
When Program Analysis Meets Bytecode Search:
Targeted and Efficient Inter-procedural Analysis of

Modern Android Apps in BackDroid

Daoyuan Wu1, Debin Gao2, Robert H. Deng2 , and Rocky K. C. Chang3

https://github.com/VPRLab/BackDroid

321

https://github.com/VPRLab/BackDroid

2

State-of-the-art Android Static Tools

• AmanDroid [CCS’14, 413 cites] and FlowDroid [PLDI’14, 1,867 cites]
o Both perform the whole-app inter-procedural analysis

that starts from all entry points and ends in all reachable code nodes.

Ignore the need of targeted analysis, and often Expensive

Comprehensive: all forward analysis could be built upon

3

Previous Tests on Amandroid and FlowDroid

• For relatively small apps:

• Even with 730 GB of RAM and 64 CPU cores:
o “the server sometimes used all its memory, running on all cores for more than

24 hours to analyze one single Android app” [ICSE’15].

• Industrial reports:
o “This code runs for more than 5 hours to analyze an apk that is only 12.4M” #14
o “Although I kept the analysis running for 72 hrs (with 28 GB memory), it seems like

it's stuck being unable to find any entry points” FlowDroid Issue #310

Apps under 5MB

in AppContext [ICSE’15]

Apps with an average size of 8.4MB

in HSOMiner [NDSS’17]

• 16.1% of 1,002 apps exceeded

the 80-minute timeout;

• 11min each for the rest of apps.

• 8.4% of 3K apps exceeded

the 60-minute timeout;

• 13min each for the rest of apps.

https://github.com/arguslab/Argus-SAF/issues/14
https://github.com/secure-software-engineering/FlowDroid/issues/310

4

The Upscaling Trend of Modern App Sizes

A summary of average and median app sizes over a period of five years.

X 3 X 4.5

5

Generating Whole-app Call Graphs for Modern Apps

• With modern apps, we re-evaluate the cost of generating a whole-app
call graph using FlowDroid 2.7.1 (without the subsequent dataflow analysis):
o 144 modern apps with the average size of 41.5MB, under the same hardware

configuration as for our experiments of Amandroid and BackDroid later.

24% of the apps

reached the timeout

of 5 hours, causing

no result for those

34 modern apps

The median time of

call graph generation

in FlowDroid is still

around 10 minutes

(9.76min) per app

6

Our Work

• Explore a new paradigm of targeted (vs. the traditional whole-app)
inter-procedural analysis that can
o skip irrelevant code and focus only on the flows of security-sensitive sink APIs.

• Propose a new technique called on-the-fly bytecode search,
o which searches the disassembled app bytecode plaintext just in time when a

caller method needs to be located so that it can guide targeted (and backward)
inter-procedural analysis step by step until reaching entry points.

• We combine this technique with the traditional program analysis
and develop a static analysis tool called BackDroid

o for the efficient and effective targeted security vetting of modern Android apps.

7

An Overview of BackDroid’s Analysis Process

Dumped

Bytecode

Plaintext

Bytecode Search

Backward

taint

analysis

On-the-fly

bytecode search

Source

for search

Sink API
Parameter

Entry function

Forward

Constant

Propagation

dexdump

Original

Bytecode

8

A Basic
Search
Example

Virtual methods -

#0 : (in Lcom/connectsdk/service/NetcastTVService$1;)

name : 'run'

type : '()V'

access : 0x0001 (PUBLIC)

......

insns size : 46 16-bit code units

13834c: |[13834c] com.connectsdk.service.NetcastTVService.1.run:()V

13835c: 5450 b417 |0000: iget-object v0, v5,

Lcom/connectsdk/service/NetcastTVService$1;.this$0:Lcom/connectsdk/service/NetcastTV

Service; // field@17b4

138360: 2201 d207 |0002: new-instance v1,

Lcom/connectsdk/service/netcast/NetcastHttpServer; // type@07d2

......

1383ac: 5400 1318 |0028: iget-object v0, v0,

Lcom/connectsdk/service/NetcastTVService;.httpServer:Lcom/connectsdk/service/netcast/N

etcastHttpServer; // field@1813

1383b0: 6e10 b930 0000 |002a: invoke-virtual {v0},

Lcom/connectsdk/service/netcast/NetcastHttpServer;.start:()V // method@30b9

1383b6: 0e00 |002d: return-void

Forward find call site via Soot

<com.connectsdk.service.NetcastTVService$1: void run()>

virtualinvoke $r13.<com.connectsdk.service.netcast.NetcastHttpServer: void start()>()

<com.connectsdk.service.netcast.NetcastHttpServer: void start()>

r0 := @this: com.connectsdk.service.netcast.NetcastHttpServer

1

4

Callee

Caller

Call site

Translate callee method

signature format +

Search bytecode text

2

Translate format +

Locate caller method

via Soot

3

Identify method

in bytecode text

5 Connect a calling edge in SSG

Bytecode

plaintext

Program analysis space

Bytecode search space

9

Bytecode Searches in Reality (pls refer to paper for details)

• The (basic) method signature-based search:
o For static, private, and constructor callee methods that have only one signature

o Work well for child methods by launching one more search with the child class

• Advanced search with forward object taint analysis:
o For complex situations with Java polymorphism (super classes and interfaces),

callbacks (e.g., onClick), and asynchronous flows (e.g., AsyncTask.execute).

o First search the callee class’s object constructors, and perform forward object
taint analysis until reaching caller sites with the tainted object propagated into.

• Several special search mechanisms:
o A recursive search for static initializers (i.e., static <clinit>() methods)

o A two-time ICC search for inter-component communication (intent-related ICC)

o An on-demand search for Android lifecycle handlers (e.g., onStart and onResume)

10

Experimental Setup

• First crawl a set of
3,178 modern
popular apps.

• Then search for the
apps with all crypto
and SSL sink APIs:
144 apps.

EnvironmentDataset
Tool

configuration

• Intel i7-4790 CPU
(3.6GHZ, 8 cores);

• 16GB of physical
memory;

• VM heap space:
12GB for Amandroid
4GB for BackDroid.

• The default Amandroid
configuration:
• (per-component)

timeout = 2m
• third_party_lib_file

= /liblist.txt

• Per-app timeout:
300m (or 5 hours)

11

Performance and Detection Results

• Performance:
o 37 times faster (2.13min vs. 78.15min)

o FlowDroid’s CG time was 9.76min

• Maintain close detection
effectiveness for the 30 vulnerable
apps detected by Amandroid:
o Uncovered 22 of 24 true positives and

avoided six false positives

• 54 additional apps with potentially
insecure crypto and SSL issues:

o One half were the timed-out failures;

o But the rest were due to the skipped
libraries, unrobust handling of
asynchronous flows/callbacks, and
occasional errors in Amandroid’s
whole-app analysis.

35%63%

12

Thank You!

• BackDroid is open-sourced at https://github.com/VPRLab/BackDroid.

• We are cleaning and refactoring the code of BackDroid to make it
easy-to-use and extensible.

• We are also evolving BackDroid so that it can be used as a generic SDK
to support customization for different problems.

Questions?

https://github.com/VPRLab/BackDroid

