When Program Analysis Meets Bytecode Search:
Targeted and Efficient Inter-procedural Analysis of
Modern Android Apps in BackDroid

Daoyuan Wul, Debin Gao?, Robert H. Deng?, and Rocky K. C. Chang?3
https://github.com/VPRLab/BackDroid

2 3 Q
. = b
i SMU N
LN & THE HONG KONG
. . @, f}ﬁ’gf;PRCS)IBrEYMANAGEMENT POLYTECHNIC UNIVERSITY
A& LR F 345 1 T A5

The Chinese University of Hong Kong

https://github.com/VPRLab/BackDroid

State-of-the-art Android Static Tools

« AmanDroid [CCS’14, 413 cites| and FlowDroid [PLDI’ 14, 1,867 cites]

o Both perform the whole-app inter-procedural analysis
that starts from all entry points and ends in all reachable code nodes.

= =

Comprehensive: all forward analysis could be built upon

Ignore the need of targeted analysis, and often Expensive

* For relatively small apps:

Apps under 5MB Apps with an average size of 8.4MB
In AppContext [ICSE5] INn HSOMiner [NDSS™17]
« 16.1% of 1,002 apps exceeded « 8.4% of 3K apps exceeded
the 80-minute timeout; the 60-minute timeout;
« 11lmin each for the rest of apps. « 13min each for the rest of apps.

* Even with 730 GB of RAM and 64 CPU cores:
o “the server sometimes used all its memory, running on all cores for more than
24 hours to analyze one single Android app” [ICSE’15].
* Industrial reports:
o “This code runs for more than 5 hours to analyze an apk that is only 12.4M” #14

o “Although I kept the analysis running for 72 hrs (with 28 GB memory), it seems like
it's stuck being unable to find any entry points” FlowDroid Issue #310

3

https://github.com/arguslab/Argus-SAF/issues/14
https://github.com/secure-software-engineering/FlowDroid/issues/310

The Upscaling Trend of Modern App Sizes

A summary of average and median app sizes over a period of five years.

Year | Average Size | Median Size | # Samples
2014 13.8MB 8.4MB 2,840
2015 18.8MB 12.4MB 1,375
2016 21.6MB 16.2MB 3,510
2017 32.9MB 30.0MB 1,706
2018 42.6MB 38.0MB 3,178

X3 X 4.5

Generating Whole-app Call Graphs for Modern Apps

 With modern apps, we re-evaluate the cost of generating a whole-app
call graph using FlowDroid 2.7.1 (without the subsequent dataflow analysis):

o 144 modern apps with the average size of 41.5MB, under the same hardware
configuration as for our experiments of Amandroid and BackDroid later.

45

40
35¢ 34 .
The median time of s0|| @& | 24% of the apps
call graph generation & 2s| | reached the timeout
in FlowDroid is still 5 20| 2 I of 5 hours, causing
10
I i

around 10 minutes 15 1 no result for those
(9.76min) per app 10| | 34 modern apps

5t

Om-5m 5m-10m 10m - 20m 20m-30m 30m-100m Timeout
Time Required by FlowDroid for Call Graph Generation 5

« Explore a new paradigm of targeted (vs. the traditional whole-app)
Inter-procedural analysis that can

o skip irrelevant code and focus only on the flows of security-sensitive sink APIs.

* Propose a new technique called on-the-fly bytecode search,

o Which searches the disassembled app bytecode plaintext just in time when a
caller method needs to be located so that it can guide targeted (and backward)
Inter-procedural analysis step by step until reaching entry points.

* \We combine this technique with the traditional program analysis
and develop a static analysis tool called BackDroid
o for the efficient and effective targeted security vetting of modern Android apps.

An Overview of BackDroid’s Analysis Process

-
- B

N\
Original

Bytecode

Dumped\

dexdump

\ 4

Bytecode

—— |
1 virtualinvoke $r4.<com.free.vpn.unblock sites.prox ybrowser.m.o: void run()>()
Onsthe-ly Forward
byteco

\Plaintext

A Y
Source™,
\
for search .

Byte C O (}Q! S e arC h | virtualinvoke $r10.<java.net. ServerSocket: void bind(java.net.Socket Address)> (r321) S | n k A P I

E ntry fu n Ctl O n <com.free. vpn.unblock. sites. proxybrowser.activity. SplashScreen: void onRe\ume()b

virtualinvoke $rl 1.<com.free.vpn.unblock. sites.proxybrowser.activity.ax: android.os. AsyncTask execute(java.lang.Object|])>($r12) virtuainvoke rll.<com.free.

<com.free. vpn.unblock sites. proxybrowser.agtivity. ax: void onPostExecute(java.lang.Object)>
h |

virtualinvoke $r3.<com.free.vpn.unblock. sites.proxybrowser.activity. SplashScreen: void c()>()

<com.free.vpn.unblock. si lcs_proqu browser.activity.SplashScreen: void i:t)b
a

virtualinvoke $rl.<com. free.vpn.unblock.sites.proxybrowser.activity . aw: android.os. AsyncTask execute(java. lang. Object|]j>($r2

<com.free.vpn.unblock.sites. prox ybrowser.activity.aw: void onPostExecute(java.lang.Object)>

e searc h\A <oom_free_vpn_unblock.sines.p‘,{oxybmwser_m_o: void run()> C on Sﬂlhnt

$r2 = staticinvoke <java.net Inet Address: javanet.InetAddress getLocalHost()=()

‘ Hropagation

(). <com.free.vpn.unblock.sites.proxybrowser.m.o: java.net. InetAddress a> = $12

Backward
taint
an alys | S $¢7 = 10.<com.free.vpn.unblock.sites.proxybrowser. m.o: java.net.InctAddress a>

r321 = new com.free.vpn. unblock sites. proxybrowser. m.p

specialinvoke r32 l.<com.free. vpn. §nblock.sites. proxybrowser.m.p: void <init>(com.free.vpn.unblock.sites. proxybrowser. m_o.java_nel_lnelAddrexﬁ.ir[)‘:a (r0), $r7, BOBO) |

Parameter v

o o o o e e e S S A S S S A S S S R S SN S R A S B B A S B B A S S A

~
~
Ss

OF1|[1g <com.connectsdk.service.NetcastTVService$l: void run()><-------—_____
(4] + Forward find call site via Soot ~[~._

Call site
virtualinvoke $r13.<com.connectsdk.service.netcast.NetcastHttpServer: void start()>()
@ ' Connect a calling edge in SSG \
Translate format +

|- <com.connectsdk.service.netcast,NetcastHttpServer: void start()>
y Locate caller method
Program analysis space / r0 := @this: com.connectsdk.service.netcast.NetcastHttpServer via Soot
____________________ SRt S P
Virtual methods - !
ByteCOde search spacc? #0 (in Lcom/connectsdk/service/NetcastTVService$l;) ,""
! name :'run’ /
.:' Bytecode | o v Y
@ plaintext | access :0x0001 (PUBLIC)
t insns size : 46 16-bit code units H
Translate callee method 13834c: [13834c] com.connectsdk.service. NetcastTVSerwce 1.run:()V
signature format + 13835c: 5450 b417 |0000: iget-object vO, V5,
Search bytecod e text Lcom/connectsdk/service/NetcastTVService$1;.this$0: Lcom/connectsdk/serwce/NetcastTV
: Service; // field@17b4 ,/
\ 138360: 2201 d207 |0002: new-instance v1, /
Lcom/connectsdk/service/netcast/NetcastHttpServer; // type@07d2 g |dentify method
1383ac: 5400 1318 10028: iget-object VO, VO, In bytecode text
Lcom/connectsdk/service/NetcastTVService;.httpServer: Lcoméconnectsdk/serwce/netcast/N
etcastHttpServer; // field@1813 f
~~~~~~~~~ 1383b0: 6e10 b930 0000 |002a: invoke-virtual {v0}, i
“““““““ -+L_com/connectsdk/service/netcast/NetcastHttpServer;.start:()V // method@30b9
|002d: return-void

1383b6: 0e00




BYtECOde Searches in Reallty (pls refer to paper for details)

* The (basic) method signature-based search:
o For static, private, and constructor callee methods that have only one signature
o Work well for child methods by launching one more search with the child class

» Advanced search with forward object taint analysis:

o For complex situations with Java polymorphism (super classes and interfaces),
callbacks (e.g., onClick), and asynchronous flows (e.g., AsyncTask.execute).

o First search the callee class’s object constructors, and perform forward object
taint analysis until reaching caller sites with the tainted object propagated into.

» Several special search mechanisms:
o Arecursive search for static initializers (i.e., static <clinit>() methods)
o Atwo-time ICC search for inter-component communication (intent-related 1CC)
o An on-demand search for Android lifecycle handlers (e.g., onStart and onResume)

9



Experimental Setup

First crawl a set of
3,178 modern
popular apps.

Then search for the
apps with all crypto
and SSL sink APIs:

144 apps.

Intel i7-4790 CPU
(3.6GHZ, 8 cores);

16GB of physical
memory;

VM heap space:
12GB for Amandroid
4GB for BackDroid.

Tool
configuration

* The default Amandroid
configuration:
* (per-component)
timeout = 2m
* third party_lib_file
= /liblist.txt

* Per-app timeout:
300m (or 5 hours)

10



Performance and Detection Results

* Performance: « Maintain close detection
o 37 times faster (2.13min vs. 78.15min) ~ effectiveness for the 30 vulnerable
o FlowDroid’s CG time was 9.76min apps detected by Amandroid:
63% 35% o Uncovered 22 of 24 true positives and
50 : : : - - —
) a7 == BackDroid avoided six false positives
wl| B == Amandroid | » 54 additional apps with potentially
Insecure crypto and SSL issues:
30 . .
27 7 o One half were the timed-out failures;
s . = o But the rest were due to the skipped
20} : . . .
L6 v libraries, unrobust handling of
Lol . asynchronous flows/callbacks, and
; occasional errors in Amandroid’s
0 0 0 whole-app analysis.

0 Om-1Im Im-5m5m-10m 10-30m 30-100m100-300m Timeout
Time Required by BackDroid and Amandroid per App 11



Thank Youl

* BackDroid Is open-sourced at https://github.com/VVPRLab/BackDroid.

* \We are cleaning and refactoring the code of BackDroid to make it
easy-to-use and extensible.

 \We are also evolving BackDroid so that it can be used as a generic SDK
to support customization for different problems.

Questions?

12


https://github.com/VPRLab/BackDroid

