
Using My Functions Should Follow My Checks: Understanding and Detecting
Insecure OpenZeppelin Code in Smart Contracts

Han Liu1∗ , Daoyuan Wu2†
, Yuqiang Sun3, Haijun Wang4, Kaixuan Li1

∗
, Yang Liu3, and Yixiang Chen1

1East China Normal University, Shanghai Key Laboratory of Trustworthy Computing
2The Hong Kong University of Science and Technology

3Nanyang Technological University
4Xi’an Jiaotong University

Abstract
OpenZeppelin is a popular framework for building smart

contracts. It provides common libraries (e.g., SafeMath),
implementations of Ethereum standards (e.g., ERC20), and
reusable components for access control and upgradability.
However, unlike traditional software libraries, which are typi-
cally imported as static linking libraries or dynamic loading
libraries, OpenZeppelin is utilized by Solidity contracts in
the form of source code. As a result, developers often make
custom modifications to their copies of OpenZeppelin code,
which may lead to unintended security consequences.

In this paper, we conduct the first systematic study on the
security of OpenZeppelin code used in real-world contracts.
Specifically, we focus on the security checks in the official
OpenZeppelin library and examine whether they are faithfully
enforced in the relevant OpenZeppelin functions of real con-
tracts. To this end, we propose a novel tool named ZepScope
that comprises two components: MINER and CHECKER. First,
MINER analyzes the official OpenZeppelin functions to ex-
tract the facts of explicit checks (i.e., the checks defined within
the functions) and implicit checks (i.e., the conditions of call-
ing the functions). Second, based on the facts extracted by
MINER, CHECKER examines real contracts to identify their
OpenZeppelin functions, match their checks with those in the
facts, and validate the consequences for those inconsistent
checks. By overcoming multiple challenges in developing
ZepScope, we obtain not only the first taxonomy of OpenZep-
pelin checks but also the comprehensive results of checking
the top 35,882 contracts from three mainstream blockchains.

1 Introduction

Smart contracts [9], software programs executed on
blockchains, have gained prominence in recent years, finding
applications in decentralized finance (DeFi) [54] and non-

*Work conducted by Han Liu and Kaixuan Li while they were visiting
Ph.D. students at NTU.

†Corresponding author: Daoyuan Wu. Work conducted while at NTU.

fungible tokens (NFTs) [25] among others. Given the im-
mutable nature of blockchains, once deployed, smart contracts
cannot be altered, persisting as long as the platform remains
active. This immutability implies that vulnerabilities cannot
be repaired without deploying a revised version as a new
contract. Security pitfalls in smart contracts can result in sub-
stantial financial losses, as evidenced by the $7 million loss
from the insufficient_check attack [2] in 2023. Thus, ensuring
smart contract security prior to deployment is imperative.

To foster code standardization and mitigate security issues,
OpenZeppelin [15] provides common libraries like SafeMath,
implementations of Ethereum standards such as ERC20 [6],
and reusable components for access control and upgradeabil-
ity. A study [34] reveals that 36.3% of verified contracts em-
ploy OpenZeppelin code. Unlike traditional programming en-
vironments where libraries are imported via static or dynamic
linking, in Solidity, OpenZeppelin code is typically cloned
into contracts. Moreover, developers may alter or embed their
logic into the code, potentially introducing unintended secu-
rity consequences and substantial financial risks [18, 19].

In this paper, we aim to systematically investigate the se-
curity of OpenZeppelin code used in real-world contracts.
Specifically, we focus on two types of security checks from
the official OpenZeppelin library functions and examine
whether they are faithfully enforced in the relevant OpenZep-
pelin function code of real contracts. One type of checks is ex-
plicitly defined within the functions and their callee functions,
such as those in requirement and modifier statements. The
other type of checks is implicitly enforced as the conditions
of calling the functions, such as the default role checking
when invoking internal OpenZeppelin functions. To scruti-
nize these checks, we propose a novel tool named ZepScope,
comprising two components: MINER and CHECKER.

MINER analyzes the entire OpenZeppelin library to extract
the facts of both explicit definition checks and implicit call
checks. During this process, MINER addresses two challenges:
(i) It performs an inter-procedural alias analysis to overcome
the challenge that denifition check facts could manifest in
various forms across the call chain; and (ii) It leverages code

context and data flow information to apply a relevance judg-
ment for different call check facts that may intertwine within a
single caller function. After running MINER, we obtain 1,435
OpenZeppelin check facts and organize them into a taxonomy
with four major categories and three severity levels. More
details about this taxonomy can be found in §4.6.

Based on the facts extracted by MINER, CHECKER detects
insecure OpenZeppelin code in real-world contracts. Specifi-
cally, it first identifies the target OpenZeppelin-like functions
within a contract through both the function signature and
the contract structure information. CHECKER then extracts
three types of checks, namely require, if-revert, and mod-
ifier checks, from the identified target functions. After that,
CHECKER matches the extracted code checks with OpenZep-
pelin facts through a custom similarity measurement. Finally,
CHECKER also validates the security consequences of the
potentially insecure OpenZeppelin code by checking whether
it could be actually exploited by an attacker.

To thoroughly evaluate ZepScope’s effectiveness and use-
fulness, we conduct both a benchmark and a large-scale ex-
periment. In the benchmark experiment with 51 real-world
security bugs collected from multiple sources, we compare the
effectiveness of fact-based detection employed by ZepScope
and the pattern-based detection used by three state-of-the-art
(SOTA) tools [27, 28, 31]. The results (detailed in §6.1) show
that ZepScope significantly outperforms in detecting the vul-
nerability types that, although covered by SOTA tools, are
related to OpenZeppelin checks. This superior performance
is attributed to ZepScope’s unique approach of understanding
OpenZeppelin facts and leveraging them for detection.

In a large-scale experiment with 35,882 contracts from
three major Ethereum-compatible blockchains, we evaluated
ZepScope’s accuracy and performance. ZepScope analyzed a
total of 2,750,165 functions and identified 47,431 functions
with potential insecure OpenZeppelin code, averaging about
only one warning per contract. This is manageable for real-
world manual inspection, especially as 39,225 warnings are
low-level (e.g., missing zero address checks). Due to the lack
of ground truth, we manually inspected a random sample of
100 warnings from each chain. Out of 300 warnings inspected,
31 were confirmed as false positives, yielding an accuracy of
89.67% across all sampled contracts. Moreover, ZepScope’s
average analysis time of 42.39 seconds per contract demon-
strates its suitability for large-scale on-chain scanning.

The large-scale experiment also enabled us to uncover four
notable security findings. First, by filtering and manually re-
viewing high-level warnings related to role checks, we identi-
fied 15 new vulnerabilities. Second, we discovered a prevalent
absence of zero address checks in OpenZeppelin-related code,
with 22,448 functions lacking this check. Although this is-
sue does not trigger direct vulnerabilities, we present a threat
model in §6.3, explaining how this common negligence can
be exploited for effective phishing attacks. Third, we uncov-
ered an interesting campaign involving 255 contracts on BSC

alone, where OpenZeppelin checks are intentionally relaxed
to serve their own logic. Lastly, we explore the differences in
OpenZeppelin security checks across three chains; see §6.4.

Availability. We have made the code, dataset, and our evalu-
ation results available at https://zepscope.github.io/.

2 Background

2.1 OpenZeppelin for Smart Contracts

OpenZeppelin [15] is one of the most popular packages for
building secure smart contracts. It has a collection of high-
quality reusable smart contracts that can be utilized to build de-
centralized applications (DApps) and protocols on Ethereum.
For example, OpenZeppelin provides ERC20 [6] for fungible
tokens, ERC721 [7] for non-fungible tokens, and ERC777 [8]
for advanced tokens. These OpenZeppelin libraries continue
to evolve and update to include new features and address secu-
rity issues. The smart contracts in OpenZeppelin are written
in Solidity, and the libraries also contain some interfaces, ab-
stract, and virtual methods which can be modified and imple-
mented by developers according to their needs. OpenZeppelin
also provides a set of requirements for each API on how to
avoid common security vulnerabilities, such as access control
issues and arithmetic overflow and underflow, which could
result in the loss of users’ assets. However, not all developers
adhere to these requirements, which has led to to security
vulnerabilities in their smart contracts [18, 19].

2.2 A Motivating Example

Here we illustrate a real-world vulnerability from the
Code4rena audit report [1], demonstrating how Open-
Zeppelin could be misused in a contract named NFTX.
Figure 6 presents the original flashLoan function in
ERC20FlashMint of OpenZeppelin, while Figure 1 depicts
the vulnerable flashLoan function in NFTX, which imple-
ments a simplified version of OpenZeppelin’s flashLoan
function (specifically, without flashFeeReceiver). In the
flashLoan function of ERC20FlashMint, the amount is kept
strictly below maxFlashLoan(token) through an amount
check in line 7, ensuring that the sum of amount and fee will
not cause an overflow. However, the flashLoan function of
NFTX lacks such a check and allows the message sender to
control the amount. This creates an opportunity for an attacker
to craft an amount to mint (via line 10), leading to a scenario
where the sum of amount and fee overflows to a small value
or even 0 (bypassing the check in line 13), indirectly enabling
a large number of tokens to be minted while only a small
portion of the amount is burned (i.e., line 14 and 15). Despite
Solidity versions 0.8.0 and later having automatic checks for
overflow and underflow, NFTX remains susceptible to this
attack as it operates on Solidity version 0.6.8.

https://zepscope.github.io/

1 f u n c t i o n f l a s h L o a n (
2 IERC3156FlashBor rowerUpgradeab le r e c e i v e r ,
3 address token ,
4 uint256 amount ,
5 b y t e s memory data
6) p u b l i c v i r t u a l o v e r r i d e r e t u r n s (bool)
7 {
8 // Vulnerable point: It misses the amount

check in the original OpenZeppelin
library; see Line 7 in Figure 6.

9 uint256 f e e = f l a s h F e e (token , amount) ;
10 _mint (address (r e c e i v e r) , amount) ;
11 r e q u i r e (r e c e i v e r . onFlashLoan (msg . sender ,

token , amount , f ee , data) ==
RETURN_VALUE, "ERC20FlashMint: invalid
return value") ;

12 uint256 c u r r e n t A l l o w a n c e = a l l o w a n c e (
address (r e c e i v e r) , address (t h i s)) ;

13 r e q u i r e (c u r r e n t A l l o w a n c e >= amount + fee , "
ERC20FlashMint: allowance does not
allow refund") ;

14 _approve (address (r e c e i v e r) , address (t h i s) ,
c u r r e n t A l l o w a n c e − amount − f e e) ;

15 _burn (address (r e c e i v e r) , amount + f e e) ;
16 re turn true ;
17 }

Figure 1: The vulnerable flashLoan function in NFTX.

3 ZepScope Overview

In this section, we present an overview of ZepScope, the first
tool designed for extracting OpenZeppelin facts and checking
their violations in smart contracts. As depicted in Figure 2,
ZepScope comprises two components: MINER and CHECKER.
MINER is responsible for mining the facts of OpenZeppelin
checks from the official OpenZeppelin library, and CHECKER
is responsible for detecting insecure OpenZeppelin code in
real-world contracts based on the facts mined by MINER.
ZepScope has the following three major phases:

Firstly, we collect the OpenZeppelin library code from its
official repository. More specifically, we used version 4.9.3,
the latest version available when we initiated this study.

Secondly, in a one-time effort during the offline process,
MINER analyzes the OpenZeppelin library to extract two
types of facts regarding function checks. One is referred to as
Function Definition Facts, while the other is called Function
Call Facts. After MINER extracts these two kinds of checks, to
enhance the accuracy and relevance of the extracted facts, we
conduct a manual yet minor review on the facts and present a
taxonomy of OpenZeppelin checks based on these facts.

Thirdly, during the online process, CHECKER detects inse-
cure OpenZeppelin code in real-world contracts. Specifically,
CHECKER first identifies the target functions within the con-
tract. It then examines whether these target functions contain
insecure OpenZeppelin code based on the facts mined by
MINER. CHECKER also validates the security consequences
of the potentially insecure OpenZeppelin code by checking

whether it could be actually exploited by an attacker.
Next, we present the details of MINER and CHECKER in

§4 and §5, respectively.

4 Mining OpenZeppelin Function Checks

4.1 The Challenges in Extracting Facts
As mentioned in §3, there are two types of facts re-
garding OpenZeppelin function checks, namely Facts
of Definition Checks or FactDe f and Facts of Call
Checks or FactCall . Without sacrificing clarity, we rep-
resent them using Funccaller{checkcaller;Functarget();},
Functarget{checktarget ;Funccallee();}, and
Funccallee{checkcallee;Operation;}. For a given target
OpenZeppelin function Functarget , its FactDe f is then defined
as checktarget + checkcallee, while its FactCall is represented
by checkcaller. Note that in the case of FactCall , an explicit
checkcaller might not be present; instead, it may involve an
implicit owner check for internal functions. Further details
can be found in §4.4.

Although the definition appears straightforward, the ac-
tual facts can be complex. Specifically, there are two major
challenges for MINER to effectively extract facts:

C1: FactDe f could manifest in various forms across the call
chain. For example, in Figure 4 where FactDe f of the
transfer function are located inside its callee func-
tion _transfer, the fact in line 11 is initially in the
form of ["GTE" (Greater Than or Equal), "fromBalance",
"amount", "ERC20: transfer amount exceeds balance"].
However, this fact cannot match with the check extracted
from line 4 in a contract shown in Figure 5, which is
["GTE", "balance", "value", "AnyswapV6ERC20: trans-
fer amount exceeds balance"]. Indeed, both the fact and
the check need to propagate across the call chain to ob-
tain their other forms so that they can eventually match
with each other. We will explain more in §4.2 and §4.3.

C2: Different FactCall may intertwine within a sin-
gle caller function, making them hard to distin-
guish. For example, suppose the caller function is
Funccaller{checka;Funca();checkb;Funcb();}, it may
be reasonable to determine that checka is relevant to
Funca and similarly checkb for Funcb. However, it is
challenging to ascertain whether checka is also relevant
to Funcb. We will elaborate more on this in §4.4.

To address these challenges, we propose a novel design for
MINER, as depicted in Figure 3. It first employs Slither [28]
to construct a call graph of the entire OpenZeppelin library
code. In this step, we pay attention to various kinds of
function calls, including not only to internal calls, high-
level API calls, and library calls, but also to low-level calls
(e.g., abi.encodeWithSignature). Then, for each function,

OpenZeppelin
Library Code

MINER

Contacts
Code

Experts

Minor
Adjustments

Zep Facts

CHECKER Warnings

Facts
Understanding

Offline

Online

Figure 2: A workflow of ZepScope.

Function Definition Facts Mining

Inline
Function

Code

ffInline

Require/IF-Revert
Statement &

Modifier

Expression
Processing

Preliminary
Facts

Alias
Addition

Definition
Facts

"NEQ",["from","account"],

"address(0)",ERROR_MSG:

ERC20: burn from the zero

address"

Alias Analysis

Function Call Facts Mining

Internal
Function

Inline
Function

ggInline
Expression
Processing

Preliminary
Facts

Alias
Addition

Call
Facts

FunctionA:

{Caller B:[…],

Caller C:[…]}

Traverse
Nodes

Assignment
Statement

Relevance
Judgement

Require/IF-Revert
Statement
&Modifier

Related
Require

Statement

Inline
Function

Code

ffInline Expression
Processing

Equivalent
Variable

[𝑥, 𝑦]
Alias

Extending
[𝑥, 𝑦, 𝑧 …]

Alias Set

[X,Y,Z],[A[X],

A[Y],A[Z],B]

f
Function

Code

f

Direct Caller
Function

g(f)

f
Function

Code

Figure 3: A detailed workflow of MINER.

1 f u n c t i o n t r a n s f e r (address to , uint256 amount)
p u b l i c v i r t u a l o v e r r i d e r e t u r n s (bool) {

2 address owner = _msgSender () ;
3 _ t r a n s f e r (owner , to , amount) ;
4 re turn true ;
5 }
6 f u n c t i o n _ t r a n s f e r (address from , address to ,

uint256 amount) i n t e r n a l v i r t u a l {
7 r e q u i r e (from != address (0) , "ERC20:

transfer from the zero address") ;
8 r e q u i r e (t o != address (0) , "ERC20: transfer

to the zero address") ;
9 _ b e f o r e T o k e n T r a n s f e r (from , to , amount) ;

10 uint256 f romBalance = _ b a l a n c e s [from] ;
11 r e q u i r e (f romBalance >= amount , "ERC20:

transfer amount exceeds balance") ;
12 . . .
13 }

Figure 4: The transfer and _transfer functions in the
OpenZeppelin library.

1 f u n c t i o n t r a n s f e r (address to , uint256 va lue)
e x t e r n a l o v e r r i d e r e t u r n s (bool) {

2 r e q u i r e (t o != address (0) && t o != address (
t h i s)) ;

3 uint256 balance = b a l a n c e O f [msg . sender] ;
4 r e q u i r e (balance >= value , "AnyswapV6ERC20:

transfer amount exceeds balance") ;
5 b a l a n c e O f [msg . sender] = balance − va lue ;
6 b a l a n c e O f [t o] += va lue ;
7 emit Transfer (msg . sender , to , va lue) ;
8 re turn true ;
9 }

Figure 5: An example transfer function from a contract.

MINER performs inter-procedural alias analysis, extracts
FactDe f and FactCall , and unifies the extracted facts. We in-
troduce these steps in detail in the following subsections.

4.2 Inter-procedural Alias Analysis
To address challenge C1, we conduct an inter-procedural alias
analysis on the entire OpenZeppelin library. As depicted in
Figure 3, such alias analysis can support both modules of
fact extraction, enabling them to focus on the current checks
without concern for their varying forms.

Based on the call graph constructed by Slither, MINER first
inlines the function calls of the OpenZeppelin library. It then
traverses the nodes of each function, and for each function
call, it adds the caller function into the function node sets.
Next, MINER traverses the assignment statements in the func-
tion nodes set and records the variables on both sides of the
assignment expression as a pair of equivalent variables. For
right-value (rvalue) expressions, it only records the stringi-
fied expressions because these expressions do not affect our
equivalent variable set even if they are further processed. Sub-
sequently, we obtain a pairwise set of equivalent variables,
such as fromBalance and _balances[from] in Figure 4.

Furthermore, we extend the alias analysis from the
statement level to the procedural level. For example, the
variable owner in line 3 is aliased with the parameter
from of the function _transfer according to the inter-
procedural alias analysis. Our alias analysis also propagates
between different sets that share the same variable, such
as between the set [fromBalance, _balances[from]] and
the set [from, owner]. As a result, fromBalance is also
equivalent to _balances[owner], and further equivalent
to _balances[owner], _balances[_msgSender()],
and _balances[msg.sender]. In this way, the
_balances[msg.sender] part in FactDe f could be
matched with the balanceOf[msg.sender] part in the
extracted check of Figure 5 due to their high similarity, thus
addressing challenge C1.

Note that we replace the substring (like from in
_balances[from]) with the variable only in the situations
where special symbols (i.e., [, (, etc.) are present before and
after the substring. For other cases, we consider it a coinciden-
tal repetition of variable names, not equivalence. Additionally,

to distinguish variables with the same name within a contract,
we also employ the static single assignment (SSA) name and
the function name to differentiate them. Finally, after recur-
sively extending until no new equivalent variables are found,
we obtain the final set of equivalent variables.

4.3 Extracting Function Definition Facts

With the alias analysis provided in §4.2, extracting FactDe f
can concentrate on individual require, if-revert, and
modifier statements, with other fact forms being added
based on the data from the alias analysis. As illustrated in Fig-
ure 3, MINER first inlines the function calls that have FactDe f ,
and then traverses the nodes of the function to analyze the
require, if-revert, and modifier statements.
Expression Processing. For the require statement, we re-
cursively process the condition expression within it using
the following rules: (i) If the expression is an AND expres-
sion, we divide it into two individual necessary checks. (ii)
If the expression is an OR expression, we divide it into two
individual equivalent checks. (iii) If the expression is a bi-
nary expression, we traverse the expression in pre-order and
record the stringified node. (iv) If the expression is a function
call statement, we record the stringified node and the return
value of the callee function if the return value is a global
variable, a state variable, or a constant. (v) In other situations,
we record the stringified node and continue to process its sub-
expression. Additionally, we capture the error message of the
require statement as a part of the check facts, since some
error messages can assist us in determining the type of the
check. Subsequently, we obtain the facts of the require state-
ment, such as the aforementioned ["GTE", "fromBalance",
"amount", "ERC20: transfer amount exceeds balance"] for the
statement line 11 in Figure 4.

For the if-revert statement, we first find its correspond-
ing if expression. Then, we use the same rules above in
the processing of require statements to obtain a part of the
check facts. Note that we need to judge the control flow in the
if-revert statement. Specifically, if the revert statement
occurs in the if or else if condition, we need to reverse the
logic of the extracted expression due to the opposite logic with
the require statement. Otherwise, i.e., the revert statement
occurs in the else condition, we keep the original extracted
check facts. In addition, because there is no error message in
the if-revert statements, we use the stringified node of the
revert statement to fill the error message.

For the modifier statement, we address not only the
require statement within the modifier statements but also
record the stringified node of the modifier and its parameters.
Finally, we obtain a primitive check facts list for each function
in the form of [s1,s2,s3, ...,sn], where si may be a string or a
list with all equivalent elements within it.
Alias Addition. For all extracted facts, we extend the facts list
using the aliases obtained in §4.2. Specifically, if a variable in

the facts has equivalent variables, or its substring has equiva-
lent variables, we add the equivalent variables to the facts list
using the method mentioned earlier in §4.2: directly extend
the facts list and replace the substring with the equivalent
variables, then extend the facts list. In addition, we further as-
sociate the parameter with its type and the order of appearance
by extending the facts list with these parameter information.
Finally, we obtain the final check facts extracted from the
require and modifier statements.

4.4 Extracting Function Call Facts

To extract FactCall , we restrict Functarget to be the internal
functions defined by OpenZeppelin, as the public and
external functions can already be called by anyone, so the
definition facts we extracted can already ensure the safety
of those function calls. For example, the internal Open-
Zeppelin function _transferOwnership is designed to be
called only within the contract, which implies that the caller
is the owner of the contract. When such a function is called
by a public function without any limitations, it suggests that
anyone can call the internal function, which may lead to
unpredictable consequences. Therefore, we need to extract
the function call facts to avoid such situations.

Differing from the extraction of function definition check
facts, initially, we need to identify all internal functions
as our target functions. Then, we reverse the call graph con-
structed earlier and conduct a depth-first search from each
target function to find the first public or external caller
function of the target function. For each caller function, we
regard it as a scenario and extract its call facts, respectively.
As a result, each internal function may have FactCall from
multiple scenarios, i.e., different caller functions.

As shown in Figure 3, we first inline the caller function
and then traverse the nodes of the caller function to find the
require and modifier statements. Similar to the extraction
of the definition check in §4.3, we then recursively process the
expressions in the require and modifier statements using
the same rules. After that, we add the aliases of the variables in
the call check facts. Eventually, we obtain the final check facts
extracted from the caller function of the internal function.
It is worth noting that we also record the empty check facts,
as it indicates that the callee function does not require any
checks in the scenario of the caller function.
Relevance Judgement. A notable challenge here is Chal-
lenge C2 mentioned in §4.1, as there may be multiple callee
functions in a caller. To distinguish the different checks asso-
ciated with different callees, we apply a relevance judgment
on the statement. For each statement, if it appears between
two function calls, we consider it relevant to the latter callee.
When there is no function call before the statement, we con-
sider it relevant to its closest callee. Additionally, we also
consider the variable that occurs in the statement. If the vari-
ables in the statements are also related to the function call,

1 f u n c t i o n f l a s h L o a n (
2 IERC3156FlashBorrower r e c e i v e r ,
3 address token ,
4 uint256 amount ,
5 b y t e s c a l l d a t a data
6) p u b l i c v i r t u a l o v e r r i d e r e t u r n s (bool) {
7 r e q u i r e (amount <= maxFlashLoan (t o k e n) , "

ERC20FlashMint: amount exceeds
maxFlashLoan") ;

8 uint256 f e e = f l a s h F e e (token , amount) ;
9 _mint (address (r e c e i v e r) , amount) ;

10 r e q u i r e (
11 r e c e i v e r . onFlashLoan (msg . sender , token ,

amount , f ee , data) ==
_RETURN_VALUE,

12 "ERC20FlashMint: invalid return value"
13) ;
14 address f l a s h F e e R e c e i v e r =

_ f l a s h F e e R e c e i v e r () ;
15 _spendAl lowance (address (r e c e i v e r) , address (

t h i s) , amount + f e e) ;
16 . . .
17 }

Figure 6: The flashLoan function in OpenZeppelin.

we consider them relevant. Specifically, we set the variable in
the statement as the source, and the variable in the function
call as the sink. If there is a flow between the source and the
sink, we consider them relevant.

For example, as shown in Figure 6, the function flashLoan
is implemented by OpenZeppelin to provide a way to bor-
row tokens from the contract. In the function, the _mint
function is called to mint the tokens to the borrower. How-
ever, there are some other function calls in flashLoan,
i.e., _flashFeeReceiver, _spendAllowance, etc. Thus, we
need to judge the relevance of the statement. As described
above, we consider the require statement in line 7 to be rele-
vant to the _mint function call in line 9 because _mint is the
first called function in flashLoan. As for the require state-
ment in line 10, due to the variables receiver and amount
being relevant to the function call (i.e., function _mint has the
parameters receiver and amount), we consider the require
statement in line 10 to be relevant to the _mint function call
in line 9. Therefore, the _mint function has two checks in the
scenario of flashLoan.

4.5 Unifying Facts and Minor Adjustments

To enhance the accuracy and conciseness of the facts, we
further unify them as some of the check facts extracted from
OpenZeppelin are repeated and unnecessary.

Firstly, we eliminate repeated checks within a function.
Specifically, some checks may recur because they call other
functions in the definition, where both the caller and callee
have check facts. Secondly, for variables associated with
msg.sender or other constants in the equivalent variables

traced, we can already determine whether the check is sat-
isfied. For example, for the check where the variable owner
cannot be address(0), we can trace that owner is equivalent
to msg.sender. Since msg.sender is a constant, we can al-
ready determine that the check is satisfied. Hence, we remove
this check from the extracted facts. Thirdly, we make minor
adjustments to the extracted facts to enhance their accuracy
and conciseness. Specifically, we remove some function call
facts that are redundant for the function, e.g., we extract some
call facts for the function _msgSender(), which do not re-
quire any checks before calling. Following all these steps, we
obtain the final unified facts of OpenZeppelin checks.

4.6 Understanding Facts as A Taxonomy

Having introduced the methodology of MINER from §4.1
to §4.5, we now present the results obtained from applying
MINER to analyze the entire OpenZeppelin library. These
results are organized as a taxonomy of OpenZeppelin checks,
which, to the best of our knowledge, is a first-of-its-kind find-
ing. Moreover, as mentioned in §4.4, FactCall may yield dif-
ferent facts for different caller functions, i.e., scenarios. Thus,
we also present a scenario analysis of the extracted FactCall .

To obtain this taxonomy, we manually review the 1,435
facts extracted by MINER. They can be divided into four major
categories: Address Compliance Assurance, Access Control,
Overflow/Underflow Check, and Timestamp or State Check.
¬ Address Compliance Assurance. Address compliance
is a frequent check in OpenZeppelin code to ensure transac-
tion success. It comprises four checks: address(0) check to
prevent transfers to address(0), address existence check to
verify address presence in the contract, logic setup check to
ensure correct logic implementation in the target address, and
contract address check to confirm if the address is a contract
address. These checks primarily appear in function definition
facts.
­ Access Control. Access control is another common check
in OpenZeppelin functions to verify role permissions, essen-
tial for preventing economic loss in transactions. For example,
the transferOwnership function in the Ownable contract
verifies if the caller is the contract owner, with a simplified
check through an Ownable modifier. OpenZeppelin library
has six types of access control checks: onlyOwner, onlyGover-
nance, onlyProxy, onlyCrossChainSender, onlyRoleOrOpen-
Role, and onlyRole for admin roles. Each check verifies spe-
cific roles or permissions, like onlyGovernance checking if the
caller is the contract’s governance, and onlyProxy checking if
the caller is the contract’s proxy.
® Overflow/Underflow Check. The next category comprises
overflow/underflow check. These checks aim to prevent in-
correct amounts within smart contracts. In the OpenZeppelin
library, there are three types of overflow/underflow checks,
namely, maxtype check, balance check, and allowance check.
The maxtype check ensures that the amount does not exceed

or fall below the maximum or minimum values defined for
the variable type. Balance check verifies whether there is suf-
ficient balance to carry out transactions. Allowance check
ensures that the sender has the necessary allowance to exe-
cute transactions. The overflow/underflow checks are more
common in the function definition facts.
¯ Timestamp or State Check. The final type of check is the
timestamp or state check. This type of check is often used in
time-related scenarios, such as deadlines, proposal operations,
transaction cancellations or pauses, and etc. These checks are
often strictly dictated by the current timestamp or state. For
example, to execute an unpause operation, the contract must
be in a paused state. The timestamp or state checks are more
common in the function definition facts.
Severity Analysis. Not all missed checks could lead to se-
rious consequences. Classifying them based on severity can
provide a comprehensive overview of the OpenZeppelin facts,
and different severity levels also help prioritize the checking
and repair of warnings. To achieve this, we use taxonomy
categorization and potential attack impact to correlate individ-
ual checks with their severity levels. Specifically, the checks
in the Access control and Overflow/Underflow Check cate-
gories can generally be classified by their categories, such
as an overflow check as medium-level and an access control
check as high-level. However, the checks in the other two
categories have diverse specific types, and their severity clas-
sification needs to consider more about their attack impact.
For example, within the Address Compliance Assurance cate-
gory, while the “zero address check” is considered low-level,
the absence of a “contract address check” might render the
contract unusable, potentially leading to a loss of funds, and is
therefore classified as medium-level. Furthermore, checks in
the Timestamp or State Check category need to consider their
impacts with the scenarios in which they are applied. For ex-
ample, the check require(block.timestamp <= expiry,
"Votes: signature expired"); is considered high-level
because it is related to the validity of contract votes’ signa-
tures. Eventually, our classification results in 277 high-level,
858 medium-level, and 300 low-level facts.
Scenario Analysis. Among the four categories of checks,
access control is the most diversified check in the OpenZep-
pelin library. Even for the same function, the checks may
vary in different scenarios. Firstly, for functions with relation-
ship constraints, such as transferOwnership, a permission
check is mandatory because these functions are designed to
be called by the contract’s owner and are crucial to the en-
tire contract. Secondly, for functions involving assets, due
to loan mechanisms or implicit checks (i.e., transactions of
assets by the holder or authorized for the holder), some sce-
narios do not require permission checks. For example, in the
caller of the _mint function, if there is a public mint to call
it, we need to check the caller’s permission. However, if a
flashLoan calls it, we do not need to check the caller’s per-
mission, as there is a repayment mechanism in flashLoan.

Contacts
Code

Target
Function

f
Target

Function
Identification

Direct
(Public)
Caller

C
Inline

Function

ccInline
Require

Statement&
Modifier

IF
Statement

Reverse IF
Statement

IF

Expression
Processing

Preliminary
Code

Checks

Code
Checks

Alias
Addition

Openzepplin
FactsWarnings

Similarity
Match

Handling the
Scenarios with
Empty Facts

Validating
Security

Consequence

Figure 7: A detailed workflow of CHECKER.

Thirdly, some functions may use msg.sender as a parameter,
implying an implicit check within the function. For exam-
ple, in the caller of the _transfer function, the function
transfer uses msg.sender, leading to no permission check
as the function transfers the balance of msg.sender. Hence,
we also extract caller facts when the parameter is msg.sender
to cover these implicit checks.

5 Detecting Insecure OpenZeppelin Code in
Smart Contracts

Figure 7 illustrates a high-level workflow of CHECKER, which
comprises four major components: identifying target func-
tions, extracting checks in a target function, matching the
extracted code checks with facts, and finally validating the
security consequences of potentially insecure code. We now
elaborate on them in the following subsections.

5.1 Identifying the Target Functions
The first step is to identify the target functions within a con-
tract, which, however, is difficult to achieve. The reason is that
developers often do not directly use the OpenZeppelin code
by importing the OpenZeppelin library; instead, they copy the
OpenZeppelin code into their own contracts. In the process,
they may rename the contract name, function name, parame-
ter name, and even alter the code logic within the functions.
Furthermore, even if they copy the original code from the
OpenZeppelin repository, there are numerous versions avail-
able. Consequently, it is challenging to accurately identify the
right target functions within the contract while maximizing
coverage. In the current CHECKER prototype, we propose two
methods to identify the target functions.
Contract-Name-Included Identification. In this method, we
aim to match the target function based on the full signature
of the function, which includes the contract name, function
name, parameter type, and the return variable type. If the full
signature of the function matches, we consider the function as
the target function. Note that during this process, the variable
name of the parameter does not matter; we only match the type
name of the parameter. At times, a contract might inherit from
its parent contract. Therefore, we further attempt to match the
target function by examining the inheritance relationship of

the contract if the full signature does not match. Moreover,
if the contract serves as an alternative implementation of
a standard, e.g., ERC20Burnable, ERC20Mintable, and we
cannot match using the original name, we attempt to match
using the standard name (i.e., ERC20).

Furthermore, we conduct a refinement-based identification
on the function name and function parameters. During this
process, we still mandate that the contract name or the par-
ent contract name must match with our facts. Once the con-
tract is matched, we compare the function name with the
name in our facts, disregarding case differences and the spe-
cial _ symbol. If the function name matches, we compare
the parameter types of the function with the parameters in
our facts. We allow for variations in the order of parameters
and the extension of the type name of the parameter in the
parameter match, e.g., we consider it a match when the pa-
rameter types are IERC3156FlashBorrower in Figure 6 and
IERC3156FlashBorrowerUpgradeable in Figure 1. This
refinement-based approach can handle situations where the
function name and parameter types are slightly modified.
Multi-Function-Based Identification. Given that the same
function signature is used across different contracts of the
OpenZeppelin code, we cannot directly match the target func-
tion solely based on the signature composed of the function
name, parameter types, and return variable type. To determine
the origins of such ambiguous functions, we introduce a multi-
function matching method. Specifically, we first match the
function signature and count the number of matches within
a contract. If the count equals or exceeds a pre-configured
parameter, we identify all matched functions in that contract
as target functions. In this study, we set this configurable
parameter to 3, implying that if a contract contains three
functions with matching signatures, we consider all these
matched functions as target functions. Meanwhile, to mit-
igate mismatches between different standard contracts, for
instance, when developers introduce a new set of functions in
the ERC20 contract with signatures matching those in other
contracts, we apply a filter to the matched functions of these
standard contracts. Lastly, we execute the aforementioned
refinement-based match on the function name and function
parameters to enhance the multi-function match further.

5.2 Extracting Checks within Target Functions

After identifying the target functions, our next step is to ex-
tract the code checks within them. For each target function,
we obtain a set of function definition facts in any scenario and
a set of function call facts across different scenarios. However,
unlike the extraction process within the OpenZeppelin library,
here we only need to extract the code checks in the caller
function of the target function to match different scenarios,
since the inlined caller function encompasses the target func-
tion. Therefore, our objective is to find the first public or
external function of these target functions, serving as the

entry point of the call chain containing the target function.
Similar to the process described in §4.4, we construct the call
graph, reverse the call graph to obtain all the public or external
functions in the contract, and then inline the caller function
for further extraction. The extraction of these checks deviates
slightly from the extraction within the OpenZeppelin library.
For each caller function, we concentrate on three types of
checks: require, if-revert, and modifier checks.
Require Checks. To extract checks from the require state-
ment, we first focus on its condition expression. We break
down the expression into several independent inspections us-
ing the logical operators && or ‖‖. For each inspection, we
perform a recursive pre-order traversal to extract the checks.
At the leaf node of the expression, if the node type is a func-
tion call and the function’s return is a state variable, a global
variable, or a constant, we record both the stringified node
and the return value. Otherwise, we only record the stringi-
fied node. After inspecting the condition expression, if the
statement has an error message parameter, we record the error
message at the end of the check. If not, we record “no error
message”. For each divided inspection, we use the same error
message as the parent inspection.
If-Revert Checks. Besides require statement, another inse-
cure situation is the If-Revert statement. In this statement,
developers might use an if statement to evaluate a condition
and a revert statement to throw an error message if the con-
dition is met. In this scenario, we also need to extract checks
from the if statement. The extraction process for if-revert
statements is similar to that for require statements. We also
divide the condition expression using the logical operators
&& or ‖‖ into several independent inspections and perform
a recursive pre-order traversal on them to extract the checks.
However, the logic in if-revert statements is opposite to
that in require statements, so we reverse the logic in the
extracted checks. Lastly, as the if statement does not have an
error message parameter, we only record the stringified node
of the revert statement.
Modifier Checks. Regarding modifiers, since we have al-
ready inlined the caller function and extracted require and
if-revert statements from it, there is no need to specifi-
cally extract checks from the modifiers. However, to avoid
false positives in CHECKER due to some transformations of
the checks extracted in the above statements, we extract the
modifier name as a check and match it in the subsequent step.

For all checks extracted from these three statements, we
also need to conduct an alias analysis and augment them as
described in §4.2. Eventually, we obtain a set of code checks
in the caller function of the target function, formatted similarly
to the facts mined in §4, ready to be matched subsequently.

5.3 Matching the Code Checks with Facts

We now proceed to compare the extracted code checks with
the facts mined from the OpenZeppelin library. For each caller

of the target function, we compare the extracted code checks
with the facts in the function definition and each scenario of
function call. As shown in Figure 7, our matching process
comprises three steps: matching error messages, matching the
checks, and handling the scenarios with empty facts.

5.3.1 Matching Error Messages

Error messages, like the aforementioned “ERC20: transfer
amount exceeds balance,” signify the content of the checks.
These messages can help distinguish different types of checks.
Therefore, we first try to match the extracted error message
with the facts mined from OpenZeppelin. Given that the error
message might include the contract name, e.g., ERC20:, it is
necessary to replace the contract name in the error message
prior to the symbol “:”. After that, we conduct a similarity
match as follows. We first tokenize the messages to isolate
individual words, map each word to its corresponding vector
in the Word2Vec [42] embedding space, and compute the
average of these vectors to obtain a sentence-level vector.
Finally, we calculate the Word Mover’s Distance (WMD) [37]
similarity between the sentence vectors, given its effectiveness
in measuring the semantic similarity of short sentences [51].

Formally, Let M1 and M2 be two messages to be com-
pared (e.g., one from the error and the other from the fact).
Each messages Mi (where i ∈ {1,2}) consists of ni words,
such that Mi = {wi1,wi2, ...,wini}. Each word wi j (where
j ∈ {1, ...,ni}) in messages Mi is mapped to a vector vi j ∈Rd

using the Word2Vec model, where d is the dimensionality of
the Word2Vec embedding space. Thus, the messages Mi is
represented by a set of vectors {vi1,vi2, ...,vini}. The vector
representation of the entire messages Mi, denoted as VMi , is
calculated by averaging the vectors of all words in the sen-
tence, i.e., VMi =

1
ni

∑
ni
j=1 vi j. The semantic similarity between

messages M1 and M2 is quantified using the WMD similarity
between their vector representations VM1 and VM2 . The WMD
similarity, denoted as sim(M1,M2), is computed as follows:

sim(M1,M2) = 1−min
T≥0

n

∑
i, j=1

Ti j · c(i, j) (1)

T is a transport matrix, where Ti j denotes the amount of “mass”
being transported from the ith word in M1 to the jth word in
M2. Note that c(i, j) is the cost function, which represents the
distance between the ith word and the jth word, calculated as
the Euclidean distance between their vector embeddings.

Following this, we set a threshold Terror to filter the matched
error message. Since error messages serve only as a pre-
filtering step, we must be conservative and prioritize using
a higher threshold value for Terror. According to our mea-
surement of two major threshold values (0.8 and 0.9) in Ap-
pendix C.1, we eventually chose 0.9 as the value for Terror in
this paper. In addition, we also conduct an ablation study in
Appendix D to compare the effectiveness of two similarity

matching strategies described in §5.3.1 and §5.3.2. If the er-
ror message matches in such a conservative way, we directly
consider the check to be matched. For cases not matched, we
conduct further matching without the error messages.

5.3.2 Matching the Checks

Next, we try to match the checks without error messages.
As previously mentioned, the extracted checks and facts are
structured in the format [s1,s2,s3, ...,sn], where si may be a
string or a list with all elements being equivalent within it.
Therefore, we first match each siextracted and si f act in order. If
both siextracted and si f act are strings, we utilize the edit distance
to calculate the similarity between si and the fact. Specifically,
this similarity is computed by Equation 2:

Similarity = 1−
edit(siextracted ,si f act)

min{length(siextracted), length(si f act)}
(2)

where edit(siextracted ,si f act) denotes the edit distance between
siextracted and si f act .

If one is a substring of the other, the similarity is 1. If a
list is present in either siextracted and si f act , the similarity is the
maximum similarity between the elements in the list and the
string. For situations where both siextracted and si f act are lists,
the similarity is the maximum similarity of the elements.

Subsequently, we set a threshold Ts to filter the matched
si. If the similarity of si exceeds the threshold, we consider
the element to be matched. Otherwise, we attempt to match
the next element. In Appendix §C.1, we measure how differ-
ent threshold values of Ts could impact the final results and
eventually chose 0.6 as the value for Ts in this paper.

With each element si’s similarity determined, we can calcu-
late the similarity of the entire check. Here, we choose not to
use typical NLP-based similarity methods because they might
overlook the structural information embedded in each fact
check. For example, for an original fact require(amount
< fromBalance), a typical NLP-based matching might con-
sider require(amount > fromBalance) more similar than
require(oldBalance > newAmount). Therefore, we pro-
pose structured similarity matching, which is a lightweight
yet effective approach to our problem. Specifically, it structur-
izes each individual matching unit (i.e., the element si above),
including symbols like <, measures each similar unit based on
Equation 2, and conducts majority voting with similar units
in comparison to the total number of units. For symbols, we
also perform an equivalence check in §5.4.

For the threshold used by this structured similarity match-
ing, we design a dynamic factor F to effectively conduct
majority voting across different numbers of total units:

F = dunit_number(S)
2

e+1 (3)

where S is the extracted fact. If the number of similar ele-
ments in the checks equals or exceeds the dynamic factor,
we consider the check to be matched. For function call facts
that have more than one scenario, we consider the check to
be matched if the number of similar elements satisfies the
dynamic factor in any given scenario. In Appendix C.2, we
also compared F with different fixed factors and found that
the dynamic factor outperforms them.

5.3.3 Handling the Scenarios with Empty Facts

Empty checks exist within the function call facts across differ-
ent scenarios, indicating that OpenZeppelin omitted checks
in some scenarios of the function call. However, these empty
facts might result in missing warnings during the matching
process above, as any extracted checks can fulfill these facts.
Therefore, we further handle the scenarios with empty facts.
Specifically, we divide the contract name and the function
name into words and count repeated words to represent the
similarity between the detected scenario and the facts scenario.
Following this, we employ Equation 3 to calculate and set
the similarity threshold. Should the similarity of the scenario
surpass the threshold, we consider the scenario as matched
and believe that this scenario necessitates no checks.

5.4 Validating Security Consequences

The missed code checks that are not matched in the last step
are only potentially insecure OpenZeppelin code because they
may have other equivalent checks either explicitly or implic-
itly. Therefore, CHECKER further performs this validation
step to assess the security consequences. In this study, we
focus on four types of validation, namely, equivalent overflow
protection, equivalent permissions, extra msg.value checks,
and logical equivalence conditions,.
Equivalent Overflow Protection. In OpenZeppelin
code, developers often use explicit judgments, such as
require(amount < fromBalance), to avoid overflow and
underflow issues. However, developers may also use implicit
judgments, for instance fromBalance.sub(amount), where
the sub function reverts when fromBalance is less than
amount. Moreover, with the improvements in the Solidity
compiler, specifically from version 0.8.0 onwards, Solidity
now includes built-in checks to prevent integer overflows
or underflows, eliminating the need for developers to
manually add overflow checks for every arithmetic operation.
Therefore, it is necessary to validate the equivalent overflow
protection in CHECKER. Specifically, we first ascertain the
version of Solidity and disable the overflow checks if the
version is 0.8.0 or later. Notably, for facts with checks like
amount < fromAllowance, which not only serve as checks
for overflow and underflow but also as checks for the amount
of allowance, we still examine the allowance-related aspects
in the function to ensure the caller has sufficient allowance to

invoke the function. Next, we look for any form of explicit
judgment for overflow checks. If such a check is missing,
we then check for any form of implicit judgment, i.e., using
SafeMath to avoid overflow and underflow. If the check is
still missing after these validations, only then do we issue a
warning.
Equivalent Permissions. As described in §4.6, permission
checks vary across different functions. For example, the
safetransferFrom function in the ERC721 contract re-
quires the _isApprovedOrOwner function, while the mint
function in the ERC20 contract necessitates the sender
to possess the minter role. Additionally, some develop-
ers may utilize the modifier onlyOwner to achieve this. It
is thus important to validate the equivalent permission in
CHECKER. Based on the understanding derived from the facts
extracted from OpenZeppelin, we rely on the following hier-
archy of authority. Primarily, the modifier onlyOwner or the
require judgement msg.sender == owner represents the
strictest level of permissions. Following this, the modifiers
onlyGovernance, onlyAdmin, and onlyAuthority, along-
side their corresponding require judgements, as well as the
functions _isApprovedOrOwner and isApprovedForAll
constitute a secondary tier of strict permissions. Lastly, the
requirement for roles of other minor authorities denotes the
most lenient permissions. Within CHECKER, we determine
whether the requirements are fulfilled based on our catego-
rized permissions. Moreover, we have extracted msg.sender
in caller parameters as a fact, which also represents a form of
permission check. We deduce that the check is satisfied if the
caller has executed the aforementioned permission checks.
Extra msg.value Checks. Furthermore, some contracts may
incorporate an extra msg.value check within a function to
prevent unrestricted calls to the function by everyone. For
example, developers might define a buy function to facili-
tate token exchanges with users. This function requires that
msg.value exceeds a certain value, following which some
tokens are minted to complete the exchange. In this func-
tion, the caller of the _mint function does not require a check
on the permission of msg.sender, as the msg.value check
has already restricted the calls. Therefore, to accommodate
this scenario, we implement an extra msg.value check in
CHECKER. Specifically, we first conduct the check based on
the extracted facts. Then, if a permission check is found to be
missing, we carry out a msg.value check in the caller func-
tion. Eventually, we will flag the case if a msg.value check
is present, or report a missing permission check otherwise.
Logical Equivalence Conditions. The extracted facts for bi-
nary expressions are typically formatted as [EQ, variableA,
variableB, Error Message], indicating that variable A must
equal to variable B. However, developers may use the logi-
cally equivalent condition, e.g., variableB == variableA,
which may be extracted as [EQ, variableB, variableA, Error
Message]. Likewise, for the condition where variable A is
greater than or equal to variable B, developers could alter-

natively express this as variable B being less than or equal
to variable A. Therefore, it is important to validate the logi-
cal equivalence condition in CHECKER. Specifically, we first
check whether the extracted facts are in the original form if the
facts include relational operators. If the check is missing, we
then verify the equivalent form of the facts, e.g., for greater
than, we substitute with less than. If the check is still missing
following these steps, only then do we issue a warning.

6 Evaluation

In this section, we conduct a thorough evaluation of Zep-
Scope’s effectiveness and usefulness by addressing the fol-
lowing research questions (RQs):

RQ1: How does the effectiveness of ZepScope compare to
that of other state-of-the-art (SOTA) static analysis tools?

RQ2: How accurate and efficient is ZepScope in analyzing a
large set of real-world smart contracts?

RQ3: Can ZepScope identify notable security findings?

RQ4: Concerning OpenZeppelin checks in smart contracts,
what are the primary differences across three major
Ethereum-compatible chains?

Experimental Setup. As mentioned in §3, ZepScope consists
of two components: MINER and CHECKER. We implement
each component within the framework of Slither [28], a funda-
mental framework for tools developed in many academic pa-
pers [21,41,52]. ZepScope complements Slither by proposing
(i) a mining approach for extracting OpenZeppelin function
checks in §4 and (ii) a set of customized analysis techniques
in §5 for detecting insecure OpenZeppelin code in smart con-
tracts. To reduce the compilation time of the contracts, we
separate and optimize the compilation part of Slither (i.e.,
crytic-compile [4]) with automatic compiler version selection.
This way, we can compile the contracts first and then analyze
them with CHECKER. All the experiments were conducted
on a server equipped with 80 vCPUs (Intel(R) Xeon(R) Gold
6248 CPU @ 2.50GHz × 2) and 188G of RAMs.

6.1 RQ1: Comparison with the SOTA Tools
In this RQ, we aim to benchmark ZepScope against some
state-of-the-art (SOTA) static analysis tools, particularly those
that claim to detect Access Control and Overflow/Underflow
vulnerabilities, which are two common types of issues that
insecure OpenZeppelin code can cause; see details in in §4.6.
Specifically, we want to compare the effectiveness of fact-
based detection employed by ZepScope and pattern-based
detection used by other SOTA tools in identifying these criti-
cal issues related to OpenZeppelin checks.

Following this objective, we compare ZepScope with three
SOTA tools: Slither [28], AChecker [31], and SoMo [27].

Table 1: Benchmarking ZepScope against three SOTA tools on
51 real-world security bugs with insecure OpenZeppelin code.

Tool TP FP FN # Failed

Slither 8 32 43 0
AChecker 0 0 43 8
SoMo (via MetaScan) 8 22 43 0
ZepScope 41 0 10 0

Specifically, Slither serves not only as a supporting frame-
work for numerous smart contract tools [53] but also as a
standalone tool that has integrated detection rules for many
issues including access control and overflow. AChecker and
SoMo are two recent SOTA analysis tools focused on access
control problems, with AChecker detecting general access
control issues through critical instruction-driven taint analy-
sis, and SoMo targeting specific access control issues related
to bypassable modifiers. Both Slither and AChecker can be
run on our testbed as they are open-source. However, since
SoMo is not open-source and is integrated into an industry
scanning platform called MetaScan [13], we utilize MetaS-
can’s scanning results, which also include overflow detection.

To evaluate these tools in the context of our problem,
we manually collected 51 real-world security bugs caused
by insecure OpenZeppelin code. These bugs were sourced
from security incidents reported on DeFiHackLabs [5], Twit-
ter [18, 19], SmartBugs Curated datasets [26], and audit re-
ports from Code4rena [3], Sherlock [17], and Ethereum Com-
monwealth [20]. Among these 51 ground-truth issues, 25
pertain to access control, five are related to arithmetic over-
flow, one belongs to front running, and the remaining 20 are
caused by insecure OpenZeppelin checks. We then utilized
these ground-truth vulnerabilities as the benchmark dataset.
Note that we tallied the results at the function level, consider-
ing a vulnerability as detected if the function is identified by
the tool and the categories of the vulnerability match.

Table 1 shows the benchmarking results, including the
number of true positives (TP), false positives (FP), false neg-
atives (FN), and failed cases. Notably, out of 51 ground-
truth cases, ZepScope detected 41. The missed issues are
due to: (i) For calls formatted as member access (e.g.,
IERC20.SafeTransfer), we were unable to find the defini-
tion call chain, which could be defined either within or outside
the contract. We chose to ignore this call format to avoid ad-
ditional false alarms. (ii) Vulnerable logic occurs in one of
the data flows within the function, while the function has met
the criteria in our check facts, leading to false negatives. (iii)
Function matching failed because some of the ground-truth
function signatures have changed significantly, which caused
us to miss this function during the matching process.

In contrast, the other tools yielded underperforming re-
sults: Slither detected only 8 out of 51, with 32 false positives;

Table 2: The evaluation data of ZepScope on 35,882 contracts.

Chain
#

Contacts
#

Failed
#

Functions
#

Warnings
Sampled
Accuracy

Ethereum 13,984 150 911,309 16,873 84%
BSC 12,486 234 1,068,035 14,444 95%
Polygon 9,955 159 770,821 16,114 90%

Total 36,425 543 2,750,165 47,431 89.67%

AChecker detected none; and SoMo via MetaScan also re-
ported only 8 true positives. The primary reasons for their
failure are: (i) Detecting missing access control requires a
detection mechanism that understands and adapts to different
access control scenarios, which the existing tools failed to
accomplish. (ii) The arithmetic overflow also went undetected
by all the tested tools (except ZepScope), as it could only be
triggered under extreme scenarios (i.e., lines 13 - 15 in the
motivating example shown in Section 2.2). (iii) The rest of
the issues that require AC-related domain knowledge, such
as those from Ethereum Commonwealth [20], are difficult to
detect with existing tools.

Thus, ZepScope significantly outperforms in detecting the
vulnerability types that, although covered by SOTA tools, are
related to OpenZeppelin checks. This superior performance
is attributed to ZepScope’s unique approach of understanding
OpenZeppelin facts and leveraging them for detection.

6.2 RQ2: Accuracy and Performance
In this RQ, we further evaluate ZepScope’s accuracy and
performance on a large set of real-world smart contracts col-
lected from three mainstream Ethereum-compatible chains:
Ethereum, BSC, and Polygon.

This large-scale dataset was assembled from the top 15,000
contracts of each chain, ranked by the balances of the con-
tracts. Note that this crawling process was conducted through
the APIs of Etherscan, BscScan, and PolygonScan, which
would have download limits and failures. We thus downloaded
all the contracts we could and compiled them for further anal-
ysis. After excluding the sections with download and compila-
tion failures, we obtained 13,984, 12,486, and 9,955 contracts
in Ethereum, BSC, and Polygon, respectively. We analyzed
these contracts using ZepScope with 60 parallel processes
and set the maximum scanning time to 5 minutes each.

As shown in Table 2, ZepScope successfully analyzed
35,882 contracts while encountering failures in 543 contracts.
The failures on all three chains were primarily due to time-
outs. Ultimately, ZepScope reported 47,431 functions poten-
tially containing insecure OpenZeppelin code out of the total
2,750,165 functions analyzed. This implies that ZepScope
generates around one warning per contract, which is entirely
manageable for further manual inspection. Furthermore, based

0 1 2 3 4 >4

Ethereum 7861 1680 892 1927 664 810

BSC 4541 1748 5369 473 98 23

Polygon 4031 945 2643 792 841 544

0

2000

4000

6000

8000

#
 c

o
n
tr

ac
ts

Figure 8: The distribution of warnings on 35,882 contracts.

on the severity levels of different facts as classified in §4.6,
we categorized these warnings into 3,015 high-level warnings,
5,161 medium-level warnings, and 39,255 low-level warnings
to facilitate a more principled analysis in §6.2.

Accuracy Evaluation. Due to the absence of ground truth in
such a large-scale dataset, we randomly sampled 100 warn-
ings from each chain and conducted a careful manual inspec-
tion on them. To ensure correctness, the results were reviewed
by two of the authors. In case of a disagreement between the
two authors, a third author was consulted. Among the total
of 300 warnings inspected, we confirmed that 31 were false
positives.Table 2 presents the detailed accuracy results, show-
ing that ZepScope performed best in the BSC contracts, with
an accuracy of 95%, while the accuracy for Ethereum and
Polygon were 84% and 90%, respectively. The lower accuracy
for Ethereum can be attributed to its contracts being more
complex compared to the other chains, often featuring more
intricate logic to extend the OpenZeppelin code. Overall, the
accuracy of ZepScope stands at 89.67% across all the sampled
contracts. Moreover, not every contract triggers a warning.
We analyzed the distribution of warnings on each chain, as
shown in Figure 8, and found that 45.8% of the contracts
(56.8% for the contracts on Ethereum) do not require manual
confirmation because they do not report any warnings.

We further categorize the reasons for the 31 false positives
into two types:check without revert and check in equivalent
format. For details, readers may refer to Appendix A.

Performance Evaluation. During the experiment, we also
recorded the scanning time of ZepScope while analyzing con-
tracts in the dataset. Since the contracts were pre-compiled,
the compilation time is not included. In total, ZepScope took
25,734 seconds to scan the 36,425 contracts with 60 parallel
processes. That said, it requires 42.39 seconds on average for
ZepScope to analyze a contract without considering parallel
processing. This suggests that ZepScope is quite fast, making
it suitable for large-scale on-chain scanning.

6.3 RQ3: Security Findings
In this RQ, we present three notable security findings obtained
from the large-scale experiment conducted in §6.2.

6.3.1 Newly Identified Vulnerabilities

We conduct a manual analysis to investigate whether Zep-
Scope can detect OpenZeppelin code issues that belong to
the definition of vulnerabilities. Specifically, we first filter the
high-level warnings reported by ZepScope. We then manually
review some warnings related to role checks, which could
lead to significant consequences. Eventually, we identified 15
new vulnerabilities. Among them, three could directly transfer
or mint tokens to gain profits, 11 could burn victims’ tokens
causing financial loss and indirectly benefiting attackers, and
the last one could render the contract ownerless. In total, these
15 vulnerable contracts could cause a financial loss of around
$439,333. Current methods mostly rely on restricted prede-
fined patterns and critical operations, which may not cater
to the diverse requirements found across different business
logic scenarios, e.g., different access control requirements for
burn/mint (e.g., ERC20-mint, flashloan, buy, and airdrop). In
contrast, ZepScope utilizes the facts mined from the Open-
Zeppelin library to effectively address complex scenarios and
detect these vulnerabilities.
Case Study 1. As illustrated in Figure 11 (in Appendix B),
there is a vulnerable transferOwnership function in a con-
tract A. Its developers set this function as a public function
without incorporating any role check, allowing anyone to call
this function to change the contract’s owner. Furthermore, the
contract contains functions (e.g., setTradingStatus) with
the onlyOwner modifier, which could be bypassed by calling
the transferOwnership function.
Case Study 2. As depicted in Figure 12 (in Appendix B), a
vulnerable burn function is present in a contract B. The burn
function is designed to be called by the contract owner or the
token owner to burn the tokens. However, this burn function
lacks any permission checks within its function definition,
enabling anyone to call this function to burn others’ tokens,
potentially leading to significant asset loss.
Ethics. Due to the reasons outlined in teEther [36], we are
unable to reach out to the developers of these vulnerable
contracts. Fortunately, these contracts have not shown much
transaction activity, indicating that the financial stakes have
been relatively low, thus minimizing potential losses. In this
paper, we only provide code snippets without disclosing the
contract names to prevent potential attacks.

6.3.2 Pervasive Absence of Zero Address Checks

In the OpenZeppelin library, certain functions execute
checks on the input address parameter to prevent misuse of
address(0). For example, as illustrated in Figure 4 within
the _transfer function of ERC20, the parameters from and

1 f u n c t i o n buy (address _ r e f e r) payable p u b l i c
r e t u r n s (bool) {

2 r e q u i r e (_swSale && block . number <=
saleMaxBlock , "Transaction recovery") ;

3 r e q u i r e (msg . va lue >= 0 . 0 1 ether , "
Transaction recovery") ;

4 uint256 _msgValue = msg . va lue ;
5 uint256 _ t ok en = _msgValue . mul (s a l e P r i c e) ;
6 _mint (_msgSender () , _ to ke n) ;
7 i f (_msgSender () != _ r e f e r&&_ r e f e r != address (0)

&&_ b a l a n c e s [_ r e f e r] >0) {
8 u i n t r e f e r T o k e n = _ t ok en . mul (

_ r e f e r T o k e n) . d i v (1 0 0 0 0) ;
9 u i n t r e f e r E t h = _msgValue . mul (_ r e f e r E t h

) . d i v (1 0 0 0 0) ;
10 _mint (_ r e f e r , r e f e r T o k e n) ;
11 address (uint160 (_ r e f e r)) . t r a n s f e r (

r e f e r E t h) ;
12 }
13 re turn true ;
14 }

Figure 9: The buy function in Shiba_Inu.

to are required not to be address(0) to (i) avoid uninten-
tional permanent locking of tokens due to human errors or
software glitches; (ii) differentiate the _transfer function
from the burn function, clearly indicating that transferring
to a zero address is erroneous behavior rather than inten-
tional; and (iii) avoid inaccuracies in the total supply figures
while also preventing extra gas fee loss. Similar checks for
address(0) are necessary in other functions such as mint
and transferOwnership.

Nonetheless, ZepScope identifies numerous functions that
omit the address(0) check. Through our analysis of Zep-
Scope’s results, we discovered that 22,448 functions lack the
address(0) check, marking a common negligence. While
the omission of an address(0) check cannot be directly ex-
ploited by attackers, it can pave the way for phishing attacks.
For example, attackers might deceive users into sending funds
to a zero address (seemingly harmless) through a counterfeit
website. As tokens sent to the zero address are consequently
removed from circulation, the overall token supply decreases.
This induced scarcity can potentially augment the value of
the remaining tokens, benefiting attackers who hold these
tokens. Therefore, we recommend developers incorporate
address(0) checks in OpenZeppelin code to mitigate phish-
ing attacks and standardize the transaction process.

6.3.3 A Campaign of Intentionally Loosing the Checks

Besides vulnerabilities and the pervasive absence of zero
address checks, we identify an interesting case where Open-
Zeppelin checks are intentionally loosened, yet without caus-
ing security consequences. As depicted in Figure 9, the buy
function in a contract named Shiba_Inu invokes the _mint
function (line 6 and 10) without any access control, which

Ethereum BSC Polygon

Low 82.04% 88.15% 78.70%

Medium 11.28% 10.63% 10.69%

High 6.69% 1.23% 10.61%

1%

10%

100%

W
ar

n
in

g
P
e
rc

e
n
ta

ge

Figure 10: Percentage of warnings at different levels on 3 chains.

initially violates OpenZeppelin checks. Fortunately, this func-
tion also incorporates a custom msg.value check in line 3,
requiring the sender to transmit an ETH or BNB amount larger
than 0.1 to the contract to gain the capability of minting a
certain amount of the contract token. Therefore, according to
our security consequence validation in §5.4, this issue only
qualifies as a low-level warning, urging further comparison be-
tween the value of the sent ETH/BNB and the minted tokens.
Nonetheless, this example illustrates that, at times, developers
may loosen the default checks to accommodate their own
logic, which should be safeguarded by their own checks.

Indeed, the scenario presented in Figure 9 is not an isolated
case. We discovered that BSC alone hosts 255 buy functions
exhibiting similar logic. They are all crafted for extensive
promotion of the tokens reliant on this function, suggesting
that this practice is part of a campaign or a common approach
for such airdrop-like token sales. Moreover, concerning the
extra msg.value check, ZepScope identifies a total of 8,061
functions containing it, indicating that the function can only
be invoked with msg.value greater than 0. This reveals that
such general checks, extending beyond OpenZeppelin’s de-
fault checks, are prevalent in smart contracts, further under-
scoring the importance of our security consequence validation
as discussed in §5.4.

6.4 RQ4: Cross-Chain Result Comparison

In this RQ, we explore the differences in OpenZeppelin se-
curity checks across three chains. To this end, we utilize the
results presented in §6.2 and conduct a cross-chain compar-
ison. We calculate the proportion of warnings at different
levels on three chains and depict the result in Figure 10.

Firstly, we notice that BSC outpaces the other two chains
with the highest proportion of low-level warnings at 88.15%.
This surge in BSC’s low-level warnings may be attributed
to the frequent omission of address(0) checks, which fall
under the low-level category. Secondly, Ethereum presents a
warning distribution with 82.04% at low, 11.28% at medium,
and 6.69% at high levels. A significant factor to Ethereum’s
warning landscape is the presence of numerous legacy con-

tracts. For example, we found that 1,473 out of 13,984 con-
tracts on Ethereum were deployed before 2019, and 1,408
contracts were deployed before 2018. These contracts might
have been deployed before the emergence of OpenZeppelin li-
braries, thereby resulting in worse security protection. Thirdly,
Polygon reports 78.70%, 10.69%, and 10.61% for low, me-
dian, and high warning levels, respectively. A notable obser-
vation here is the prevalent use of the functionCallValue
function in Polygon. While OpenZeppelin libraries have
checks for this function in place, Polygon seems to bypass
them, potentially influencing its warning distribution.

7 Related Work

In this section, we briefly review prior work in the domain
of smart contract analysis, focusing on static analysis-based
vulnerability detection and code clone detection.

General static analysis tools, such as Slither [28], Van-
dal [23], Ethainter [22], Zeus [33], Securify [50], and
4naly3er [45], have been developed to identify a range of
vulnerabilities in smart contracts. For detecting vulnerabili-
ties related to variable boundary values, symbolic execution
tools such as Manticore [43], Mythril [14], Halmos [10], and
Pyrometer [16] have emerged. These tools typically facili-
tate the analysis of variable boundaries, either directly from
source code or from the compiled Solidity bytecode. There
exist specialized static detectors tailored for detecting certain
classes of vulnerabilities, including reentrancy [49], arith-
metic overflow [48], state inconsistency [21], and access con-
trol issues [27,31,40]. Formal verification tools, like Verx [44]
and Verismart [46], have been developed to ascertain if a given
smart contract aligns with its specified requirements.

Recent investigations into the ecosystem’s code prac-
tices reveal that code cloning is prevalent in smart con-
tracts [24,29,35,38,39,47]. Notably, Khan et al. [34] discerned
that a staggering 79.2% of code on the Ethereum platform
comprises clones. Based on this finding, Gao et al. [30] and
He et al. [32] employed code clone techniques to uncover vul-
nerabilities within the smart contract ecosystem. While these
studies offer valuable insights, they predominantly concen-
trate on type-2 and type-3 clones, thereby overlooking subtle,
semantic-level changes in code that could hold critical impor-
tance. Our work, based on the code facts extracted by MINER,
is the first to systematically study insecure OpenZeppelin
code used in real-world contracts.

8 Conclusion

In this paper, we presented the first systematic study of inse-
cure OpenZeppelin code used in real-world smart contracts.
To achieve this, we proposed ZepScope, a novel tool for
extracting code check facts from OpenZeppelin and subse-
quently identifying fact violations in real-world contracts. In

a benchmark experiment with 51 ground-truth security bugs,
ZepScope significantly outperformed in detecting the vul-
nerability types that, although covered by SOTA tools, are
related to OpenZeppelin checks. When applied to 35,882 lead-
ing contracts across three mainstream blockchains, ZepScope
demonstrated an accuracy of 89.67% and yielded insightful
results. Future work includes improving the accuracy of equiv-
alence checks and target function identification. We also plan
to extend our methodology to other smart contract libraries.

Acknowledgements

We thank the anonymous shepherd and reviewers for their con-
structive feedback. This research is supported by the National
Research Foundation, Singapore, and DSO National Labora-
tories under the AI Singapore Programme (AISG Award No:
AISG2-GC-2023-008), the National Research Foundation,
Singapore, and the Cyber Security Agency under its National
Cybersecurity R&D Programme (NCRP25-P04-TAICeN).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore
and Cyber Security Agency of Singapore.

References
[1] An attacker can cause an overflow in the flashloan function. https://

github.com/code-423n4/2021-05-nftx-findings/issues/75,
Oct 2023.

[2] Blocksec attack analysis. https://twitter.com/BlockSecTeam/
status/1692533280971936059, Oct 2023.

[3] Code4rena audit reports. https://code4rena.com/reports, Oct
2023.

[4] crytic-compile. https://github.com/crytic/crytic-compile,
Oct 2023.

[5] Defi hacks. https://github.com/SunWeb3Sec/DeFiHackLabs,
Oct 2023.

[6] Erc-20. https://ethereum.org/en/developers/docs/
standards/tokens/erc-20/, Oct 2023.

[7] Erc-721. https://ethereum.org/en/developers/docs/
standards/tokens/erc-20/, Oct 2023.

[8] Erc-777. https://ethereum.org/en/developers/docs/
standards/tokens/erc-777/, Oct 2023.

[9] Ethereum whitepaper. https://ethereum.org/
669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_
-_Buterin_2014.pdf, Oct 2023.

[10] Halmos. https://github.com/a16z/halmos, Oct 2023.

[11] Kev0. https://bscscan.io/address/
0x6835E6539bBD0975a324331D4EBd26DC16031F68, Oct 2023.

[12] Lifeforms. https://etherscan.io/address/
0x61f68f7db9dee422991f410a8d863f538181d7c1#code, Oct
2023.

[13] Metascan. https://metatrust.io/metascan, Oct 2023.

[14] Mythril. https://github.com/Consensys/mythril, Oct 2023.

[15] Openzeppelin. https://www.openzeppelin.com, Oct 2023.
[16] Pyrometer. https://github.com/nascentxyz/pyrometer, Oct

2023.

[17] Sherlock audit. https://github.com/sherlock-audit, Oct 2023.

[18] Tittwer report 1 in peckshield. https://twitter.com/peckshield/
status/1640847953098334208, Oct 2023.

[19] Tittwer report 2 in peckshield. https://twitter.com/peckshield/
status/1654667621139349505, Oct 2023.

[20] Callisto smart-contract auditing department. https://github.com/
EthereumCommonwealth/Auditing, May 2024.

[21] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher
Kruegel, and Giovanni Vigna. Sailfish: Vetting smart contract state-
inconsistency bugs in seconds. In Proc. IEEE Symposium on Security
and Privacy, 2022.

[22] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and
Yannis Smaragdakis. Ethainter: a smart contract security analyzer for
composite vulnerabilities. In Proc. ACM PLDI, 2020.

[23] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gau-
thier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A
scalable security analysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[24] Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin
Zheng. Understanding code reuse in smart contracts. In Proc. IEEE
SANER, 2021.

[25] Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and
Giovanni Vigna. Understanding security issues in the NFT ecosystem.
In Proc. ACM CCS, 2022.

[26] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. Em-
pirical review of automated analysis tools on 47,587 Ethereum smart
contracts. In Proc. ACM/IEEE ICSE, 2020.

[27] Yuzhou Fang, Daoyuan Wu, Xiao Yi, Shuai Wang, Yufan Chen, Mengjie
Chen, Yang Liu, and Lingxiao Jiang. Beyond “protected” and “private”:
An empirical security analysis of custom function modifiers in smart
contracts. In Proc. ACM ISSTA, 2023.

[28] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15. IEEE, 2019.

[29] Zhipeng Gao. When deep learning meets smart contracts. In Proceed-
ings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pages 1400–1402, 2020.

[30] Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo, and John Grundy.
Checking smart contracts with structural code embedding. IEEE Trans-
actions on Software Engineering, 2020.

[31] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. AChecker: Stati-
cally detecting smart contract access control vulnerabilities. In Proc.
IEEE/ACM ICSE, 2023.

[32] Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. Char-
acterizing code clones in the Ethereum smart contract ecosystem. In
Proc. Springer FC, 2020.

[33] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS:
Analyzing safety of smart contracts. In Proc. ISOC NDSS, 2018.

[34] Faizan Khan, Istvan David, Daniel Varro, and Shane McIntosh. Code
cloning in smart contracts on the Ethereum platform: An extended repli-
cation study. IEEE Transactions on Software Engineering, 49(4):2006–
2019, 2022.

[35] Masanari Kondo, Gustavo A Oliva, Zhen Ming Jiang, Ahmed E Hassan,
and Osamu Mizuno. Code cloning in smart contracts: a case study on
verified contracts from the Ethereum blockchain platform. Empirical
Software Engineering, 25:4617–4675, 2020.

[36] Johannes Krupp and Christian Rossow. teEther: Gnawing at ethereum
to automatically exploit smart contracts. In Proc. USENIX Security
Symposium, 2018.

https://github.com/code-423n4/2021-05-nftx-findings/issues/75
https://github.com/code-423n4/2021-05-nftx-findings/issues/75
https://twitter.com/BlockSecTeam/status/1692533280971936059
https://twitter.com/BlockSecTeam/status/1692533280971936059
https://code4rena.com/reports
https://github.com/crytic/crytic-compile
https://github.com/SunWeb3Sec/DeFiHackLabs
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-777/
https://ethereum.org/en/developers/docs/standards/tokens/erc-777/
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://github.com/a16z/halmos
https://bscscan.io/address/0x6835E6539bBD0975a324331D4EBd26DC16031F68
https://bscscan.io/address/0x6835E6539bBD0975a324331D4EBd26DC16031F68
https://etherscan.io/address/0x61f68f7db9dee422991f410a8d863f538181d7c1#code
https://etherscan.io/address/0x61f68f7db9dee422991f410a8d863f538181d7c1#code
https://metatrust.io/metascan
https://github.com/Consensys/mythril
https://www.openzeppelin.com
https://github.com/nascentxyz/pyrometer
https://github.com/sherlock-audit
https://twitter.com/peckshield/status/1640847953098334208
https://twitter.com/peckshield/status/1640847953098334208
https://twitter.com/peckshield/status/1654667621139349505
https://twitter.com/peckshield/status/1654667621139349505
https://github.com/EthereumCommonwealth/Auditing
https://github.com/EthereumCommonwealth/Auditing

[37] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger.
From word embeddings to document distances. In Proceedings of
the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, 2015.

[38] Han Liu, Zhiqiang Yang, Yu Jiang, Wenqi Zhao, and Jiaguang Sun.
Enabling clone detection for ethereum via smart contract birthmarks.
In 2019 IEEE/ACM 27th International Conference on Program Com-
prehension (ICPC), pages 105–115. IEEE, 2019.

[39] Han Liu, Zhiqiang Yang, Chao Liu, Yu Jiang, Wenqi Zhao, and Ji-
aguang Sun. Eclone: Detect semantic clones in Ethereum via symbolic
transaction sketch. In Proc. ACM FSE, 2018.

[40] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. Finding permission
bugs in smart contracts with role mining. In Proc. ACM ISSTA, 2022.

[41] Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu K Lahiri, and Isil
Dillig. Demystifying loops in smart contracts. In Proc. IEEE/ACM
ASE, 2020.

[42] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[43] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gus-
tavo Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Man-
ticore: A user-friendly symbolic execution framework for binaries and
smart contracts. In Proc. ACM/IEEE ASE, 2019.

[44] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In Proc. IEEE Symposium on Security and Privacy, 2020.

[45] Picodes. 4naly3er. https://github.com/Picodes/4naly3er, Oct
2023.

[46] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh.
VeriSmart: A highly precise safety verifier for Ethereum smart contracts.
In Proc. IEEE Symposium on Security and Privacy, 2020.

[47] Kairan Sun, Zhengzi Xu, Chengwei Liu, Kaixuan Li, and Yang Liu. De-
mystifying the composition and code reuse in Solidity smart contracts.
In Proc. ACM FSE, 2023.

[48] Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and
Yu Feng. SolType: Refinement types for arithmetic overflow in Solidity.
In Proc. ACM POPL, 2022.

[49] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. SmartCheck:
Static analysis of Ethereum smart contracts. In Proceedings of the 1st
international workshop on emerging trends in software engineering for
blockchain, pages 9–16, 2018.

[50] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In Proc. ACM CCS, 2018.

[51] Xiao Yi, Daoyuan Wu, Lingxiao Jiang, Yuzhou Fang, Kehuan Zhang,
and Wei Zhang. An empirical study of blockchain system vulnerabili-
ties: Modules, types, and patterns. In Proc. ACM FSE, 2022.

[52] Xiao Liang Yu, Omar Al-Bataineh, David Lo, and Abhik Roychoudhury.
Smart contract repair. ACM Transactions on Software Engineering and
Methodology (TOSEM), 29(4):1–32, 2020.

[53] Xiao Liang Yu, Omar Al-Bataineh, David Lo, and Abhik Roychoudhury.
Smart contract repair. ACM Trans. Softw. Eng. Methodol., 29(4), sep
2020.

[54] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais. SoK: Decentralized
finance (DeFi) incidents. In Proc. IEEE Symposium on Security and
Privacy, 2023.

Appendix

A False Positive Analysis

Among the 31 false positives mentioned in §6.2, we have
classified them into two categories based on their root causes:

Check without Revert (13 of 31). False positives in this cate-
gory arise from the check extraction process. During our anal-
ysis, we extract the checks from the require, if-revert,
or modifier statements. For the if-revert checks, if the
function does not revert the exception, ZepScope does not
identify it as a check. For example, the safeMint function in
the contract LifeForms [12] uses the if statement to judge
the existence of the tokenId, which can not be considered as
a check in ZepScope. This leads to a false positive.

Check in Equivalent Format (18 of 31). This category en-
compasses false positives resulting from developers imple-
menting equivalent checks. While we’ve taken into account
numerous equivalent role checks in §5, corner cases remain.
An illustrative example is the lzReceive function in the Kev0
contract [11]. It checks roles by evaluating if msg.sender
matches a specific, authenticated address. Since we cannot
conclusively ascertain that the judgment tied to msg.sender
is authentic, we cannot confirm that the role check is secure.
This results in a reported false positive.

B Figures of Two Case Studies

1 f u n c t i o n t r a n s f e r O w n e r s h i p (address newOwner)
p u b l i c v i r t u a l {

2 r e q u i r e (newOwner != address (0) , "Ownable:
new owner is the zero address") ;

3 emit O w n e r s h i p T r a n s f e r r e d (owner , newOwner) ;
4 owner = newOwner ;
5 }

Figure 11: Case study 1 from the contract A.

1 f u n c t i o n burn (u i n t _ i d) p u b l i c {
2 _burn (_ i d) ;
3 }
4 f u n c t i o n _burn (uint256 t o k e n I d) i n t e r n a l

v i r t u a l {
5 address owner = ERC721 . ownerOf (t o k e n I d) ;
6 _ b e f o r e T o k e n T r a n s f e r (owner , address (0) ,

t o k e n I d) ;
7 owner = ERC721 . ownerOf (t o k e n I d) ;
8 d e l e t e _ t o k e n A p p r o v a l s [t o k e n I d] ;
9 unchecked { _ b a l a n c e s [owner] −= 1 ; }

10 d e l e t e _owners [t o k e n I d] ;
11 emit Transfer (owner , address (0) , t o k e n I d) ;
12 _ a f t e r T o k e n T r a n s f e r (owner , address (0) ,

t o k e n I d) ;
13 }

Figure 12: Case study 2 from the contract B.

https://github.com/Picodes/4naly3er

Table 4: The impact of each step of similarity matching.

Component Ethereum BSC Polygon

ZepScope (baseline) 16,873 14,444 16,114
W/O Message Matching 17,183 14,538 16,345
W/O Check Matching 64,278 57,956 66,178

Table 3: The impact of the threshold Terror.

Terror Ethereum BSC Polygon Average

0.8 16,842 14,410 16,108 15,787
0.9 16,873 14,444 16,114 15,810

14000

15000

16000

17000

18000

19000

0.5 0.6 0.7 0.8 0.9

Ethereum BSC Polygon Average

#warnings

𝑇𝑠

Figure 13: The impact of the threshold Ts.

C Parameter Analysis

C.1 Impacts of the Threshold
In §5.3.1, we introduced two thresholds: Terror and Ts. Here
we further investigate how different threshold values could
impact the final results. For Terror, as shown in Table 3, we
evaluated two major threshold values, 0.8 and 0.9. We can
see that both values of Terror present similar warning numbers.
Since we need to be conservative about Terror, we eventually
chose Terror = 0.9 for our experiments. For the threshold Ts,
we explored values ranging from 0.5 to 0.9, with the outcomes
illustrated in Figure 13. Notably, the number of warnings
increases sharply when Ts moves from 0.6 to 0.7. To avoid
excessive false positives, we set Ts to 0.6 in our experiments.

C.2 Impacts of the Dynamic Factor
As described in §5.3.2, we introduced a dynamic factor F
to enforce structured similarity matching across the varying
lengths of checks. Here we compare the performance of this
dynamic factor against different fixed factors, with results
presented in Figure 14. We can see that the dynamic factor
consistently yielded more warnings than the fixed factors,
demonstrating its ability to adapt to varying lengths of checks.
For example, setting a fixed factor at 0.5 requires satisfying
only 2 out of 4 elements, which might overlook critical errors.
Conversely, a fixed factor of 0.9 demands that all elements
be met, even when there are as many as 5 checks, potentially
resulting in an increase in false positives. In contrast, the
adaptability of the dynamic factor allows for better perfor-
mance, effectively balancing different scenarios.

D Ablation Study on Similarity Matching

When detecting insecure OpenZeppelin code in §5.3, we in-
troduced a two-step similarity matching process to compare
the code checks with the facts mined from the OpenZeppelin
library. Here, we conduct an ablation study to evaluate the im-
pact of each step in the similarity matching process. As shown
in Table 4, since the error message matching step serves as a
pre-filter to reduce mismatches in the following step and has
a high threshold, removing it slightly increased the number of
warnings. In contrast, the check matching step is the core of
the similarity matching process, responsible for the majority
of the warnings. Hence, removing it significantly increased
the number of warnings. The two steps are complementary to
each other and both are essential for the final results.

#warnings

F

6500

8500

10500

12500

14500

16500

0.5 0.6 0.7 0.8 0.9 Dynamic

Factor

Ethereum BSC Polygon Average

Figure 14: The dynamic factor F vs. different fixed factors.

	Introduction
	Background
	OpenZeppelin for Smart Contracts
	A Motivating Example

	ZepScope Overview
	Mining OpenZeppelin Function Checks
	The Challenges in Extracting Facts
	Inter-procedural Alias Analysis
	Extracting Function Definition Facts
	Extracting Function Call Facts
	Unifying Facts and Minor Adjustments
	Understanding Facts as A Taxonomy

	Detecting Insecure OpenZeppelin Code in Smart Contracts
	Identifying the Target Functions
	Extracting Checks within Target Functions
	Matching the Code Checks with Facts
	Matching Error Messages
	Matching the Checks
	Handling the Scenarios with Empty Facts

	Validating Security Consequences

	Evaluation
	RQ1: Comparison with the SOTA Tools
	RQ2: Accuracy and Performance
	RQ3: Security Findings
	Newly Identified Vulnerabilities
	Pervasive Absence of Zero Address Checks
	A Campaign of Intentionally Loosing the Checks

	RQ4: Cross-Chain Result Comparison

	Related Work
	Conclusion
	False Positive Analysis
	Figures of Two Case Studies
	Parameter Analysis
	blackImpacts of the Threshold
	blackImpacts of the Dynamic Factor

	Ablation Study on Similarity Matching

