTA ML-based AWTI approach. In contrast, the average recall and F1 of the PTM-based AWI approach are 65%
and 45% better than those of the SOTA ML-based AWI approach respectively. Further, the Mann-Whitney U-Test
[46] shows no significant difference between the PTM-based and SOTA ML-based AWI approaches in terms
of precision. Conversely, there are significant differences between the PTM-based and SOTA ML-based AWI
approaches in terms of recall and F1. Such results indicate that the PTM-based AWTI approach can substantially
improve the recall and F1 of the SOTA ML-based AWI approach, while still maintaining similar precision to the
SOTA ML-based AWI approach.

In terms of effectiveness on D2, Table 3 shows that nine PTMs outperform CNN and LSTM on AWT in most
cases. On average, the precision, recall, and F1 of the PTM-based AWI approach are 0.65, 0.38, and 0.44 respectively.
In contrast, the precision, recall, and F1 of the SOTA ML-based AWI approach are 0.45, 0.36, and 0.4 respectively.
The Mann-Whitney U-Test [46] shows no significant difference between the PTM-based and SOTA ML-based AWI
approaches in terms of precision, recall, and F1. However, the average precision, recall, and F1 of the PTM-based
AWT approach are consistently better than those of the SOTA ML-based AWI approach.

The above results on D1 and D2 indicate that the overall effectiveness of the PTM-based AWI approach is
superior to the SOTA ML-based AWI approaches. By further investigation, there are two possible factors for
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the improvement of PTMs over DL models on AWI. On the one hand, PTMs leverage extensive codebases to
yield more significant vector representations. By contrast, CNN and LSTM are trained on a limited number of
warnings. On the other hand, PTMs employ the transformer architecture, which can provide the context for any
position in a given input sequence via the self-attention mechanism. However, CNN and LSTM cannot capture
the relative position information in the warning context due to a lack of the transformer architecture.

In terms of efficiency, Table 3 shows a similar trend on D1 and D2. Specifically, the training time of the PTM-
based AWI approach is different from that of the SOTA ML-based AWI approach. However, the Mann-Whitney
U-Test [46] shows no significant difference between the PTM-based and SOTA ML-based AWI approaches in terms
of training time. In particular, CodeT5-small achieves the optimal training time, which substantially outperforms
CNN and LSTM. The main reason is that instead of CNN and LSTM training new network models from scratch
for AWI, CodeT5-small with a small number of parameters (i.e., 60M) is only fine-tuned for AWL In contrast,
CodeT5-large has the longest training time, which is much slower than CNN and LSTM. Even though CodeT5-
large is only fine-tuned for AWI in comparison to CNN and LSTM, CodeT5-large has the maximum number of
parameters (i.e., 770M), which takes up a lot of the training time. In contrast, there is a slight difference in the
inference time between the PTM-based and SOTA ML-based AWI approach. This may be caused by different
numbers of parameters and different network structures in DL models and PTMs. However, the Mann-Whitney
U-Test [46] shows no significant difference between the PTM-based and SOTA ML-based AWI approaches in
terms of inference time.

With regardless of D1 and D2, it is noticed that nine PTMs on AWTI have differences in terms of precision, recall,
F1, training time, and inference time. Such differences may be caused by corpora with different codebase scales
and datapoints, different numbers of parameters, and different network architectures among PTMs. Furthermore,
we analyze the effectiveness and efficiency differences of AWI among three categories of PTM architectures.
Specifically, we calculate the AWI performance in the same PTM architecture respectively. For example, the
precision of the decoder-only-based AWI is the average precision of QwenCoder and CodeGPT. Among PTMs
with three architectures, the AWI performance differences in the precision, recall, and F1 are only 0.01 ~ 0.02
on D1 respectively. On D2, the precision,recall, and F1 in the encoder-decoder-based and encoder-only-based
AWT are very close. In contrast, the precision/recall of the decoder-only-based AWI is worse/better than those
of the encoder-decoder-based and encoder-only-based PTMs respectively. Consequently, the F1 of the decoder-
only-based AWI is similar to that of the encoder-decoder-based and encoder-only-based PTMs. It is observed
that there is an inconsistent result between DI and D2. Such a phenomenon could be caused by various warning
categories in D1 and D2, which are brought by different programming language characteristics and different
static analysis techniques in SCAs. On D1/D2, the difference in the training time is over 10000s/1000s, while
the difference in the inference time is within 60s/5s respectively. Noted, due to different number of warning
datasets, the training and inference time on D1 and D2 are far apart. In particular, it is observed on D1 and D2 that
CodeT5-small/CodeT5-large with the smallest/largest number of parameters in the encoder-decoder architecture
takes the minimum/maximum training and inference time among nine PTMs. Further investigation reveal that
the difference in the training and inference time is mainly attributed to the number of parameters in PTMs. The
above results indicate that different PTM architectures have a slight impact on the AWI effectiveness, and the
impact of different PTM architectures on the AWI efficiency mainly depends on the number of parameters in
specific PTMs.

Answering RQ1: Overall, the PTM-based AWI approach can substantially outperform the SOTA ML-based
AWT approach in terms of precision, recall, and F1. In addition, the PTM-based AWI approach has similar
training and inference time to the SOTA ML-based AWI approach.
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Fig. 4. The performance of the PTM-based AWI approach.in two warning context extraction settings based on D1 (i.e., 10140
Java warnings from SpotBugs). Average is the average results of nine PTMs on AWI.

4.2 RQ2: Analysis in the Data Preprocessing

Motivation. Based on the typical PTM-based AWI workflow in Section 3.1, the data preprocessing contains
the warning context extraction and abstraction. The warning context can help analyze the cause of a warning.
Previous studies [33, 38, 54] show that the warning context plays a crucial role in AWI. The warning context
abstraction is to rename raw code tokens to a set of predefined tokens, thereby reducing the number of code
tokens in the warning context. The existing studies explicitly demonstrate that the abstracted warning context is
beneficial for AWI [34, 64] compared to the raw warning context. However, the impact of both warning context
extraction and abstraction on the PTM-based AWI approach has not yet been fully investigated. Thus, this RQ
explores the performance of the PTM-based AWI approach in different data preprocessing ways.

4.2.1 RQ2.1: The impact of warning context extraction.

Design. To answer this RQ, we compare the performance difference of the PTM-based AWI approach with and
without warning contexts. As for each warning, we extract the source code from the warning line numbers,
which is called without the warning context. By contrast, as described in Section 3.1, we extract source code from
the method containing a warning, which is called with the warning context. It is noted that not all warnings,
especially for warnings related to class fields, are reported inside methods. Thus, the contexts of these warnings
are the same between with and without warning context scenarios. Yet, the warnings outside methods only
account for a very small proportion of all warnings.
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Fig. 5. The performance of the PTM-based AWI approach.in two warning context extraction settings based on D2 (i.e., 1904
C/C++ warnings from Infer, CppCheck, and CSA). Average is the average results of nine PTMs on AWI.

In all, this RQ involves 36 experiments (nine PTMs * two extraction settings * two datasets). In each experiment,
we conduct the five-fold cross-validation.

Results. In terms of D1, Fig. 4 describes that in comparison to the scenario without the warning context, nine
PTMs (except for CodeT5-small and CodeT5-large) show higher precision, recall, and F1 when using the warning
context for AWL In particular, CodeT5-small and CodeT5-large without the warning context demonstrate higher
precision, recall, and F1 than those with the warning context respectively. Such a phenomenon is opposite on
CodeT5-base. This suggests that PTMs with larger parameters do not necessarily lead to better AWI effectiveness
in the scenario with/without the warning context. On average, the PTM-based AWI approach with the warning
context is 2%, 6%, and:5% better than that without the warning context.

In terms of D2, Fig. 5 shows that compared to the scenario without the warning context, nine PTMs show higher
precision, recall, and F1 in most cases when using the warning context for AWL On average, the PTM-based AWI
approach with the warning context is 129%, 20%, and 129% better than that without the warning context. It is
noted that the precision, recall, or F1 of a few PTMs (e.g., CodeT5-small) is 0 in the scenario without the warning
context. In contrast, PTMs obtain non-zero precision, recall, and F1 in the scenario with the warning context. It
further demonstrates that the PTM-based AWI approach with the warning context is helpful for AWL

Overall, the above results highlight the benefits of the warning context for the PTM-based AWI approach.
Without the warning context, the source code extracted from the warning line numbers could only denote the
appearance of warnings. With the warning context, in addition to involving the source code extracted from the
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Fig. 6. The performance of the PTM-based AWI approach in'two warning context abstraction settings based on D1 (i.e., 10140
Java warnings from SpotBugs). Average is the average results of nine PTMs.

warning line numbers, the source code extracted from the method containing a warning could embrace the root
cause of a warning, which can greatly bolster the PTM-based AWI effectiveness.

As shown in Fig. 4 and Fig. 5, the training time and inference time are mostly similar on the same PTM with
and without the warning contexts. It indicates that the scenarios with and without warning contexts have little
impact on the training and inference time of PTM-based AWI on DI and D2. Also, it is observed that on DI and
D2, regardless of the presence or absence of warning context, the training and inference stages of CodeT5-large
take the most time among nine PTMs. This could be because CodeT5-large has the most parameters (i.e., up to
770M) among nine PTMs.

4.2.2  RQ2.2: The impact of warning context abstraction.

Design. To answer this RQ, we compare the performance difference of the PTM-based AWI approach between
the raw and abstracted warning contexts. In terms of the raw warning context, we directly extract the source
code from the method containing a warning. In terms of the abstracted warning context, we abstract the source
code from the method containing a warning.

In all, this RQ involves 36 experiments (nine PTMs * two abstraction settings * two datasets). In each experiment,
we conduct the five-fold cross-validation.

Results. In terms of D1, Fig. 6 shows that in comparison to the raw warning context, nine PTMs (except
for CodeT5-base) basically improve the precision of AWT but reduce the recall and F1 of AWI when using the
abstracted warning context for AWI. On average, the PTM-based AWI approach with the abstracted warning
context has 7% better precision than that in the raw warning context, while having 3% worse recall than that
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Fig. 7. The performance of the PTM-based AWI approach in'two warning context abstraction settings based on D2 (i.e., 1904
C/C++ warnings from Infer, CppCheck, and CSA). Average is the average results of nine PTMs.

in the raw warning context. Consequently, there is a very close F1 between the abstracted and raw warning
contexts. Overall, it indicates that the abstracted warning context is more beneficial for precision but harmful to
recall in the PTM-based AWl approach compared to the raw warning context.

In terms of D2, Fig. 7 shows that compared to the raw warning context, PTMs improve the precision, recall, and
F1 of AWT in most cases when using the abstracted warning context for AWIL. On average, the PTM-based AWI
approach with the abstracted warning context has 2%, 21%, and 11% better precision, recall, and F1 than those in
the raw warning context respectively. Overall, it implies that the abstracted warning context can enhance the
PTM-based AWI approach.

Based on the above results, it is observed that the impact of the abstracted and raw warning contexts on
the PTM-based AWI approach between D1 and D2 is inconsistent in terms of recall and F1. The main reason
is shown as follows. Specifically, D1 are obtained by using SpotBugs to scan Java projects. D2 are obtained by
using Infer, CppCheck, and CSA to scan C/C++ projects. Due to different programming language characteristics
between Java and C/C++ as well as different static analysis techniques in SCAs, the collected warnings have
various categories on DI and D2. As shown in Section 3.5, the warning category on D2 is mainly security-
related. In addition to the security-related category, DI contains other warning categories (e.g., BAD_PRACTICE).
Besides, the typical warning category (i.e., BUFFER OVERFLOW) is unique to C/C++. Instead of causing BUFFER
OVERFLOW, Java language provides bounds checking at runtime, which generally throws exceptions (e.g.,
ArrayIndexOutOfBoundsException). Therefore, the different warning categories on D1 and D2 may yield varying
conclusions when using the abstracted and raw warning contexts for PTM-based AWL
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As described in Fig. 6 and Fig. 7, in the same PTM, the training and inference time are basically similar between
the abstracted and raw warning contexts on DI and D2. It indicates that the raw or abstracted warning contexts
have little impact on the training and inference time of the PTM-based AWTI approach. Also, it is observed that
regardless of the abstracted and raw warning contexts, the training and inference time of CodeT5-large are the
slowest among nine PTMs on D1 and D2. This could be caused by CodeT5-large with the most parameters (i.e.,
up to 770M) among nine PTMs.

Answering RQ2: The extracted warning context can consistently boost the PTM-based AWI approach on
Java and C/C++ warnings. The abstracted warning context can improve the precision but slightly hinder the
recall of the PTM-based AWI approach on Java warnings, while increasing the precision and recall of the
PTM-based AWI approach. In addition, the different warning context extraction/abstraction ways have little
impact on the training and inference time of the PTM-based approach.

4.3 RQ3: Analysis in the Model Training

Motivation. The results in RQ1 show that the PTM-based AWI approach outperforms the SOTA ML-based AWI
approach. The SOTA ML-based AWI approach is trained in a traditional pipeline, i.e., supervised learning on
labeled warnings. In contrast, the PTM-based AWI approach involves two components in the model training,
including a pre-training component for a general task with self-supervised learning on unlabeled and large-scale
codebases and a fine-tuning component for a downstream task with supervised learning on labeled warnings.
Thus, this RQ separately investigates the role of the code-related pre-training and fine-tuning components when
using PTMs for AWL

4.3.1 RQ3.1: The role of a code-related pre-training component.

Design. Based on the classification of PTM architectures in Section 2.3, we select four models (i.e., the encoder-
decoder T5, the encoder-only BERT, and the decoder-only Qwen/GPT) as baselines without a code-related
pre-training component. Correspondingly, we select CodeT5 family/CodeBERT/QwenCoder/CodeGPT, which are
obtained by pre-training T5/BERT/Qwen/GPT on massive codebases respectively, as PTMs with a code-related
pre-training component. Section 4.2 shows that the PTM-based AWI approach with the abstracted warning
context achieves comparable performance on D1 and D2. Thus, we select the abstracted warning context for the
experimental evaluation in this RQ.

In all, there are 20 experiments (i.e., five PTMs * two pre-training settings * two datasets). In each experiment,
we conduct the five-fold cross-validation.

Results. As shown in Table 4, as for the encoder-decoder PTM on DI and D2, the recall and F1 of the
CodeT5 family consistently outperform those of T5. In contrast, the precision of the CodeT5 family is sometimes
slightly worse than that of T5. In particular, as the number of parameters in the CodeT5 family increases, the
improvement degree on T5 is greater in terms of D1. However, such a phenomenon is not reflected on D2.
As for the encoder-only and decoder-only PTMs on D1, the precision of CodeBERT/QwenCoder/CodeGPT
exceeds that of BERT/Qwen/GPT, while the recall of CodeBERT/QwenCoder/CodeGPT does not exceed that
of BERT/Qwen/GPT. As for the encoder-only and decoder-only PTMs on D2, the precision, recall, and F1 of
CodeBERT/QwenCoder/CodeGPT consistently exceed those of BERT/Qwen/GPT. It can be observed that the
results on DI and D2 are different. By further analysis, the possible reason can be attributed to various warning
categories between D1 and D2, which are caused by different programming language characteristics and different
static analysis techniques in SCAs. Overall, in terms of precision, recall, and F1, the PTM-based AWI approach
with a code-related pre-training component improves that without a code-related pre-training component by 9%
(2%), 3% (39%), and 5% (50%) on D1 (D2) respectively. It signifies that the code-related pre-training component
can provide benefits for PTM-based AWL
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Table 4. Performance of the PTM-based AWI approach with/without a code-related pre-training component.

Encoder-decoder Encoder-only Decoder-only
Metric | T5 | CodeT5- | CodeT5- | CodeT5- ||BERT |CodeBERT | Qwen|QwenCoder|GPT | CodeGPT
small base large
D1 (10140 Java warnings from SpotBugs)
Precision| 0.52 0.50 0.60 0.65 0.60 0.62 0.56 0.65 0.51 0.58
Recall 0.25 0.28 0.33 0.34 0.34 0.32 0.29 0.29 0.36 0.34
F1 0.34 0.36 0.43 0.44 0.43 0.42 0.38 0.40 0.42 0.43
T_time |15120 4500 19600 84500 8500 14500 30500 30950 8000 8000
I _time 185 70 250 715 85 385 260 250 100 90
D2 (1904 C/C++ warnings from Infer, CppCheck, and CSA)
Precision| 1.00 0.65 1.00 0.45 0.40 0.43 0.21 0.23 0.58 0.60
Recall 0.07 0.41 0.21 0.36 0.36 0.34 0.50 0.50 0.21 0.50
F1 0.13 0.50 0.35 0.40 0.38 0.40 0.30 0.32 0.31 0.55
T _time | 730 400 630 2290 285 465 1275 1440 600 650
I_time 10 10 20 30 5 5 15 15 10 5

Table 4 shows a similar trend of training and inference time on DI and D2. Specifically, as for the encoder-
decoder PTM, the training and inference time of CodeT5-small are much faster than those of T5. Although
CodeT5-small is obtained by training T5 on codebases, the number of parameters in CodeT5-small (i.e., 60M)
is obviously smaller than that in T5 (i.e., 220M). Thus, the efficiency of CodeT5-small is better than that of T5
in AWI However, the training and inference time of CodeT5-base are similar to those of T5. The training and
inference time of CodeT5-large are slower than those of T5. The main reasons are shown as follows. Due to
the same number of parameters between CodeT5-base and T5, the time difference between CodeT5-base and
T5 is very close. In contrast, the time difference between CodeT5-large and T5 could stem from the significant
difference in the number of parameters. As for the encoder-only PTM, BERT runs faster than CodeBERT in terms
of training and inference time. This is because the number of parameters in BERT (i.e., 110M) is smaller than
that in CodeBERT (i.e., 125M). As for the decoder-only PTM, Qwen/GPT has similar training and inference time
to QwenCoder/CodeGPT. This is because the number of parameters in Qwen(i.e., 500M)/GPT(i.e., 124M) and
QwenCoder/CodeGPT is the same. The above results indicate that the efficiency of PTMs on AWI could not
depend on the code-related pre-training component, but be related to the number of parameters in PTMs.

4.3.2 RQ3.2: The role of afine-tuning component.

Design. To answer this RQ, we first rely on five-fold cross-validation to split all warnings of D1and D2 respectively.
Then, we randomly select one-fold warnings as the test set and the remaining four-fold warnings as the training
set. In the training set, we consider zero-fold, one-fold, two-fold, three-fold, and four-fold warnings as the
fine-tuning corpora. It indicates that there are five fine-tuning corpora (i.e., 0%, 25%, 50%, 75%, and 100% warnings
of the training set). Next, we train the PTM-based AWI classifier on each fine-tuning corpus and evaluate this
classifier on the test set. Similar to Section 4.3.1, we select the abstracted warning context for the experimental
evaluation in this RQ.

In all, there are 90 experiments (five fine-tuning corpora * nine PTMs * two datasets). The existing studies
showcase a determinate observation, i.e., more fine-tuning corpora generally lead to longer training time in a
fixed PTM [14]. In contrast, as the inference process relies on a fixed PTM and the same test set, the inference
time remains stable [53]. Thus, in this RQ, we only focus on the effectiveness evaluation of the PTM-based AWI
approach via precision, recall, and F1.

Results. As shown in Fig. 8 and Fig. 9, there is a similar trend on D1 and D2. Specifically, when the percentage
of fine-tuning corpora in the training set increases from 0%~25%, the precision and F1 of nine PTMs on AWI are
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Fig. 8. The performance of the PTM-based AWI approach in different fine-tuning corpora of D7 (i.e., 10140 Java warnings
from SpotBugs).
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Fig. 9. The performance of the PTM-based AWI approach in different fine-tuning corpora of D2 (i.e., 1904 C/C++ warnings
from Infer, CppCheck, and CSA).

obviously rising. Meanwhile, the recall of nine PTMs on AWI is sharply declined. When the fine-tuning corpora
increase from 25% to 100% of the training set, the PTM-based AWI approach maintains a steadily increasing
precision, while keeping a slowly rising recall. The further analysis of the above phenomenon is shown as follows.
First, it is observed that nine PTMs with no fine-tuning corpora show inferior precision and F1 as well as superior
recall. Despite acquiring valuable knowledge from the code-related pre-training component, these PTMs could
not adapt to the downstream task (i.e., AWI) without a fine-tuning process. The possible reason may be that PTMs
primarily capture the syntactic and semantic structures of codebases rather than learning the task-specific decision
classification boundary before fine-tuning. Also, the classification head of PTMs is randomly assigned weights
without a fine-tuning process, which may cause the output results to be biased towards actionable warnings [7].
Second, with a small amount of fine-tuning corpora, PTMs begin to learn the discriminative characteristics of
actionable and unactionable warnings. It leads to a significant increase in precision and a rapid reduction in recall.
However, due to the limited scope of the fine-tuning corpora, PTMs have not yet formed a stable boundary and
become ambiguous on certain targeted warnings. Third, as the size of the fine-tuning corpora increases, PTMs are
exposed to more diverse and representative characteristics of both actionable and unactionable warnings, thereby
incrementally refining the decision boundary. Thus, the precision of the PTM-based AWI approach is improved
steadily, while the recall of the PTM-based AWI approach exhibits a mild upward slope. Correspondingly, the F1
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Table 5. Within- and cross-project AWI scenarios.

] AWI scenario \ Training set \ Test set ‘
Within- Within1 All warnings in nine projects and 50% of | Remaining
project warnings in the tenth project 50% of

Within2 50% of warnings in the tenth project warnings in
Cross- Cross1 All warnings in nine projects the tenth
project Cross2 N/A project

of the PTM-based AWI approach shows a steadily upward trend. Particularly, when the fine-tuning corpora are
all the training set, the AWI effectiveness still has no downward trend. Such a finding further underscores the
advantages of the fine-tuning component in the PTM-based AWI approach, which can enable PTMs to acquire
task-specific expertise and maximize the utilization of the knowledge gained from the pre-training component.

Answering RQ3: The code-related pre-training component can acquire generic knowledge from codebases
to further enhance the overall effectiveness of the PTM-based AWI approach, while independent of the
efficiency of the PTM-based AWI approach. The fine-tuning component can boost the overall effectiveness
of PTMs on AWL

4.4 RQ4: Analysis in the Model Prediction

Motivation. The typical PTM-based AWI workflow in Section 3.1 shows that the model prediction involves two
scenarios, i.e., within- and cross-project AWI. However, little work explores how PTMs perform within- and
cross-project AWI scenarios, which fails to understand the performance of PTMs in different model prediction
scenarios. Thus, this RQ aims to bridge the above gap.

Design. To answer this RQ, we first use stratified sampling to take 50% of warnings as the training set and take
the remaining 50% of warnings as the test set in each project of DI. Due to the class imbalance in all warnings of
each project, we adopt stratified sampling rather than random sampling, so as to ensure that each respective
set contains actionable warnings. Noted, as the number of D2 is much smaller than that of D1 and there is class
imbalance in D2, the preliminary experimental results show that there are meaningless values on D2. Thus,
we only conduct experiments on D1. After that, we design within- and cross-project AWI scenarios, which
are shown in Table 5. There are two variants in the within- and cross-project AWI scenarios respectively. The
difference between Within1 (Cross1) and Within2 (Cross2) is whether the training set contains warnings from
the remaining nine projects when taking 50% of warnings in a project as the test set. Besides, to conduct a fair
comparison between within- and cross-project AWI scenarios, the test set is the same in four variants. Such a
rigorous design aims to further investigate whether the number of training set affects the performance of PTMs
in within- and cross-project AWI scenarios. Similar to Section 4.3.1, we select the abstracted warning context for
the experimental evaluation in this RQ. In all, there are 360 experiments (four variants * 10 projects * nine PTMs).

Results. As shown in Fig. 10, the median precision of Cross1 is mostly superior to that of the other three
scenarios. However, the median precision of Cross1 exhibits a more dispersed distribution than that of the other
three scenarios. It indicates that without the training set, the stability of the median precision in Cross1 performs
worse than that in the other three scenarios. Different from the above phenomenon, the median recall and F1
of PTMs in the within-project AWI scenario are mostly higher than those in the cross-project AWI scenario.
Overall, PTMs in the within-project AWI scenario perform better than those in the cross-project AWI scenario.
The main reason could be that the training and test sets tend to be homogeneous in the within-project AWI
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Fig. 10. The performance of the PTM-based AWI approach in within-project and cross-project AWI scenarios.

scenario due to partially coming from the same project. Conversely, the training and test sets are heterogeneous
in the cross-project AWI scenario due to coming from different projects.

In addition, it is observed that in nine PTMs, the median precision, recall, and F1 of Within1 are around 0.6,
0.2, and 0.3 respectively. Overall, such a result outperforms Within2. It indicates that it is helpful to boost the
PTM-based AWI performance by increasing the number of training set in the within-project scenario. In contrast,
the median values of precision; recall, and F1 in Cross1 are mostly worse than those in Cross2. It implies that the
AWI-related expertise of PTMs gained by fine-tuning the training set does not work in the cross-project AWI
scenario, and the warning dataset heterogeneity could be the main factor causing the effectiveness difference
between Cross1 and Cross2.

As shown in Fig. 10, the training and inference time of four scenarios are very similar when using the same
PTM for AWL In particular, as CodeT5-large has the largest number of parameters in nine PTMs, the training
and inference time of CodeT5-large is the slowest in nine PTMs. Additionally, it is noted that the training time of
Cross2 is nearly zero. It is because there is no training set for Cross2. Through further analysis, the training and
inference time are primarily related to the number of parameters in PTMs. The above result signifies that the
efficiency of the PTM-based AWI is independent of different model prediction scenarios.

Answering RQ4: Overall, the PTM-based AWI approach in the within-project AWI scenario is more effective
than that in the cross-project AWI scenario. However, when the same PTM is used for AW, there is the very
similar efficiency between within-project and cross-project AWI scenarios.
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4.5 RQ5: Further Analysis of Incorrect Predictions in PTM-based AWI

Motivation. Despite showing superior performance compared to the SOTA ML-based AWTI approach in Section
4.1, nine PTMs for AWI only achieve a total of precision, recall, and F1 of 70%, 59%, and 64% on D1 (i.e., 10140 Java
warnings from SpotBugs) respectively. Correspondingly, nine PTMs for AWI only achieve a total of precision,
recall, and F1 of 100%, 55%, and 71% on D2 (i.e., 1904 C/C++ warnings from Infer, CppCheck, and CSA) respectively.
It indicates that the PTM-based AWI approach still has substantial room for improvement. Thus, this RQ analyzes
the underperformance of current PTMs on AWL

Design. Based on the five-fold cross-validation results of PTMs on AWTI in Section 4.1, we randomly record
the predicted labels of nine PTMs in the one-fold test set of D1 (i.e., 2028 warnings) and D2 (i.e., 380 warnings)
respectively. Then we compare ground truth and predicted labels to confirm which warnings are wrongly classified
by PTMs. Finally, we analyze the reasons why PTMs fail to classify warnings.

Results. By gathering all correctly classified warnings from nine PTMs, the final precision, recall, and F1 are 70%,
59%, and 64% on D1 respectively. Correspondingly, the final precision, recall, and F1 are 100%, 55%, and 71% on D2
respectively. Specifically, in terms of D1, the further statistics show that the 1974 warnings were correctly identified
by nine PTMs. Of these, 1906 warnings are predicted correctly by nine PTMs at the same time, and 14 warnings
are predicted correctly by at least one PTM. Also, it is observed that 54 warnings are not correctly predicted
by any of the nine PTMs. In the 54 warnings, 11, 13, 6, 5, 9, 5, 2, and 3 warnings fall into MALICIOUS_CODE,
DODGY_CODE, BAD_PRACTICE, CORRECTNESS, PERFORMANCE, I18N, MULTITHREADED, CORRECTNESS,
and SECURITY respectively. In terms of D2, 370 warnings were correctly identified by nine PTMs. Of these, 351
warnings are predicted correctly by nine PTMs at the same time, and 10 warnings are predicted correctly by at
least one PTM. Also, it is observed that three warnings are not correctly predicted by any of the nine PTMs. In the
three warnings, one and two warnings are involved in NULL_POINTER. DEREFERENCE and MEMORY_LEAK
respectively. The results indicate that the three warnings are actually actionable ones but are falsely identified as
unactionable ones by nine PTMs. After that, we summarize reasons why PTMs wrongly identify the 57 (i.e., 54 +
3) warnings via the rigorous manual analysis.

(1) Similar or even the same contexts in actionable and unactionable warnings. This reason involves 19
warnings. It is observed that warnings in the same category (especially for BAD_PRACTICE, DODGY_CODE,
and I18N) tend to have similar contexts. In these warnings, only a tiny part of warnings are acted on and fixed
by developers. In contrast, most warnings are ignored by developers due to generally not affecting the functional
correctness of the program. In addition, multiple warnings may appear in the same method, where some are
actionable and others are unactionable. However, based on the warning context extraction of our study, warnings
in the same method have the same warning context. Thus, the above phenomena may cause PTMs to give
ambiguous warning labels.

(2) Insufficient or unavailable warning contexts. 33 warnings are related to this reason. It is found that
PTMs perform poorly on AWI when warning contexts are insufficient or unavailable. Such a phenomenon is
mainly reflected in the following aspects. First, some warnings are from the methods with a single statement,
especially for a getter method that often returns a class field. The contexts of these warnings fail to offer insights
into the potential information that a class field might contain. There is a specific example in Case 1 of Fig. 11.
Second, some warnings are related to the interprocedural method calls. Thus, it could not be enough to only
extract the source code from the method containing a warning as the warning context in our study. In particular,
three wrongly identified warnings on D2 are attributed to the second aspect. Third, some warnings fall into the
methods with an interface type. The contexts of these warnings cannot be determined when the program is not
executed. Fourth, some warnings involve the declaration or initialization of the class fields. Since such fields are
often outside a method, the contexts of these warnings are usually unavailable in our study. Case 2 of Figure 11
shows an illustrative example for the fourth aspect.
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71 public RefinedSoundex(char[] mapping) { Warning info: This warning is an actionable warning with |
72 this.soundexMapping = mapping; // reported by SpotBugs |EI_EXPOSE_REP2 in MALICIOUS_CODE from
173 3 981¢0002d5accb9ebc056b7a34025fd814c4el 7f of
i - - _ “codec”. Correspondingly, this warning is fixed in
=72 thl'S-SOUHdGXMaPm% = mapping; ' ¢b63f4a959¢30de6882b20af10d189c7307a6da2 of “codec”. !
i|+73 this.soundexMapping = new char[mapping length]; Root cause: The context of this warning is lines 71~73 based:
{|+74 System.arraycopy(mapping, 0, this.soundexMapping, 0, |6 the current warning context extraction way. However, due!
; mapping.length);

to the insufficient warning context this warning is finally !

' Case 1 wrongly identified to be unactionable by nine PTMs. ‘
i Case 2 Warning info: This is an actionable warning with
1 247 @Deprecated MS _PKGPROTECT in MALICIOUS CODE is from :
| 248 public static final String[] ACCESS NAMES = { 02f53edfabec7fa339c8c9273183669d7f5928c9 of “codec”. |
// reported by SpotBugs Correspondingly, this warning is fixed in
1252 ... 04c041211cdcl02ec44ca098a7e7ddfee27al0ces of “codec”.
¥ Root cause: The context of this warning is only line 248
based on the current warning context extraction way. Due to :
i -248 public static final String[] ACCESS_NAMES = { the unavailable warning context, this warning is finally
i+245 private static final String[] ACCESS_NAMES = { wrongly identified to be unactionable by nine PTMs

Fig. 11. Cases that are wrongly identified by PTMs.

(3) Imbalanced warning dataset. Five warnings fall into this reason: To avoid the accidental error during
the experimental evaluation, five-fold cross-validation is adopted. That is, all warning dataset is split into five
equal folds, where four-fold warnings are the training set and the remaining one-fold warnings are the test
set. Our study fine-tunes PTMs on the training set and uses the fine-tuned PTMs for the test set. However, it is
observed that different warning categories have extremely imbalanced distribution in the number of actionable
and unactionable warnings. For instance, the DODGY_CODE category involves 3330 warnings, where 86 ones are
actionable and 3244 ones are unactionable. In contrast, there are 76 unactionable warnings and only one actionable
warning in the EXPERIMENTAL category. It indicates that even with five-fold cross-validation, there is always a
lack of actionable warnings related to EXPERIMENTAL in the training or test sets. The above phenomenon may
make PTMs learn a biased AWI classifier, which could not work well in the test set [35].

Answering RQ5: PTMs underperform on AWI when facing non-distinct or missing warning contexts and
imbalanced warning dataset.

5 DISCUSSION
5.1 Practical Application

To ensure the generalization of findings in Section 4, we quantitatively conduct the extensive experimental
evaluation on different SCAs (i.e., SpotBugs, Infer, CppCheck, and CSA) and programming languages (i.e., Java, C,
and C++). To further discuss the practical application of findings in Section 4, we perform a rigorously qualitative
analysis, i.e., discussing how the PTM-based AWTI approach in our study is applied to other SCAs and projects
with other programming languages.

Specifically, without modifying SCAs themselves, the PTM-based AWI approach focuses on postprocessing
warnings reported by using these SCAs to scan projects with different programming languages. It indicates that
the PTM-based AWTI approach is technically independent of specific SCAs and projects with specific programming
languages. In practice, to help developers locate bugs in projects with different programming languages, SCAs
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generally give the warning location. That is, regardless of any SCA and any programming language, as long
as the warning location information (e.g., the warning code line) in the project under test is given by the SCA,
the PTM-based AWI approach can be used to identify actionable and unactionable warnings. Such a technical
trait can support the seamless extension of the PTM-based AWI approach to projects with various SCAs and
programming languages. Therefore, we believe that our findings can be extended to other SCAs and projects
with other programming languages.

5.2  Future Work

Based on our findings in Section 4, we highlight potential directions for the future AWI community.

Incorporating the refined warning context into PTM-based AWL. Sections 4.1~4.3 show that by simply
extracting source code from the method containing a warning as the warning context, PTMs have already
achieved a new breakthrough in the AWI field. However, the results of Section 4.5 indicate that the warning
context extracted by our study is still coarse-grained, causing PTM’s underperformance on AWI. In the future, it
could be essential to extract the fine-grained warning contexts via the well-designed static analysis techniques
(e.g., the def-use chain) [45] and the rigorous dynamic execution tactics (e.g., fuzzing) [28]; thereby capturing
the discriminative patterns between actionable and unactionable warnings for PTM-based AWI. Also, warnings
reported by SCAs have various characteristics (e.g., category and message), which could provide hints for AWIL.
Thus, it could be promising to enrich the warning context with warning characteristics, thereby amplifying
PTM-based AWI performance.

Enlarging the benefits of code-related pre-training and fine-tuning for PTM-based AWI. Section 4.3
shows that the code-related pre-training and fine-tuning components in PTMs benefit AWL Such findings inspire
researchers to explore more innovative AWI approaches from the following aspects. As for the code-related
pre-training component, it is a naive way to apply various PTMs with more abundant and larger code-related
pre-training corpora (e.g., CodeLlama [51]) for AWL. Besides, it is engaging to develop domain-specific PTMs by
formulating pre-training tasks related to AWI. As for the fine-tuning component, Fig. 8 shows that the upward
trends of precision, recall, and F1 have not even diminished when all warnings in the training set are included. It
indicates that the effectiveness of PTM-based AWT could be further improved with the additional fine-tuning
warning samples. In the future, it is necessary to enhance AWI effectiveness by fine-tuning PTMs on more
warning datasets.

Eliminating the inappropriate warning dataset distribution for PTM-based AWI. As concluded in
Section 4.4, due to the warning heterogeneity, the PTM-based AWI approach in the cross-project AWI scenario
performs worse than that in the within-project AWI scenario. Also, increasing the number of training set brings
little performance improvement in the cross-project AWI scenario. In addition, Section 4.5 states that the imbal-
anced warning training set negatively affects the PTM-based AWI effectiveness. In essence, the above phenomena
are mainly attributed to the inappropriate warning dataset distribution [20]. Such a problem is ubiquitous in
the software defect detection domain, and many techniques have been proposed and presented substantial
improvements for software defect detection [8, 67]. Both AWI and software defect detection fundamentally focus
on revealing true bugs in the software under test [19]. Inspired by the same problem with associated solutions in
the existing software defect detection studies, there could be two potential research directions. One direction
is to gather a sufficient number of warnings with diverse categories or incorporate the sampling strategy to
select a representative warning dataset, thereby boosting the performance of applying PTMs for the cross-project
AWT scenario from the data perspective. The other direction is to integrate the core ideas of transfer learning or
ensemble learning, thereby enhancing the performance of applying PTMs for the cross-project AWI scenario
from the model perspective.
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5.3 Threats to Validity

External. The external threat to validity is related to the generalizability of our findings. To alleviate this threat,
we select nine representative PTMs for the experimental evaluation. Such PTMs not only cover the three typical
PTM architectures, but also show powerful performance in recent code-related tasks [47]. Besides, we conduct
extensive experiments on 12K+ warnings, which involve four commonly used SCAs and three representative
programming languages. Besides, we qualitatively analyze the application of our findings to other SCAs and
projects with other programming languages. We acknowledge, however, that there are slight differences among
PTMs, SCAs, and projects with various programming languages. In future work, we will conduct more experiments
with other PTMs, SCAs, and projects with various programming languages.

Internal. The internal threat to validity is related to the baseline selection in RQ1. We meticulously identify
two DL-based AWI approaches as baselines by following the classification of ML-based AWI approaches in
Section 2.2. Besides, based on the warning representation and model selection in existing studies [30, 34, 64], we
rigorously implement the two baselines for the experimental evaluation. Thus, we believe that such a scrupulous
experiment design can mitigate the above threat.

Construct. The construct threat to validity is related to the warning dataset. On the one hand, the warning
dataset in our study is involved with four SCAs, 24 projects, and three mainstream programming languages.
Specifically, 10K+ SpotBugs warnings from 10 Java projects originate from the work of Ge et al. [20]. Such a
work labels warnings by combining the advantages of manual inspection and automatic filtering. 1.9K+ Infer,
CppCheck, and CSA warnings from 14 C/C++ projects originate from the work of Wen et al. [60]. Such a work
labels warnings via the rigorous manual inspection. It indicates that the warning dataset in our study is sufficiently
reliable. On the other hand, there may be data leakage, i.e., the warning dataset in our study may overlap with
the code-related pre-trained corpora of PTMs. In our study, we adopt K-fold cross-validation for the experimental
evaluation, which can alleviate the threat of data leakage to a certain extent [4]. In particular, Lee et al. [37]
experimentally prove that a certain degree of data leakage can boost the memory phenomenon of PTMs, thereby
improving the generalization ability of PTMs. Thus, we believe that the construct threat has little impact on our
study.

6 CONCLUSION

In this paper, we are the first to explore the feasibility of PTMs for AWI. By extensively evaluating 12K+ warnings,
our results show that PTMs substantially improve AWI compared to the SOTA ML-based AWI approaches.
Subsequently, we investigate the impact of different data preprocessing ways, model training components, and
model prediction scenarios on the PTM-based AWI performance. Finally, we summarize three reasons for the
underperformance of PTM-based AWI. Based on the experimental results, we provide several future research
directions for the PTM-based AWI domain.
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