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State-of-the-art Android Static Tools

« AmanDroid [CCS’14, 413 cites| and FlowDroid [PLDI’ 14, 1,867 cites]

o Both perform the whole-app inter-procedural analysis
that starts from all entry points and ends in all reachable code nodes.
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Comprehensive: all forward analysis could be built upon

Ignore the need of targeted analysis, and often Expensive




* For relatively small apps:

Apps under 5MB Apps with an average size of 8.4MB
In AppContext [ICSE5] INn HSOMiner [NDSS™17]
« 16.1% of 1,002 apps exceeded « 8.4% of 3K apps exceeded
the 80-minute timeout; the 60-minute timeout;
« 11lmin each for the rest of apps. « 13min each for the rest of apps.

* Even with 730 GB of RAM and 64 CPU cores:
o “the server sometimes used all its memory, running on all cores for more than
24 hours to analyze one single Android app” [ICSE’15].
* Industrial reports:
o “This code runs for more than 5 hours to analyze an apk that is only 12.4M” #14

o “Although I kept the analysis running for 72 hrs (with 28 GB memory), it seems like
it's stuck being unable to find any entry points” FlowDroid Issue #310
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https://github.com/arguslab/Argus-SAF/issues/14
https://github.com/secure-software-engineering/FlowDroid/issues/310

The Upscaling Trend of Modern App Sizes

A summary of average and median app sizes over a period of five years.

Year | Average Size | Median Size | # Samples
2014 13.8MB 8.4MB 2,840
2015 18.8MB 12.4MB 1,375
2016 21.6MB 16.2MB 3,510
2017 32.9MB 30.0MB 1,706
2018 42.6MB 38.0MB 3,178

X3 X 4.5



Generating Whole-app Call Graphs for Modern Apps

 With modern apps, we re-evaluate the cost of generating a whole-app
call graph using FlowDroid 2.7.1 (without the subsequent dataflow analysis):

o 144 modern apps with the average size of 41.5MB, under the same hardware
configuration as for our experiments of Amandroid and BackDroid later.
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« Explore a new paradigm of targeted (vs. the traditional whole-app)
Inter-procedural analysis that can

o skip irrelevant code and focus only on the flows of security-sensitive sink APIs.

* Propose a new technique called on-the-fly bytecode search,

o Which searches the disassembled app bytecode plaintext just in time when a
caller method needs to be located so that it can guide targeted (and backward)
Inter-procedural analysis step by step until reaching entry points.

* \We combine this technique with the traditional program analysis
and develop a static analysis tool called BackDroid
o for the efficient and effective targeted security vetting of modern Android apps.



An Overview of BackDroid’s Analysis Process
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BYtECOde Searches in Reallty (pls refer to paper for details)

* The (basic) method signature-based search:
o For static, private, and constructor callee methods that have only one signature
o Work well for child methods by launching one more search with the child class

» Advanced search with forward object taint analysis:

o For complex situations with Java polymorphism (super classes and interfaces),
callbacks (e.g., onClick), and asynchronous flows (e.g., AsyncTask.execute).

o First search the callee class’s object constructors, and perform forward object
taint analysis until reaching caller sites with the tainted object propagated into.

» Several special search mechanisms:
o Arecursive search for static initializers (i.e., static <clinit>() methods)
o Atwo-time ICC search for inter-component communication (intent-related 1CC)
o An on-demand search for Android lifecycle handlers (e.g., onStart and onResume)
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Experimental Setup

First crawl a set of
3,178 modern
popular apps.

Then search for the
apps with all crypto
and SSL sink APIs:

144 apps.

Intel i7-4790 CPU
(3.6GHZ, 8 cores);

16GB of physical
memory;

VM heap space:
12GB for Amandroid
4GB for BackDroid.

Tool
configuration

* The default Amandroid
configuration:
* (per-component)
timeout = 2m
* third party_lib_file
= /liblist.txt

* Per-app timeout:
300m (or 5 hours)
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Performance and Detection Results

* Performance: « Maintain close detection
o 37 times faster (2.13min vs. 78.15min) ~ effectiveness for the 30 vulnerable
o FlowDroid’s CG time was 9.76min apps detected by Amandroid:
63% 35% o Uncovered 22 of 24 true positives and
50 : : : - - —
) a7 == BackDroid avoided six false positives
wl| B == Amandroid | » 54 additional apps with potentially
Insecure crypto and SSL issues:
30 . .
27 7 o One half were the timed-out failures;
s . = o But the rest were due to the skipped
20} : . . .
L6 v libraries, unrobust handling of
Lol . asynchronous flows/callbacks, and
; occasional errors in Amandroid’s
0 0 0 whole-app analysis.

0 Om-1Im Im-5m5m-10m 10-30m 30-100m100-300m Timeout
Time Required by BackDroid and Amandroid per App 11



Thank Youl

* BackDroid Is open-sourced at https://github.com/VVPRLab/BackDroid.

* \We are cleaning and refactoring the code of BackDroid to make it
easy-to-use and extensible.

 \We are also evolving BackDroid so that it can be used as a generic SDK
to support customization for different problems.

Questions?
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https://github.com/VPRLab/BackDroid

